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Term and Variable Selection for Nonlinear System Identification

H.L. Wei, S.A. Billings and J. Liu
Department of Automatic Control and Systems Engineering, University of Sheffield
Mappin Street, Sheffield, S1 31D, UK

The purpose of variable selection is to pre-select a subset consisting of the significant variables or to
eliminate the redundant variables from all the candidate variables of a system under study prior to model term
detection. It is required that the selected significant variables alone should sufficiently represent the system.
Generally, not all the model terms, which are produced by combining different variables, make an equal
contribution to the system output and terms, which make little contribution, can be omitted. A parsimonious
representation, which contains only the significant terms, can often be obtained without the loss of
Tepresentational accuracy by eliminating the redundant terms. Based on these observations, a new variable
and term selection algorithm is proposed in this paper. The term detection algorithm can be applied to the
general class of nonlinear modelling problems which can be expressed as a linear-in-the-parameters form.
The variable selection procedure is based on locally linear and cross-bilinear models, which are used together
with the forward orthogonal least squares (OLS) and error reduction ratio (ERR) approach to determine the
significant terms and to pre-select the important variables for both time series and input-output systems.

Several numerical examples are provided to illustrate the applicability and effectiveness of the new approach.

1. Introduction

It is well known that system identification, which can be used construct a model to represent a given system,
plays an important role in system analysis, control and prediction. The mathematical modelling of an
engineering system generally consists of two aspects, model structure detection and parameter estimation. For a

given system, assume that a dependent variable y (output) is affected by n candidate predictor variables (the

inputs), say, X, X,,''-, X,. Assume that there exists a functional relationship between y and the input
T oo T N
x=[x,x,,--,x,] such that y = f;;(x). The objective of system identification is to construct a model to

approximate the underlying relationship f, using a set of input and output observations.

Several types of model structures are available in nonlinear approximation, including parametric models such
as polynomial models, rational models, neural networks, neurofuzzy networks etc., and nonparametric models
such as radial basis function networks, wavelet networks and other basis function expansion methods. But the

first problem encountered in modelling is how to determine which variables should be included in the model
whatever kind of model form is used. It is often found in practice that some of the variables x,, x,,---, X, are

redundant and only a subset of these variables are significant. Inclusion of redundant variables might result in a
- much more complex model since the number of ‘model terms increases dramatically with the number of
variables. Furthermore, including redundant variables might lead to a large number of free parameters in the

model, and as a consequence the model may become oversensitive to training data and is likely to exhibit poor
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generalisation properties. Therefore, it is important to determine which variables should be included in the _
model. '

For a linear regression model, the model terms and the variables are exactly the same, they are the regressors.
However, variables and terms are generally distinct in a typical nonlinear model. The distinction between
variables and terms is important and this can be illustrated using the simple nonlinear mode] below

Y=y +ax, +a,X, +ax, +a,x +asx; +agx +a;5%, + agX,X; + G X, X (1)
Here there are only 3 variables: X; , X, and X, but there are 10 terms, that is, const, X;, X, , X5, xf 3 x;’ i x32 ;
XXy, X, Xy and X, X,. Ideally the selection of variables and the determination of terms should be separated. If
the significant variables can be determined initially from a candidate variable set, then the number of model
terms produced by combining these selected significant variables will be drastically decreased compared with
that generated from the whole candidate variables, and the model structure detection procedure will therefore be
simplified. This is even more important in dynamic nonlinear modelling where typically the terms are formed by
the lagged inputs and outputs.

Variable selection and term determination are generic problems in nonlinear system identification. Once the
significant variables have been selected and the candidate model structures have been determined, the model
terms can be determined by performing some term searching procedures over the selected variables. A
parsimonious model structure can then be detected from the candidate model set, and finally the parameters can
be estimated based on the parsimonious model structure.

Several methods have been developed for selecting variables in linear regression analysis, including
ﬁypothesis tests, forward selection, backward elimination (Miller 1990), and principle component analysis (Oja
1992). Unfortunately, these linear methods cannot be easily extended to the nonlinear case. The main approaches
developed for selecting variables for nonlinear systems include conditional probability analysis (Savit and Green
1991), Bayesian methods (George and McCulloch 1993), mutual information (Battiti 1994, Zheng and Billings
1996) and piecewise linearization (Mao and Billings 1999, Gomm and Yu 2000). As to the term detection
methods, although some of the aforementioned variable selection approaches for linear models can be applied
for term detection, these methods are time consuming and therefore some efficient approaches have been
investigated, including the orthogonal least squares(OLS) algorithms (Billings et al. 1988, Korenberg et al. 1988,
Billings et al.1989, Chen et al. 1989, Billings and Zhu 1994).

In the present paper, a new algorithm which pre-selects the variables and then detects the significant model
terms is introduced for a wide class of nonlinear modelling problems. The method is based on the determination
of the significant variables in locally linear and cross-bilinear models using a sum of error reduction ratios
criteria. The significant nonlinear model terms are then determined by searching over terms formed from the pre-
selected variable set. It is shown that the new procedures have significant advantages compared to existing
methods because the new algorithms are robust with respect to noise, and are very efficient computationally and
can be applied to relatively short data lengths.

The paper is organized as follows. Section 2 briefly describes the input-output model structures, and where
linear-in-the-parameters regression is emphasized since many parametric and nonparametric models can be
converted into this type of structure. In Section 3, a model term detection approach based on the forward OLS

algorithm is described. In Section 4, a novel variable selection approach based on a sum of the error reduction
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ratios (SERR) and the final prediction errors (FPE) is introduced and described in detail. Several numerical

examples are given in Section 5.

2. Model Structures
Assume that the system response y is determined by a set of predictor variables (inputs), say,
X, Xy,°7, X,. It is usually assumed that the response y and the input x = [X,,X,,"*", X, 1" are related by an

unknown mapping f (-) , such that
Y(@) = £ (1), %, (), -, x, (1) + e(2) @)

where €() is a noise signal which is often assumed to be an independent identically distributed random variable.

