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The approximation property implies that convolvers are

pseudo-measures

Matthew Daws, Nico Spronk

August 6, 2013

Abstract

This paper (not for formal publication) grew out of the authors’ attempts to under-
stand Cowling’s argument that for a locally compact group G with the approximation
property, we have that PMp(G) = CVp(G) (“all convolvers are pseudo-measures”.) We
have ended up giving a somewhat self-contained survey of Cowling’s construction of a
predual for CVp(G), together with a survey of old ideas of Herz relating to Herz-Schur
multipliers. Thus none of the results are new, but we make some claim to originality of
presentation. We hope this account may help other researchers, and in particular, that
this might spur others to study this problem.

1 Introduction

For a locally compact group G equipped with the left Haar measure, we let λp : G → B(Lp(G))
be the left regular representation of G on Lp(G):

(
λp(s)(f)

)
(t) = f(s−1t) (s, t ∈ G, f ∈ Lp(G)).

Letting p′ = p/(p − 1) be the conjugate index, there is a contractive bilinear map Lp(G) ×
Lp′(G) → C0(G) given by f ⊗ g 7→ g ∗ f̌ , the convolution of g with f̌ , the latter defined by
f̌(t) = f(t−1). Notice that for t ∈ G, we have that (g∗f̌)(t) = 〈λp(t)(f), g〉, using the usual dual
pairing between Lp(G) and Lp′(G). Thus we have a contractive map from the projective tensor
product Lp(G)⊗̂Lp′(G) → C0(G). We let the coimage be Ap(G), the Figa-Talamanca–Herz
algebra of G (see [7]) which becomes a Banach algebra when equipped with the norm making
Ap(G) isometrically a quotient of Lp(G)⊗̂Lp′(G). Thus every a ∈ Ap(G) has the form

a =

∞∑

n=1

gn ∗ f̌n with ‖a‖Ap
= inf

{ ∞∑

n=1

‖fn‖p‖gn‖p′
}
, (1)

where the infimum is taken over all such representations.
Herz showed in [8, Proposition 3] that Ap(G) is a regular, tauberian algebra of functions on

G. In particular, the elements of Ap(G) with compact support are dense in Ap(G). This raises
the following question:

Compact Approximation: Given a ∈ Ap(G) with compact support, can we write
a in the form of (1) with every fn, gn having compact support? Can we compute
the norm of a using such “compact representations”?
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There are of course two questions here: the first always has a positive answer, as shown by
Cowling in [1, Lemma 1], using an argument of Herz. Thus the question is really about norm
control of compactly supported elements.

Recall that B(Lp(G)), the space of bounded linear maps on Lp(G), is the dual space of
Lp(G)⊗̂Lp′(G) for the pairing 〈T, f ⊗ g〉 = 〈T (f), g〉. The kernel of the map Lp(G)⊗̂Lp′(G) →
Ap(G) is precisely the set I of those τ ∈ Lp(G)⊗̂Lp′(G) such that 〈λp(s), τ〉 = 0 for all s ∈ G.
Hence if we denote by PMp(G) the weak∗-closed linear span of the operators λp(s), then
I = ⊥PMp(G) and so

Ap(G)∗ = I⊥ = PMp(G).

Notice that clearly PMp(G) is an algebra– it is the algebra of p-pseudo-measures. Relatedly,
let ρp : G → B(Lp(G)) be the right-regular representation

(
ρp(s)(f)

)
(t) = f(ts)∆(s)1/p (s, t ∈ G, f ∈ Lp(G)),

where ∆ is the modular function. Let CVp(G) be the commutant of {ρp(s) : s ∈ G}; so also
CVp(G) is the bicommutant of PMp(G). It is easy to see that PMp(G) ⊆ CVp(G). Herz showed
in [8, Theorem 5] that when G is amenable, CVp(G) = PMp(G). This leads to the question:

Convolvers are Pseudo-Measures: Does it hold that CVp(G) = PMp(G)?

Cowling showed implicitly in [1] that these two questions are equivalent– stated as they
are here, this is perhaps somewhat surprising. We quickly sketch Cowling’s argument below
in Section 2 (see Theorem 2.3). Some von Neumann algebra theory (see Section 5 below for
why we need more than the bicommutant theorem!) shows that CV2(G) = PM2(G) for any G,
and so the “compact approximation” problem has a positive answer for p = 2, that is, for the
Fourier algebra.