Several types of model structures are available to approximate the unknown mapping f(-) , including

parametric, non-parametric and semi-parametric models. Parametric structures include polynomial models such
as ARMAX and polynomial NARMAX, rational models. Non-parametric models include neural networks, fuzzy
logic based models, wavelet expansions, radial basis function networks and other basis function expansion based
models. Semi-parametric models are hybrid structures, in which one part is parametric and another is
nonparametric. It has been proved that most nonlinear dynamic systems can be described using the NARMAX

(Nonlinear AutoRegressive Moving Average with eXogenous inputs) model (Leontaritis and Billings 1985)
y(t) = f(y(t—]-):a )’(z _ny)vu(t—l)u7“(1"_”“)!6(’:—1):Je(r,ne))'i-e(t) (3)

where in the MIMO case Y(&)=[y@) y,0) - 5,0 . u@®)=[@) w,¢) - u@F and
et)=[e,(t) e,(t) --- e, ()] are the system output, input and noise sequences, respectively; f(-) is a

nonlinear mapping vector; 1, 1, and 1, are the maximum lags in the output, input and noise; the noise

g
variable €(#) is a zero mean independent sequence which accommodates the effects of measurement noise,
modelling errors and unmeasured disturbances; e(?) is sometimes called the prediction error which is defined as
e(t) = y(t) — $(¢), where ¥(t) is the one-step-ahead prediction.

The objective of system identification is to find a suitable model to approximate the underlying relationship
f () using a set of input and output observations. Most of the model structures considered so far can be
expressed using the form below (Sjoberg et al. 1995):

y(@) = f(x(1):;0) = 3 ¥,B, (x(t);x,) @
iel

which can be parametrized using fixed basis functions such that

y(6) = f(x(0);0) = Y ¥, B, (x(t)) )
el
or, parametrized using the basis functions in terms of dilation and translation parameters ¢ and ,B such that
y(@) = f(x(@);6) = Y ¥ B.(a.x(t)+ By (6)
el




-

where x€' R", O-={y,}., or @ ={,,B,,¥,}.; are the parameters to be estimated,  is a subset of the

integrals, B, is a family of some basis functions belonging to the following three types: i) local basis functions

with bounded support which vanish rapidly at points far from the centre, such as radial basis functions and
wavelets; ii) semi-global basis functions, such as ridge basis functions (Friedman and Stuetzle 1981); ii1) global

basis functions such as polynomials and Fourier series.

In this paper, the linear-in-the-parameters model structure will be considered since many parametric and
nonparametric models can be expressed in this form. The generic form of a linear-in-the-parameters model,

taking the MISO case as an example, is

M
y(6)= 6,0, (x®) + &), 1 =12, N ™
i=1
where N is the data length, p,(-) are model terms which are formed by combining some of the input variables

(p,(-) =1 corresponds to a constant term), M is the number of all the distinct terms, £(Z) is the modelling

error, and 6, are the unknown parameters to be estimated. A compact matrix form corresponding to (7) is

Y=PO+=E (8)
where ¥ = [y(1), y(2), - Y(N)I", P=[py, Pssrs Par 1. Py =0 (x(1), P, (x(2)), -+, p, (x(N)]”,

0=[6,,0,,,0,1 ., E=[e),e2),,e(N)]". ¢

3. Model Term Detection

In reality, not all the terms in the model (7) will be significant, some may be redundant and can be removed
from the model. The forward orthogonal least squares (OLS) algorithm and the error reduction ratio (ERR) were
originally introduced to determine which terms should be included in the model (Billings et al. 1988, Korenberg
et al. 1988, Billings et al. 1989, Chen et al. 1989, Billings and Zhu 1994). This approach has been extensively
studied in the past decade and widely applied in nonlinear system identification (see, for example, Chen et al.
1991, Wang and Mendel 1992, Zhu and Billings 1996, Chng et al. 1996, Hong and Harris 2001a). The forward
OLS algorithm and the ERR approach for term detection will be briefly described below because this forms the

basis of the new algorithm which pre-selects variables and the terms which is described in Section 4.
Assume that the regression matrix P is full rank in columns and can be orthogonally decomposed as
P=WA 9)
where A is an M X M unit upper triangular matrix and W is an N X M matrix with orthogonal columns
W;, Wy, ", W,, in the sense that WTW=D:dia<g{dl,d2,---,dM] with d, =<w,,w, > = Z:Wf(f)wf(’)= -
and the symbol < -, - > denotes the inner product of two vectors. The space spanned by the orthogonal basis

W, W,, ", W,, is the same as that spanned by the basis set p,, p,, -, P, , and (8) can be expressed as

Y =(PAT)YAO)+E=WG+E (10)




where G =[g,,8,,"""» &, 1" is an auxiliary parameter vector, which can be calculated directly from ¥ and

W by means of the property of orthogonality as

G=D"'W'Y (11)
or
<Y,w > i
g =——, i=12--M (12)
<w,w, >

The parameter vector ® is related by the equation A® = G , and this can be solved using either a classical or
modified Gram-Schmidt algorithm (Chen et al. 1989).

The number M of all the candidate terms in model (7) is often very large. Some of these terms may be
redundant and should be removed to give a parsimonious model with only M terms (M ; << M ). Detection
of the significant model terms can be achieved using the OLS procedures described below.

Assume that the residual signal £(%) in the model (7) is uncorrelated with the past outputs of the system, then

the output variance can be expressed as

[1]

—-Y Y== Zgiw W, %ET (13)

Note that the output variance consists of two parts, one is the desired output, (1/ N )Z gl W W, , which can

be explained by the regressors, and the other part, (1/ N)Z"Z , represents the unexplained variance. Thus

A/ N)D g 2wl w, s the | t to the explained desired iance brought b d the ith
81 W, W, is the increment to the explained desired output variance brought by W;, and the i

error reduction ratio, ERR,, introduced by w,, can be defined as

2w, w, > <Y,w, >*
& =W Wi 2 100% = Y, %100%, i=12.---.M, (14)
<Y Y> <Y, Y ><w,w, >

This ratio provides a simple but effective means for seeking a subset of significant regressors. The significant

ERR, =

terms can be selected in a forward-regression manner according to the value of ERR, . Several orthogonalization

procedures, such as Gram-Schmidt, modified Gram-Schmidt and Householder transformation (Chen et al. 1989)
can be applied to implement the orthogonal decomposition. Take the classical Gram-Schmidt algorithm as an

example, the orthogonalization procedure can be implemented in a stepwise manner and this is described as

follows.
Step 1: Setl, ={1,2,-,M}; o=Y"Y,
fori=1toM
L
<Y,w >
ERR, = ———x100%;
o<w,w, >
a,; =1,
end for
= argmax{ERR, } ;
el
wlo =W, ; g1 :<Y,wlD >/<wlo,wl0 >




e T T T

Step j, j22: . .
Forj=2to M
I,=1, (L §
forall i€ Ij

J-1

0

<DiWe > o

WfPrZ o o0 Wk’
= <w,,w, >

2
< . >
ERR, =22 1009,
o <w,w, >
end for ( end loop for i)
sz{?ex;g_(w}"wj<r)}; By VT (15)
£, = argmax{ERR,};
el
W?=sz.i g? =<Y,w?>/<w?,w?>; (16)
a;=1;
for k=1 to j-1

et 0 0.
Ay =< W, Py >/ <w, W, >;

end for (end loop for k)
end for (end loop forj )

The improved version of this algorithm (Zhu and Billings 1996) provides significant reductions in computation

and is advantageous compared to the classical Gram-Schmidt algorithm when dealing with high order MIMO

systems. Other recent studies by Hong and Harris (2001b) have proposed other improvements to this procedure.
Remark 1: The candidate terms that are not chosen in the first step are orthogonalized with respect to all

previously selected basis functions. Because of the orthogonality the j th term can be selected in the same way

as in the first step. In Eq. (16), wff is the j th selected orthogonal term and gj.) is the corresponding parameter.
Any numerical ill conditioning can be avoided by eliminating the candidate basis functions for which wr.T W, are

less than a predetermined threshold 7 in Eq. (15), for example, 7 =107" and r 210.

Remark 2: The assumption that the regression matrix P is full rank in columns is unnecessary in the iterative
forward OLS algorithm. In fact, if the M columns of the matrix P are linearly dependent, and assume that the
rank in columns is M; (<M) , then the algorithm will stop at the M, -th step.

Remark 3: If required, the procedure can be terminated at the M, -th step ( M, <M, ) when

M,
1- 2 ERR, < p, where p is a desired error tolerance, which can be learnt during the regression procedure.
i=1

The final model is the linear combination of the M, significant terms selected from the M candidate terms

{Pf}‘:il <
M
Y =Y, g/ () +£() (17) )
i=1
which is equivalent to
My
Y1) =Y, 6,,p,, (x(1) + £(t) (18)

i=1




where the parameters % = [0y 8, 70 ] are calculated from the triangular equation AG® =0°%

with G® =g, g, -, g7 and

ap, Ay,
0 1 e gy,
A=
0 .. 1 B i1t
0 1

The entries @, (1<i< j< M) are given in the above OLS algorithm.

4. Variable Selection Using the Forward OLS Algorithm

Detecting the significant model terms in nonlinear model estimation can be very computationally intensive
because the number of potential terms can become very large. For example, the expression of Eq. (3) using a
polynomial, radial basis function or wavelet basis can easily produce thousands of potential model terms because
each expression is over many lagged variables. But if the significant variables could be determined as a first step,
the problem is considerably simplified because now the model terms can be formed just from the pre-selected
variables. A new algorithm is introduced below as one solution to this important problem. The method consists
of pre-selecting the variables by searching over a set of locally linear or cross-bilinear modes initially and using

a new sum of error reduction ratio criteria.

4.1 Linearization

Piecewise linear modelling identifies a series of local linear models that approximate the nonlinear behaviour
under study over defined operating ranges of the system. Assume that the function f in model (2) is smooth
enough so that the Taylor expansion is valid at least to second order for a small domain around a given operating

0 _ [ 0 L.(0)

. 017 . . .
point. Let X % X ;X217 € D be one of the operating points of the system, and D is the

operating space of the system under study. Expand f at a small domain Ax® around x@ to the first and

second order respectively, then the operating point dependent linear and cross-bilinear models can be obtained as

below
| o= Ll 2 oy (U))+2|: } (x, = x)+£() (19)
1 x(U)

and

Hw= 16280 a®4 3L -a)

)

1 n n
+ —z} 21 (o, = ¥, = 1 +E(E) (20)
i=l j=

- I f x=pglt




Assume that df /dx, and d* f/ox,0x ; are invariant in the domain Ax'® around the operating point x'”

then (19) and (20) can be re-arranged into the forms

y(©) =a, + Y ax, +£() (21)
i=1
and

n n n
y(@) =c¢, +20ix!. +226(jxixj +£(t), x= [xl,xz,---,xn]T e x¥ + Ax® (22)

i=1 i=l j=1
Clearly, if the variable X, is significant with respect to the output Y of the original nonlinear system, then this

variable should also make a contribution to the linearized models (21) and (22). Thus the variable selection
problem for the nonlinear system is simplified to the detection of the significant variables in the linearized
models. For the linear model (21), the variable selection problem is the same as the term detection problem, and
this can easily be solved using the forward OLS algorithm in the previous section. Note that the parameters of
the linearized models are operating region dependent and therefore the significance of the variables will also be
operating region dependent. The overall significance of certain variables will therefore have to be evaluated

based on their significance in several operating regions.

Based on the linearized model (21), some variable selection approaches have been proposed, for example, the
linear subset selection approach based on an exhaustive search and genetic algorithms (Mao and Billings 1999),
the order and delay selection method based on the linearized model and a final prediction error (FPE) criterion
(Gomm and Yu 2000), and the variable selection approach based on local models and the forward OLS
algorithm (Hong and Harris 2001a).

The main advantage of system identification based on the piecewise linear approach is that well-known linear
algorithms can be used to identify the model and develop control strategies in a manner which utilizes the wealth
of knowledge and experience that is available for linear systems. There are several ways in which nonlinear
systems can be approximated by local linear models (e.g. Billings and Voon 1987). The spatial piecewise linear
models will, providing that the nonlinearities are smooth, provide an adequate representation of a nonlinear
system. This however, can only be achieved at the expense of fitting a very large number of linear models, each
valid in a small region of operation. This number increases exponentially as the number of intervals (operating

regions) for each independent variable is increased. For example, a 10-variable function where each variable has

10 intervals results in 10" linear models. Another problem is the selection of optimal operating regions for the
locally piecewise linear models and this can be computationally time consuming. Improperly selected operating
regions can result in a deterioration of the model accuracy. However, in the present study, the linearization is
used as an initial step in the variable and term selection prior to fitting a nonlinear model and not as a method of

constructing a linearizd model representation.

4.2 Variable Selection Using the Forward OLS Algorithm

In this paper, the linear and cross-bilinear models are used as an initial step for selecting significant variables

for a nonlinear system. This is because most typés of model structures applied in engineering are whole process-




oriented, therefore the global significant variables defined on the whole operating region D of the system under
study are more suitable for the purpose of representing the system using a global model.