In Section 3 we quickly explore Herz’s theory of p-spaces, and show that CVp(G) is a module
over a certain multiplier algebra. Again, such ideas are already implicit in [8, 9], but we give an
essentially self-contained account. Then we show a result claimed without proof in [1]: if G has
the approximation property, then CVp(G) = PMp(G) for all p. We finish with some comments
about the philosophy of why this proof works, and what is different in the p = 2 case.

2 A predual of the convolvers

It is obvious that CVp(G) is weak∗-closed in B(Lp(G)) because T ∈ CVp(G) if and only if T
annihilates the space

cvp(G) = lin{ρp(s)f ⊗ g − f ⊗ ρp(s)
∗g : s ∈ G, f ∈ Lp(G), g ∈ Lp′(G)} ⊆ Lp(G)⊗̂Lp′(G).

Here ρp(s)
∗ ∈ B(Lp′(G)) denotes the Banach space adjoint of the operator ρp(s). A simple

calculation shows that ρp(s)
∗ = ρp′(s

−1).
In [1], Cowling constructs a “function space” predual of CVp(G), which we now sketch. Let

K be a compact neighbourhood of e in G, and let Lp(K) be the subspace of Lp(G) consisting of
those functions supported on K. Let Ǎp,K(G) be the space of (necessarily continuous) functions
a on G of the form

a =

∞∑

n=1

gn ∗ f̌n

where (fn) ⊆ Lp(K), (gn) ⊆ Lp′(K), and with
∑

n ‖fn‖p‖gn‖p′ < ∞. Again give Ǎp,K(G) the
norm given by the infimum of all such sums. Now let Ǎp(G) be the union of such spaces, as K
varies, equipped with the norm

‖a‖Ǎp
= inf

{
‖a‖Ǎp,K

: K a compact n’hood of e, a ∈ Ǎp,K

}
.
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Cowling shows that Ǎp(G) is a normed algebra of functions on G. Letting Ap(G) be the Banach
space completion, we have that Ap(G) is a commutative Banach algebra whose spectrum is G.

The main result of [1] is that the dual space of Ǎp(G) may be identified (isometrically) with
CVp(G) in the following way: T ∈ CVp(G) corresponds to ΦT ∈ Ǎp(G)∗ where

〈ΦT , a〉 =
∞∑

n=1

〈T (fn), gn〉 whenever a =
∞∑

n=1

gn ∗ f̌n.

We shall not prove this result here, instead referring the reader to Cowling’s paper.
Let us now draw some further conclusions from this. We first claim that we may define a

map
φ : Ǎp(G) → Lp(G)⊗̂Lp′(G)/cvp(G); g ∗ f̌ 7→ f ⊗ g + cvp(G),

and using linearity and continuity to extend to all of Ǎp(G). This is indeed well-defined, for if

a =
∞∑

n=1

gn ∗ f̌n =
∞∑

n=1

g′n ∗ f̌
′
n,

for suitable families (fn), (gn), (f
′

n), (g
′

n), then by Cowling’s result, for any T ∈ CVp(G),

∞∑

n=1

〈T (fn), gn〉 −
∞∑

n=1

〈T (f ′

n), g
′

n〉 = 〈ΦT , a− a〉 = 0.

As cvp(G) is the pre-annihilator of CVp(G), this shows that

∞∑

n=1

fn ⊗ gn −
∞∑

n=1

f ′

n ⊗ g′n ∈ cvp(G),

as required to show that φ is well-defined. Thus φ extends by continuity to a contraction
Ap(G) → Lp(G)⊗̂Lp′(G)/cvp(G).

Proposition 2.1. The map φ is an isometric isomorphism.

Proof. Just observe that φ∗ : CVp(G) → Ap(G)∗ = Ǎp(G)∗ is just the map T 7→ ΦT which by
Cowling’s result is an isometric isomorphism.

As the adjoint of the map Ap(G) → Ap(G) is the isometric inclusion PMp(G) → CVp(G),
it follows that Ap(G) quotients onto Ap(G). We could also see this by observing that cvp(G) is
a subset of the pre-annihilator ⊥PMp(G), and so we have a quotient map

Ap(G) ∼= Lp(G)⊗̂Lp′(G)/cvp → Lp(G)⊗̂Lp′(G)/⊥PMp(G) ∼= Ap(G).

Hence the Gelfand transform of Ap(G) “is” this quotient map Ap(G) → Ap(G), if we think of
Ap(G) as an algebra of functions on G. In particular, we have the following.

Proposition 2.2. Ap(G) is semi-simple if and only if Ap(G) = Ap(G).