Conmsider the case of single input and single output dynamic systems. Assume that (21) and (22) are valid over

the whole operating region D of the system. This results in the ARX and cross-bilinear models

Y@ =y + Y ayt—i)+ 3 b ult - ) +10) (23)
i=1 j=1
y() =c, +§n:chCi (r)+i§n:ch,. (D)x,; (@) +n(@) (24

where 7(¢) is a noise which accommodates the effects of measurement noise, unmeasured disturbances and
modelling errors and which is assumed to be uncorrelated with the past input and output

observations. x,(¢)=y(—i) for i=12,--,n, and x,@)=u@-j) for j=n,+Ln,+2,-,n

y
(n= n, +n,),n yo 1, are the maximum lags which are unknown and should be determined first. Eqs (23) and
(24) are special cases of the NARMAX model (3). Clearly, if some of the lagged outputs y(¢ — i) and/or lagged
inputs u(f — j) are important to the output Y(f) in the original system, then they must make significant

contributions to the linear and cross-bilinear models (23) and (24). The model order n, and 7, , and the

significant lagged variables can be identified simultaneously by applying the forward OLS procedure to these
models. In the following, the model order determination problem is initially considered and then the variable

selection approach will be described.

Given the measured input and output data {u(r) }:11 and { y(2) }L ,let u' =[u(),u(2), -, u(t)]” and
y =y, y(2),---, y(t)]T . Apply the forward OLS procedure described in Section 3 on the input and output

data {u(t)}, and {y(2) }fil to fit a set of linear models

5 14 q
M: Y@ =FfO™u ™) =a,+ Y ayt—i)+ Y bu(t—i) +n() (25)
i=1 j=1

or a set of cross-bilinear models

A 2 g PP
My: ¥ = fo ) =q, +Zaiy(r—i)+2biu(t—j) +¥ N, ye-i)y-j)

i=l j=i+l

+§q: > dyut=iut = j) + iieq y@=du@—j)+n@)  26)

i=l j=itl i=l j=1
for p=12,-+ ,Ny and g =1,2,--+, N, ,where Ny and N, are the maximum output and input lags to be
considered, that is, the order range to be testedis 1< p < N and 1 < g < N, . Note that the real orders of the

system under study might be unknown, therefore, it is required that N , and N, be sufficiently large. From the

OLS algorithm described in Section 3, the corresponding orthogonalized model for (25) and (26) can be

expressed as




mip.q] . '
Y0 = X g (1) + 1) @
=1

where m[p,q]= p+qg+1 for the linear model set M and m[p,q]=(p+q+1)(p+q+2)/2 for the
cross-bilinear model set My, . Corresponding to (27), the error reduction ratio (ERR) is defined as

[p.g]y2 [p.q] [p.q]
- < W; , W, 3=
ERR[_[P.Q] = {gz } i i ) i=1.2,...m[p.g), (28)
<Y, Y>

where the upper script [p,q] in ERR!”% is used to emphasize that the value of the error reduction ratio depends

on pand g, and ¥ = [y(1), y(2),---, y(N)I".

Clearly, fitting model (23) or (24) to a nonlinear system will be an approximation and normally this would
lead to biased estimates because the 77(¢) term would include both noise and neglected or unmodelied nonlinear

effects. Lumping all these effects together and denoting them as a coloured noise term demonstrates that this will
usually induce bias. However, in the present algorithm, only the ERR values, which are used to pre-select the
model terms, are required and it is proved in the Appendix that while the parameter estimates may be biased
because of the neglected nonlinear terms described above, the relative values of ERR are always preserved. This
is a significant result which both demonstrates an important property of the ERR but which is directly applicable

in the current approximation.
Introduce the following criteria as an indicator for the optimal model order and significant variables:

® Sum of error reduction ratios( SERR )
m
SERR(p,q) =Y, ERR? (29)
i=1 ; ;
This is a bounded function satisfying O < SERR(p,q) <1 for any p and q according to the definition of
the error reduction ratio (ERR). For a fixed p , this is a non-decreasing function with respect to the index g, and

vice versa. Since the most significant variables are initially selected according to the ERR values, they make
greater contributions compared with the later selected variables. In fact most of the later selected variables make

very little contribution to the system output and therefore can be ignored. This means that the function
SERR(p,q) will become flat from a certain point (p,,q,) ., based on which the model order can be
determined. Since for a fixed p, SERR(p,q) is a non-decreasing function with respect to the index ¢, the
best maximum input lag (model order of the input) can be determined by inspecting the plot of the function
SERR(p,q) versus g with a fixed p. The point g, , from which the function SERR(p,q) becomes stable,
can be chosen as the best maximum input lag. Similarly, the best maximum output lag (model order of the
output) can be determined by inspecting the plot of the function SERR(p,q) versus p with a fixed g. The
point p,, from which the function SERR(p,q) becomes stable, can be chosen as the best maximum output
lag.

® The variance of the kth-step —ahead-prediction errors

The kth-step —ahead-prediction errors are defined as

10




EP = @)~ PE | E—B) . - -~ (30)

where $(t |t —k) is the kth-step-ahead prediction. Again, the upper script [p.g] in & (Pa1i5 used to emphasize
that the prediction errors are evaluated based on a model with the order p and g for the lagged output and input,
respectively. Let VPE (p,q) = var(£7?) be the variance of the above kth-step —ahead-prediction errors. For

a fixed p , this is a non-decreasing function with respect to the index g, and vice versa. Similar to the function
SERR (p,q), VPE (p,q) will also become flat from a certain point ( P24, ), based on which the model
order can be determined.

® The final prediction errors (FPE)

The FPE is defined as (Akaike 1969)

N
FPE(p,q) =~V yPE(p.q) a1
N —my

where N is the data length, 7 is the number of model terms, VPE(p,q) is the covariance of the kth-step —

ahead-prediction errors, and ¥ is an adjustable parameter. Similar to the function SERR (p.q).FPE (p.q)

will also becomes flat from a certain point ( p,,¢5 ) , based on which the model order can be determined.
The variable selection approach based on the forward OLS algorithm can now be summarized as below:

(i) Perform the forward OLS procedure on the system input and output data {u(f )}:11 and {y(# }}L to fit

a set of linear models ML (p= 1,2,---,Ny, q=12,---,N,) with the form of (25).

(if) Determine the model order 7 and 7, (the maximum input and output lags) using the above criteria, a

best choice is to set n, = max{p,, p,, p;}and n, =max{q,,q,,q,}, where p,, p,, p; and q,.4,,9;

are defined in the definitions of SEER, VPE and FPE.

(tif) For the chosen model order 7, and 7, , fit a linear model with the form of (23). Orthogonize this model

using the forward OLS algorithm and determine the ERR values for each corresponding variable. The significant
variables can then be easily found by inspecting the ERR values of the corresponding variables since a
significant variable usually possesses a far greater value of ERR than that of an insignificant variable.

(iv) In order that the significant variables are selected properly and sufficiently, check the values of
SERR(p,q), if they are too small, for example, if SERR(p,q) < 0.8 for large p and ¢, then it follows that
a linearised model in step (iif) is insufficient to represent the original system. In this case, a series of cross-

bilinear models or polynomial models with a higher degree should be fitted in step (i), and steps (i) and (iii)

should be repeated to find suitable model orders 7, and 7, . The significant terms for these models can be

determined in accordance with the ERR values of the corresponding terms. Note that the related significant

variables are contained in the significant terms and can easily be found by inspecting the significant terms.

11




Remark 4: The variable selection procedure described above was developed for input-output system

identification, but it can also be applied to find the embedding dimension (model order) for time series
(autonomous systems). Although the procedure was described for SISO system modelling, it can easily be
extended to the MIMO case. Once the global significant variables are successfully determined, they can be used
to form model terms in polynomials, radial basis function networks, neural networks, wavelet networks and

other modelling structures.

Remark 5: For short data sets(e.g., 300-500 samples), the variable selection algorithm can be applied to all
the data at one time to determine the significant variables based on the whole data set. For longer mput-output
data sets (e.g., 1000-2000 samples), it is recommended that the data set is divided into overlapped data segments
initially before applying the variable selection algorithm on each data segment to determine the significant

variables, and then finally to collect all the individual significant variables together. For example, let the whole

input-output data set be D ={(x(¢),y(*)):x€ R",y€ R1<t< N} . Divide D into different data

segments, say, D, = {(x(t), y(?) }::g:ﬂ?;;f /s » where s is the number to be divided and k=1.2,....5-1.

Remark 6: The above procedure for determining model terms and selecting significant variables is

automatically performed. The inputs required by the software are the system input-output data, and the
maximum output and input lags N y and N, . The outputs of the software are the values of SEER(p.q).
VPE(p.q) and FPE(p.q) versus p and g, with p =1,2,---,N  and g = 1,2,---,N,. Based on the values of

SEER(p.q), VPE(p.g) and FPE(p.q), the best model order, the significant terms along with the significant

variables can easily be determined.

Remark 7: Notice that, for an input-output system, once N , and N, are chosen, the number of linear or
cross-bilinear models to estimate in the model set M, or Mg, with the form of (25) or (26) is 7l 4y = N yN o

which means that a large number of models of different orders will be involved for large N , and N, . At first

sight this would appear to be time consuming because of the need to fit a great number of models. However, in
reality this is often not the case because fitting a model set ML or MBL with reasonably large N , and N,
takes a matter of a few minutes on a modern computer. Tables 1(a)-(c) list the average CPU time on a Sun

workstation, required to fit a model set with different input-output data lengths and different maximum lags N 5

and N, .




Table 1(a) Time required to fit a model set with different model orders(input-output data length N=500)

The order range to be The order range to be Number of models to Average CPU time required to fit
tested for the output tested for the input be fitted in the model the model set
(Ny ) ( Nu ) ek ML or MBL Linear model set Bilinear model set
I,\/I\L MBL
(N,N,)
b 5 25 <2 sec <4 sec
10 50 < 5 sec < 8 sec
10 5 50 < 5 sec < 8 sec
10 10 100 < 6 sec < 30 sec
20 20 400 <30 sec < 20 min

Table 1(b) Time required to fit a model set with different model orders(input-output data length N=1000)

The order range to be The order range to be Number of models to Average CPU time required to fit
tested for the output tested for the input be fitted in the model the model set
Linear model set Bilinear model set
(Ny) (Nu) setMLorMBL
. M, Mg,
(N N )
5 5 25 <5 sec < 4 sec
3 10 50 < 5 sec < 10 sec
10 5 50 < 5 sec < 10 sec
10 10 100 < 10 sec < 60 sec
20 20 400 < 40 sec < 60 min

Table 1(c) Time required to fit a model set with different model orders(input-output data length N=2000)

The order range to be The order range tobe | Number of models to Average CPU time required to fit
tested for the output tested for the input be fitted in the model the model set
(N ) (N ) set ML i MBL Linear model set Bilinear model set
y u
ML MBL
(N,N,)
5 25 < 5 sec < 5 sec
10 50 < 5 sec < 20 sec
10 5 50 < 5 sec < 20 sec
10 10 100 < 15 sec < 100 sec
20 20 400 < 50 sec < 150 min
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5. Examples and Applications

In this section, several examples are provided to illustrate the efficiency of the new algorithm introduced
above for model order determination, variable selection and term detection. For all the examples, the one-step-

ahead prediction was considered, that is, k=1 in Eq (30). As to the adjustable parameter } in Eq (31), this was

set to ¥ =1 for Examples 1 and 2, and } =2 for the other examples.

5.1 Time series

(A) Example ]— a time series generated from a continuous time system

Consider a second order continuous linear system
y+w*y=0 (32)
with @ =1, y(0) =0, y(0) =0.9998 . This system was simulated using a Runge-Kutta integral routine to

obtain 315 even-sampled data points with the sampling interval T = 0.02 . A series of linear models of the form

(25) with g=0 and different values of p were fitted. The values obtained for the criteria SERR and FPE are
shown in Figure 1, which clearly shows that the model order should be 2. Setting 77, = 2 and n, =0, a linear

model (23) was estimated. The detected model terms, estimated parameters and the corresponding ERR values

are listed in Table 2, in which the constant term can obviously be omitted. Notice that using the approximations
yO) =[y¢+T)— y®U/T and ¥(t) =[y(t +T)— y()]/T, the difference equation for the system (32) is

approximately
YIkT] = 2)[(k =DT1- A+ T w*)[(k - 2)T] (33)

and this can be considered as the true time discrete model for (32) with the initial condition y(0)=0,
y(1) = wcos(@wT). Clearly the identified terms and parameters in Table 2 coincide with the true model almost

perfectly.