We can now prove that the two questions asked in the introduction are indeed equivalent.

Theorem 2.3. For any locally compact group G and any p, we have that Ap(G) satisfies
“compact approximation” if and only if CVp(G) = PMp(G).
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Proof. Suppose that CVp(G) = PMp(G). Let a ∈ Ap(G) have compact support. By [1,
Lemma 1], a ∈ Ǎp(G), though maybe a priori with a different norm. However, then

‖a‖Ǎp
= sup{|〈T, a〉| : T ∈ CVp(G), ‖T‖ ≤ 1}

= sup{|〈T, a〉| : T ∈ PMp(G), ‖T‖ ≤ 1} = ‖a‖Ap
.

So we can compute the norm of a in Ǎp(G) by using elements with common compact support
in Lp(G) and Lp′(G), which is exactly “compact approximation”.

Conversely, if we have compact approximation, then identification of functions gives an
isometry Ǎp(G) → Ap(G) which again by [1, Lemma 1] has dense range. Thus Ap(G) = Ap(G),
and so by duality, CVp(G) = PMp(G).

3 Herz’s Theory of p-spaces

In [7] Herz defines a Banach space E to be a p-space if there is a contraction γE such that for
any G, the following diagram commutes:

Lp(G;E)⊗̂Lp′(G;E∗)
γE

// Lp(G)⊗̂Lp′(G)

(Lp(G)⊗̂E)⊗̂(Lp′(G)⊗̂E∗)

OO

cE
44
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐

where cE(f ⊗ x ⊗ g ⊗ µ) = 〈µ, x〉f ⊗ g. This is equivalent to, for each T ∈ B(Lp(G)), there
existing S ∈ B(Lp(G;E)) with ‖S‖ = ‖T‖, and with S(f ⊗ x) = T (f) ⊗ x on elementary
tensors.

These days we recognise that E is a p-space if and only if it is an SQp-space, that is, E is
(isometrically isomorphic to) a subspace of a quotient of an Lp space, see [10, Theorem 2].

Herz’s interest in such spaces was because they are a natural setting in which to study the
fact that Ap(G) is an algebra. In fact, in [9] he introduced the notion we now call a Herz–Schur
multiplier. Let Mp(G) be the space of continuous functions ϕ on G such that there is a p-space
E and continuous functions α : G → E and β : G → E∗ such that ϕ(ts−1) = 〈α(s), β(t)〉 for
all s, t ∈ G. We take ‖ϕ‖ to be the infimum of ‖α‖∞‖β‖∞ over all such representations of ϕ.
Then Mp is a Banach algebra, and is an algebra of functions on G which multiples Ap(G) into
itself. Within the framework of p-operator spaces, these are precisely the multipliers of Ap(G)
which are p-completely bounded, see [2] and references therein.

In [8, Section 1] some p-space ideas are deployed to show that Lp(G)⊗̂Lp′(G) is an Ap(G)
module. Let us give the details of this argument, in a more general setting. Note that we regard
Lp(G)⊗̂Lp′(G) as a space of (equivalence classes of) functions on G×G, by, for example, using
the contractive injective map Lp(G)⊗̂Lp′(G) → Lp(G;Lp′(G)).

Proposition 3.1. Lp(G)⊗̂Lp′(G) is a contractive Mp(G) module for the module action given
by

(ϕ · τ)(s, t) = ϕ(ts−1)τ(s, t) (ϕ ∈ Mp(G), τ ∈ Lp(G)⊗̂Lp′(G), s, t ∈ G).

Proof. It suffices to establish that ϕ · τ really is in Lp(G)⊗̂Lp′(G) with ‖ϕ · τ‖ ≤ ‖ϕ‖‖τ‖. By
the definition of the projective tensor product, it’s enough to do this when τ = f ⊗ g. Let
ϕ(ts−1) = 〈α(s), β(t)〉 for suitable α, β as defined above. Define

F ∈ Lp(G;E); F (s) = f(s)α(s), G ∈ Lp′(G;E∗); G(t) = g(t)β(t).

Then, for s, t ∈ G,

γE(F ⊗G)(s, t) = f(s)g(t)〈α(s), β(t)〉 = ϕ(ts−1)τ(s, t).
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Thus ϕ · τ = γE(F ⊗ G) ∈ Lp(G)⊗̂Lp′(G) with ‖ϕ · τ‖ ≤ ‖F‖‖G‖ ≤ ‖f‖‖α‖∞‖g‖‖β‖∞ as
required.