Table 2 The selected variables, estimated parameters and the corresponding ERR values for Example 1

Search Steps Terms Estimates of Parameters ERRs
1 y(t-1) 0.19996E+01 0.99960E+00
2 y(t-2) -0.10000E+01 0.39700E-03
3 constant -0.54742E-16 0.31362E-31
1.0001
1k
« 0.9999 |- 4
% nggga 4
0.9897 E
0:398 2 3 4 5 5 7 ] E] 0

FPE

_.ﬂ
[N
(5]
=
o
oM
4
o
oy
a

Lags

Figure 1 The criteria SERR and FPE for Example 1
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(B) Example 2 — the fourth-order Henon map

The following Henon map was used

() =1-14y*(t-2)+03y(t-4) (34)
to generate a time sequence of 500 points with the initial condition y(1) =0, y(2)=1, y(3)=0.5,

y(4)=-0.5.

A series of linear models of the form (25) with g=0 and different values of p were initially fitted and the
criteria SERR and FPE were calculated and shown in Figure 2(a) and (b). Both criteria indicate that the linear
model order should be 10. However, the small SERR values suggest that linear models are insufficient to
represent this data set. Therefore, cross-bilinear models or polynomial models with a higher degree should be

fitted and tested.

A series of cross-bilinear models with ¢=0 and different values of p were then fitted and the two criteria

SERR and FPE were calculated and are shown in Figure 2(c) and (d). Clearly, the model order n, should be 4.

Therefore a cross-bilinear model with n » = 4 and n, = 0 was estimated. The detected model terms, estimated

parameters and the corresponding ERR values based on the cross-bilinear models were listed in Table 3, in
which only the first 3 terms are significant, giving the significant variables as y(z-2), const, and y(-4). Note that
85.65% of the system output variance can be explained by the first three terms. In fact the other terms can be
removed since their ERR values or parameters are almost zero and can be omitted. If the 4th term is forced out
of the model (this term possesses a very small ERR value), then almost 100% of the system output variance can

be explained by the first three terms.

Table 3 The selected variables, estimated parameters and the corresponding ERR values for the Henon map in Example 2

Search Steps Terms Estimates of Parameters ERRs
1 Y(-2)y(t-2) -0.14000E+01 0.39090E+00
2 Constant 0.10000E+01 0.39048E+00
3 y(t-4) 0.30000E+00 0.75099E-01
4 y(t-4)y(t-4) 0.70664E-17 0.14353E+00
5 y(t-2) -0.47299E-16 0.10111E-28
6 y(t-1)y(t-1) 0.91522E-16 0.23411E-30
7 y(t-3)y(t-3) 0.31982E-16 0.15082E-30
8 y(t-1) 0.10450E-16 0.11481E-29
9 y(t-2)y(t-3) 0.23968E-16 0.37141E-31
10 y(t-2)y(t-4) 0.52989E-16 0.15286E-31
1l y(t-3) 0.26969E-16 0.82793E-32
12 y(t-D)y(t-3) 0.10238E-15 0.29971E-32
13 y(t-1)y(t-4) 0.35372E-16 0.42335E-33
14 y(t-3)y(t-4) 0.41892E-16 0.41299E-33
15 y(t-1)y(t-2) 0.37652E-16 0.54070E-16
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Figure 2 The criteria SERR and FPE for the Henon map in Example 2 deseribed by Eq. (34). The left two plots (a) and (b) were calculated
based on linear models; the right two plots (c) and (d) were calculated based on cross-bilinear models.

(C) Example 3 —the sunspot time series

This example uses the Wolf sunspot data series recording the annual sunspot indices from 1700 to 1999 as
shown in Figure 3. A series of linear models of the form (25) with g=0 and different p were initially fitted. The
two criteria SERR and FPE were calculated and are shown in Figure 4. Both criteria indicate that the model

order should be 9. Setting 1, =9 and n,=0 in the linear model (23), the detected model terms, estimated

parameters and the corresponding ERR values are listed in Table 4, which clearly shows that 94.37% of the
system output variance can be explained by the first four terms (variables), and 94.47% of the system output
variance can be explained by all ten terms. Therefore the significant variables were chosen as {y(i-1), y(z-9),
y(£-2), const}.

200 T T —
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Figure 3 The Wolf sunspot data series in Example 3
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Figure 4 The two criteria SERR and FPE for the sunspot data in Example 3

Table 4 The selected variables, estimated parameters and the corresponding ERR values for the sunspot data in Example 3

Search Steps Terms Estimates of Parameters ERRs
1 y(t-1) 0.11913E+01 0.86185E+00
2 y(t-9) 0.22402E+00 0.26600E-01
3 y(t-2) -0.43154E+00 0.26600E-01
4 constant 0.62705E+01 0.13907E-02
5 y(t-3) -0.16673E+00 0.24383E-03
6 y(t-4) 0.18215E+00 0.18311E-03
7 y(t-5) -0.13313E+00 0.50612E-03
8 y(t-6) 0.41561E-01 0.45281E-04
9 y(t-8) -0.29072E-01 0.28019E-04
10 y(t-7) 0.57414E-02 0.70913E-06

The objective here was to identify a hybrid nonlinear model a combing polynomial representation with a

wavelet expansion of the form )
y@) = f(y@ -1,y —=2),---, y(t = 9)) +e(¥)
9 § 9 3
=a,+ Y ax,®)+ Y Ybx,Ox, O+ f,(z,1) +e) (35)
i=1 =1 j=itl p=l
where x,(f) = y(t =) for i=12, ..., 9 and 2,(¥) = y(t-1), z,(t) = y(t—2), z,(t) = y(t —9) . Each
fp (zp (t)) in Eq. (35) was approximated using a multiresolution wavelet decomposition

F (e, @)=Y &, (2, aD+ Y, ¥ BL,.(2,@). p=123. (36)

ke k® J=igkek,
In this example, the 4th-order B-spline wavelet and scaling functions were used with an initial resolution scale

level j,=0 and the highest resolution scale level J=4. Inserting (36) into (35), a linear-in-the-parameters

equation is obtained, and the parameters in this model can be estimated using the forward OLS algorithm in

Section 3. Notice that the data points were initially normalized and the modelling procedure was performed on
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the standard interval [0, 1]. The model outputs can then be recovered to the system original operating domain by

inverse transforms. The first 280 data points were used for model identification. The final identified model
involved 15 B-spline wavelet regressors selected from 241 candidate terms. The terms, parameters and

corresponding ERR values are listed in Table 5. The 2-step-ahead predictions are shown in Figure 5.

Table 5 The selected model terms, estimated parameters and the corresponding ERR values for the Wolf sunspot data in Example 3

Number Terms Parameters ERRs [ X 100%]
1 y(i-1) 8.85324e-001 86.18723
2 y(t—9) 2.06379e-001 5.38071
3 y(-2) -2.08325e-001 2.65944
4 Po(¥(—1) -1.04111e+000 0.53544
% Boo(¥(E—2)) 2.96762e+000 0.46384
6 @, (¥ =9) 4.53625e-002 0.19253
7 P,6(¥(=9)) 2.28958e-002 0.15577
8 y(t-1) y(t-9) 1.10663e+000 0.12643
9 y(i-2) yE-9) -1.16830e+000 0.11431
10 y(—3) -1.84325¢-001 0.18242
11 @ (Y —9) -4.27452e-001 0.19795
12 @un (¥t —2)) 3.35518e-002 0.10391
13 @, ;(y(-1) -1.77625e-002 0.09915
14 @5 (y(E-9)) -1.70824e-002 0.10854
15 @,_,(y(-9)) 9.74233e-003 0.06713
Note: @, (%) =2""2¢(27 x~ k) — the dth-order B-splne functions;
@, (x) =272 (27 x — k) —the 4th-order B-splne wavelets.

| E T oS T ST B A TSR RS LS S
5?950 1955 1960 1965 1970 1975 1880 1985 1990 1995 2000
Years

Figure 5 The 2-step-ahead predictions using the identified model listed in Table 5 for Example 3.
(Dashed line denotes the predictions)
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5.2 Input-output systems

(A) Example 4—a high-order

bilinear system

Consider the fourth-order bilinear system (Roy et al. 1996)

()= 0.8833u(r —1)+0.0393u(r —2) +0.8546u(t —3) + 0.8528u*(t —1)
+0.7582u(t —Du(t —2) +0.1750u(t = Du(t - 3) + 0.0864u" (t-2)
+0.4916u(t — 2)u(t —3)+0.0711u* (¢ —3)-0.0375y(r - 1)

—0.0598 y(z —2) —0.0370y(z — 3) — 0.0468 y(t — 4) - 0.0476 y* (t - 1)

—0.07813(t - 1) y(t — 2) — 0.0189y(t = 1) y(t — 3) — 0.0626 y(t — 1) y(t — 4)

-0.0221y*(t -
—0.0041y*(z -

2) —0.0617y(t —2) y(t —3) = 0.0378y(r — 2) y(t — 4)
3)—0.0543y(t — 3)y(t — 4) — 0.0603y> (t — 4) + £(¢)

(37

where uw()~N(0,0%) with & =1, and &(¢) ~N(O, 0'82 ) with 0, =0.05. This model was used to generate 1000

input and output data shown in Figure 6.
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Figure 6 Inputand output data for the system described by (37) in Example 4

A set of linear models with the form of (25) for different values of p and ¢ were initially fitted and the two

criteria. SERR and FPE were calculated and are shown in Figure 7. The two three-dimensional plots for

SERR(Figure 7(a)) and FPE (Figure 7(e))were decomposed into two-dimensional graphs shown in Figure 7(c)
and (d) and Figure 7(e) and (f) respectively. Although the values of SERR and FPE clearly indicate that the

model order is 7, =4 and n, =3, the very small values of SERR also suggest that the linear model

approximations are insufficient for this data set. Therefore, cross-bilinear models or polynomial models should

be fitted and tested.

A series of cross-bilinear models or the form (26) with different values p and g were then fitted and the two

criteria SERR and FPE were calculated and are shown in Figure 8. Now 100% of the system output variance can

be explained by the terms produced by the seven variables {y(t-1), y(t-2), y(t-3), y(t-4), u(t-1), w(t-2), u(t-3)}. A

cross-bilinear model was therefore fitted by setting n,=4 and 7, =3, and the detected model terms, estimated

parameters and the corresponding ERR values obtained are listed in Table 6.
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Setting the SERR threshold value at ©=0.0001 so that when 1 —SERR < © the search procedure terminates .

automatically, results in 23 terms being selected from the 36 candidate terms. It can be seen from Table 6 that
the selected terms are identical with the original system, and the estimated parameters are very close to the true

values. Simulation results show that, if the noise sequence £() in (37) was set to be zero, then both the detected

terms and the estimated parameters are identical to the real system.
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Figure 7 The criteria SERR and FPE calculated from a set of linear models for the system described by Eq. (37) in Example 4.
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Figure 8 The criteria SERR and FPE calculated from a set of cross-bilinear models for the system described by Eqg. (37) in Example 4.
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Table 6 The selected variables, estimated parameters and the corresponding ERR values for the cross-

bilinear system (37) in Example 4

Search Steps Terms Estimates of Parameters ERRs
1 u(t-Du(t-1) 0.85282E+00 0.32594E+00
2 u(t-1) 0.88332E-01 0.16882E+00
3 u(t-Du(t-2) 0.75819E+00 0.15570E+00
4 u(t-3) 0.85519E+00 0.12282E+00
3 y(t-4)y(t-4) -0.60268E-01 0.65865E-01
6 y(t-Dy(t-1) -0.47546E-01 0.34552E-01
i) u(t-2)u(t-3) 0.49224E+00 0.20894E-01
8 y(t-1)y(t-2) -0.78124E-01 0.32585E-01
) y(t-2)y(t-3) -0.61620E-01 0.15576E-01
10 y(t-3)y(t-4) -0.54154E-01 0.12528E-01
11 y(t-L)y(t-4) -0.62702E-01 0.11607E-01
12 y(t-2)y(t-4) -0.37560E-01 0.10921E-01
13 u(t-Du(t-3) 0.17442E+00 0.76008E-02
14 y(t-2)y(t-2) -0.22009E-01 0.57029E-02
15 y(t-1)y(t-3) -0.18924E-01 0.24348E-02
16 u(t-2)u(t-2) 0.84913E-01 0.15185E-02
17 y(t-4) -0.46877E-01 0.12276E-02
18 y(t-3) -0.37336E-01 0.15254E-02
19 u(t-3)u(t-3) 0.70752E-01 0.49042E-03
20 y(t-2) -0.59823E-01 0.11875E-02
21 y(t-1) -0.37849E-01 0.13413E-03
22 u(t-2) 0.40205E-01 0.17583E-03
23 y(t-3)y(t-3) -0.40757E-02 0.16986E-03
24 y(t-2)u(t-3) -0.40556E-03 0.96717E-08
25 yt-1)u(t-3) -0.45907E-03 0.10518E-08
26 y(t-4)u(t-1) 0.26991E-03 0.59791E-08
27 y(t-4u(t-2) 0.25174E-03 0.67826E-08
28 y(t-3)u(t-2) -0.23528E-03 0.29796E-08
29 y(t-Du(t-1) 0.16047E-03 0.21019E-08
30 Constant -0.42955E-03 0.20320E-08
31 y(t-4u(t-3) -0.18180E-03 0.14525E-08
32 y(t-3)u(t-3) -0.14895E-03 0.11996E-08
33 y(t-Du(t-2) -0.10528E-03 0.11102E-08
34 y(t-2)u(t-2) 0.96455E-04 0.61201E-09
35 y(t=3)u(t-1) -0.83313E-04 0.51567E-09
36 y(t=-2)u(t-1) 0.13999E-05 0.14056E-12