Notice that all the hard work was carried by the existence of the map γE.

Proposition 3.2. This action of Mp(G) maps cvp(G) into itself, and hence drops to a con-
tractive action on Lp(G)⊗̂Lp′(G)/cvp(G). This space is isomorphic to Ap(G), and under this
isomorphism, the action of Mp(G) is just (pointwise) multiplication of functions. By duality,
we hence turn CVp(G) into a contractive Mp(G) module.

Proof. We continue with the notation of the previous proof. Denote F = fα, and similarly
G = gβ. For s, t ∈ G, let αt(s) = α(st). Then, as E is a p-space, for any t ∈ G the operator
ρp(t)⊗ IE is an invertible isometry on Lp(G;E). Then

(ρp(t)⊗ IE)(fα)(s) = (fα)(st)∆(t)1/p = (ρp(t)f)(s)α
t(s) (s ∈ G)

and so (ρp(t)⊗ IE)(fα) = (ρp(t)f)α
t. However, then notice that for r ∈ G,

γE
(
(ρp(r)f)α⊗ gβ − fα⊗ (ρp′(r

−1)g)β
)

= γE
(
(ρp(r)⊗ IE)(fα

r−1

)⊗ gβ − fα⊗ (ρp′(r
−1)⊗ IE∗)(gβr)

)
.

Now, for s, t ∈ G,

〈αr−1

(s), β(t)〉 = 〈α(sr−1), β(t)〉 = ϕ(trs−1) = 〈α(s), β(tr)〉 = 〈α(s), βr(t)〉.

So the pairs (αr−1

, β) and (α, βr) define the same element of Mp(G). Thus by the previous
proof, and using an obvious property of γE, we see that

γE
(
(ρp(r)⊗ IE)(fα

r−1

)⊗ gβ
)
= (ρp(r)⊗ ILp′ (G))γE

(
fαr−1

⊗ gβ
)

= (ρp(r)⊗ ILp′ (G))γE
(
fα⊗ gβr

)
= γE

(
(ρp(r)⊗ IE)(fα)⊗ gβr

)
.

Putting these together, we see that

γE
(
(ρp(r)f)α⊗ gβ − fα⊗ (ρp′(r

−1)g)β
)

= γE
(
(ρp(r)⊗ IE)(fα)⊗ gβr − fα⊗ (ρp′(r

−1)⊗ IE∗)(gβr)
)

= (ρp(r)⊗ ILp′(G))γE
(
fα⊗ gβr

)
− (ILp(G) ⊗ ρp′(r

−1))γE
(
fα⊗ gβr

)
,

which by definition is a member of cvp(G).
We have hence established that the module action of Mp(G) maps cvp(G) into itself. Then

using the map φ : Ap(G) → Lp(G)⊗̂Lp′(G)/cvp(G), we see that

φ−1
(
ϕ · φ(g ∗ f̌)

)
(r) =

∫

G

(ϕ · (f ⊗ g))(r−1s, s) ds

=

∫

G

ϕ(s(r−1s)−1)f(r−1s)g(s) ds = ϕ(r)(g ∗ f̌)(r),

so the induced action of Mp(G) on Ap(G) is just function multiplication.

Recall the quotient map Ap(G) → Ap(G), and let the kernel of this map be Ip. As this
is also the kernel of the Gelfand map, it follows that the module action of Mp annihilates Ip.
Furthermore, the quotient map Ap(G) → Ap(G) is an Mp-module homomorphism.

5



3.1 Support of convolvers

In [7], Herz defines a notion of “support” for a member of CVp(G) which generalises the notion
of support for members of PMp(G). It is quite easy to combine a number of results of [7] to
prove the following, but we choose instead to give a short, direct proof. In particular, compare
with [7, Proposition 9].

Proposition 3.3. Let T ∈ CVp(G) be arbitrary, and let ϕ ∈ Mp(G) have compact support
(thinking of ϕ as a continuous functions on G). Then S = ϕ · T ∈ PMp(G).

Proof. Let K be any compact neighbourhood of the identity in G, and let k ∈ C00(G) with
supp(k) ⊆ K. We claim that S(k) ∈ Lp(G) has support contained in the compact set supp(ϕ)K.
Indeed, if g ∈ C00(G) vanishes on supp(ϕ)K, then g(st) = 0 for all t ∈ K and s with ϕ(s) 6= 0.
Thus, for such s,

(g ∗ ǩ)(s) =

∫

G

k(t)g(st) dt =

∫

K

k(t)g(st) dt = 0,

and so ϕ(g ∗ ǩ) = 0 identically, and hence

〈S(k), g〉 = 〈ϕ · T, g ∗ ǩ〉 = 〈T, ϕ(g ∗ ǩ)〉 = 0,

as required.
So then S(k) ∈ Lp(G) has compact support, and so by Hölder’s inequality, S(k) ∈ L1(G).

As S ∈ CVp(G), for u ∈ C00(G) we have that S(k ∗u) = S(k)∗u, and then a limiting argument
(and using that S(k) ∈ L1(G)) shows that this holds for all u ∈ Lp(G). Letting k run through
a bounded approximate identity for convolution, it follows that

S(u) = lim
k

S(k ∗ u) = lim
k

S(k) ∗ u (u ∈ Lp(G)).

As left convolution by S(k) ∈ L1(G) is a member of PMp(G), this shows that the operator S
is the weak∗-limit of elements of PMp(G); as PMp(G) is weak∗-closed, the result follows.

4 Main result

We finally come to the study of groups G with the approximation property, for which we follow
the original paper [5]. Recall thatM2(G) is a dual space with predualQ(G), which is the closure
of L1(G) inside M2(G)∗ given by the obvious “action by integration” of L1(G) on M2(G) (this
being first studied in [3, Proposition 1.10].) Then G has the approximation property when 1 is
in the weak∗-closure of A(G) in M2(G).

We now adapt [5, Proposition 1.3]. Let f ∈ Ǎp(G) be pointwise positive with
∫
G
f = 1. It is

easily seen that Mp(G) is translation invariant, and so for any ϕ ∈ Mp(G), also f ∗ϕ ∈ Mp(G)
with ‖f ∗ ϕ‖ ≤ ‖ϕ‖. For τ ∈ Lp(G)⊗̂Lp′(G), by Proposition 3.1, we have that (f ∗ ϕ) · τ ∈
Lp(G)⊗̂Lp′(G). Then, for T ∈ CVp(G) ⊆ B(Lp(G)), we see that

Mp(G) → C; ϕ 7→ 〈T, (f ∗ ϕ) · τ〉

is a bounded linear map, with norm at most ‖τ‖‖T‖, say giving µ ∈ Mp(G)∗.
Finally, recall that 2-spaces are precisely the Hilbert spaces, and that every Hilbert space

is a p-space (see [7]). Hence identification of functions gives a contraction M2(G) → Mp(G).

Proposition 4.1. Let τ ∈ C00(G) ⊗ C00(G) ⊆ Lp(G)⊗̂Lp′(G), let f, T be as above, and form
µ ∈ Mp(G)∗. The composition of M2(G) → Mp(G) followed by µ gives a functional on M2(G)
which is weak∗ continuous, that is, which is a member of Q(G).
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Proof. We shall construct g ∈ L1(G) with 〈µ, ϕ〉 =
∫
G
ϕg for all ϕ ∈ M2(G). Let a ∈ Ǎp(G)

be the element induced by τ and let S = supp(f)−1 supp(a), a compact subset of G. For
s ∈ supp(a),

(f ∗ ϕ)(s) =

∫

G

f(t)ϕ(t−1s) dt =

∫

G

f(t)χS(t
−1s)ϕ(t−1s) dt

as f(t) 6= 0 =⇒ t−1s ∈ S as s ∈ supp(a). Thus

(f ∗ ϕ)(s)a(s) = (f ∗ χSϕ)(s)a(s)

for all s ∈ G, as if s 6∈ supp(a) then both sides are 0. Define ft(s) = f(st), and then

(
(f ∗ χSϕ)a

)
(s) =

∫

G

ft(s)(χSϕ)(t
−1)a(s) dt.

Now, the map Φ : G → Ǎp(G); t 7→ fta is bounded and continuous, because Ǎp(G) is a
normed algebra and t 7→ ft is a continuous function.1 Then set

g(t) = χS(t)∆(t−1)〈T,Φ(t−1)〉 (t ∈ G).

Then g is the restriction of a continuous function to the compact set S, and hence g ∈ L1(G).
Then, using the above calculations,

∫

G

g(t)ϕ(t) dt =

∫

G

χS(t)∆(t−1)〈T,Φ(t−1)〉ϕ(t) dt =

∫

G

χS(t
−1)〈T, fta〉ϕ(t

−1) dt

= 〈T,

∫

G

fta(χSϕ)(t
−1) dt〉 = 〈T, (f ∗ χSϕ)a〉 = 〈T, (f ∗ ϕ)a〉 = 〈µ, ϕ〉,

as required. Here we used Proposition 3.2 which allows us to identify (f ⋆ ϕ)a ∈ Ap(G) with
the image of (f ⋆ ϕ) · τ in the quotient Lp(G)⊗̂Lp′(G)/cvp(G), which is all we care about, as
T ∈ CVp(G).

Theorem 4.2. If G has the approximation property, then CVp(G) = PMp(G) for all p.

Proof. By hypothesis, there is a net (ϕi) of elements of A(G) with compact support (compare
[5, Remark 1.2] as to why we can assume compact support) such that ϕi → 1 weak∗ in M2(G).

Fix f ∈ Ǎp(G) as above, and let T ∈ CVp(G). As C00(G)⊗C00(G) is dense in Lp(G)⊗̂Lp′(G),
by continuity and the previous proposition, for any τ ∈ Lp(G)⊗̂Lp′(G) there is µ ∈ Q(G) such
that 〈ϕ, µ〉 = 〈T, (f ∗ ϕ) · τ〉 for all ϕ ∈ M2(G). Thus

lim
i
〈T, (f ∗ ϕi) · τ〉 = lim

i
〈ϕi, µ〉 = 〈1, µ〉 = 〈T, (f ∗ 1) · τ〉 = 〈T, 1 · τ〉 = 〈T, τ〉.

As τ was arbitrary, it follows that (f ∗ ϕi) · T → T weak∗ in B(Lp(G)). As f and ϕi have
compact support, so does f ∗ ϕi, and so Proposition 3.3 shows that (f ∗ ϕi) · T ∈ PMp(G) for
all i. Again, as PMp(G) is weak∗-closed, it follows that T ∈ PMp(G), as required.

5 Closing remarks

We remark that the ideas of Cowling, as expounded in this note, and Herz’s proof [7, Theorem 5],
are all “localisation” results: we use some weak notion of a “compactly supported approximate
identity” to multiply elements of CVp(G) into PMp(G), and then take weak∗-limits. The class

1Indeed, if f = g ∗ ȟ then ft(s) =
∫
G
h((st)−1r)g(r) dr =

∫
G
(λp(t)h)(s

−1r)g(r) dr = h ∗ ǩ if k = λp(t)h.
Continuity then follows because t 7→ λp(t)h is continuous.
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of groups with the approximation is large, but does not include all locally compact groups, due
to recent counter-examples [6, 11].

When p = 2, it is tempting to think that the bicommutant theorem immediately implies
that PM2(G) = CV2(G); however, some care is required. For X a subset of B(Lp(G)), let
alg(X) be the algebra generated by X , and let algw∗(X) be the weak∗-closure of alg(X). Then
it’s easy to see that X ′ = alg(X)′ = algw∗(X)′. By definition, PMp(G) = algw∗(λp(G)); define
also PM r

p (G) = algw∗(ρp(G)). Then by definition CVp(G) = ρp(G)′ = PM r
p (G)′; define also

CV r
p (G) = λp(G)′ = PMp(G)′. When p = 2, von Neumann’s bicommutant theorem tells us

that PM2(G) = algw∗(λ2(G)) = λ2(G)′′ = CV r
2 (G)′. However, CV2(G) = PM r

2 (G)′, so it is
not immediately clear why we would have PM2(G) = CV2(G)? Clearly λ2(G) ⊆ ρ2(G)′ and so
λ2(G)′ = CV r

2 (G) ⊇ ρ2(G)′′ = PM r
2 (G). Thus the problem is to prove that if T ∈ λ2(G)′, then

why is T ∈ PM r
2 (G) = algw∗(ρ2(G)) = ρ2(G)′′?

Herz claims in [8, Section 8] that the argument given in [4, Part 1, Chapter 5, Exercises]
works for any p to show that PMp(G) = CVp(G). This reference is to Dixmier’s book, where he
studies (quasi)-Hilbert algebras. We do not immediately see why Herz’s claim, that such ideas
work for p 6= 2, holds.2 For a modern approach, which certainly shows that PM2(G) = CV2(G),
we may follow Tomita-Takesaki theory, see in particular [12, Chapter VII, Proposition 3.1].

References

[1] M. Cowling, “The predual of the space of convolutors on a locally compact group”, Bull.
Austral. Math. Soc. 57 (1998), no. 3, 409–414.
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