(B) Example 5— a discrete nonlinear system

Consider the following nonlnear input-output system

_P@O) 2
Y0 =5 F RO+ e (382)

=

where
P@)=y@-Dye—-2)+y@ -1y -3)+yt-2)y(-3)
+y(r=Du(t =1+ y(t = u(t —2) + y* (¢ = 3u — 2) + u(t — Du(t - 2) (38b)
QW) =1+y*(~D+y* (t~2)+y*¢-3) ' (380)
R(t) =sin[y(t = 1) + 1]+ sin[ y(z = 2) + 2] +sin[ y(z — 3) + 3] (38d)
The input #(¢) was selected to be a random variable uniformly distributed in the range [-1, 11, and the noise
sequence £()~N (0,0.1%).

A data set of 1000 samples of the input and output was generated. A set of linear models with the form of (25)

for different values of p and g were initially fitted and the two criteria SERR and FPE were calculated and are
shown in Figure 9. The values of SERR and FPE clearly indicate that the model order is 7, =3 and 7, =2. Note
that 88.01% of the system output variance can be explained by the terms produced by the seven variables {y(t-1),

y(t—2), y(t'-?')a u(t" 1): u(t-2)}

A set of cross-bilinear models with different values p and g were also fitted and the two criteria SERR and
FPE were calculated and shown in Figure 10. Now 98.73% of the system output variance can be explained by

the terms combined by the five variables {y(t-1), y(t-2), y(t-3), u(t-1), u(t-2) }.
An NARMAX model of degree 3 was then fitted using the selected variables {y(t-1), y(t-2), y(t-3), u(t-1), u(t-
2)}. The SERR threshold value was set at 0 =0.05 so that when 1 —SERR < 0 the search procedure terminates

automatically, and the selected terms and the corresponding ERRs are shown in Table 7. The one-step-ahead
predictions and the model predicted outputs along with the original output data are shown in Figure 11, where

only the data between 300 and 500 are shown in order to illustrate the fit more clearly.

Table 7 The selected variables, estimated parameters and the corresponding ERR values for the system described by (38) in Example 5

Search Steps Terms Estimates of Parameters ERRs
1 constant 0.19076E+01 0.56336E+00
2 y(t-2) -0.13536E+00 0.18738E+00
3 y(t-3) -0.96857E+00 0.77672E-01
4 y(t-3)u(t-2) 0.42188E+00 0.55734E-01
5 y(t-Dy(t-Dy(t-1) -0.90980E-01 0.22329E-01
6 y(t-2)y(1-2) -0.22479E+00 0.16928E-01
1 y(t-Du(t-1) 0.20278E+00 0.16749E-01
3 y(t-3)y(t-3)y{t-3) 0.91578E-01 0.85737E-02
9 y(t-Dy(t-3)y(t-3) 0.13027E+00 0.93642E-02
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Figure 9 The criteria SERR and FPE calculated from a set of linear models for the system described by Eq. (38) in Example 5.
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Figure 11 One-step-ahead predicted outputs, model predicted outputs and the original data for Example 5.
(Solid--original data; Dashed--model predicted outputs; Dotted--one-step-ahead predictions)

(C) Example 6—a terrestrial magnetosphere system
Figure 12 shows 1000 data points of the measurement of the solar wind parameter VB, (input) and D, index

(output) with a sample period T=1hour. Based on this data set, a set of linear models with the form of (25) for

different values of p and ¢ were initially fitted and the two criteria SERR and FPE were calculated and are
shown in Figure 13. The values of SERR and FPE clearly indicate that the model order is n,=7 and n,=2. Note

that at least 96.53% of the system output variance can be explained by the ten variables {const, y(t-1), y(t-2),
Y(t-3), ¥(t-4), y(t-3), y(t-6), y(t-7), u(t-1), u(t-2)}.

The ten variables can be used to form a linear or nonlinear model for the data set. For example, by setting
n,=7 and n,=2, a wavelet-based additive submodel decomposition of the NARX model can be expressed as

below

y@) = fy@ =D, y(@=2), -,y =T),ult -1),ut - 2)) +e()

7 2 6 7
=Y [ =N+ Y f =N+ Y Y £, =),y = )
i=] i=1 i=1 j=it+l
+ 3N Frion =), u(t = )+ fog (et =1),u(t = 2)) +e(t) (39)
i=l j=1

where f, and f; are unknown univariate and bivariate functions which can be approximated by one- and two-

dimensional wavelet decompositions. In this example, both the input and output data points were initially
normalized and the modelling procedure was performed on the standard hypercube[0,1]", where n =9 . The
first 500 input-output data points were used for model identification and the remaining 500 data points were used

for model testing. By expanding each f; and f, using the wavelet series decompositions (the 4th-order B-sline

(] I
scaling functions were used in each decomposition), model (39) can be converted into a linear-in-the-parameters
problem and can be estimated using the forward OLS algorithm in Section 3. The final identified model, which

involves 16 B-spline wavelet regressors selected from 891 candidate terms, is given as
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y(&) = 6,B,()

i=1

(40)

where B, () are wavelet regressors formed by the 4th-order B-spline scaling functions, and @, are estimated

parameters. The terms, parameters and corresponding ERR values are listed in Table 8. Notice again that each

variable in the model (39) and (40) was initially normalized to[0,1] , and the model outputs were recovered to

the original system operating domain by taking inverse transforms. The six-step-ahead predictions and the model

predicted outputs are shown in Figure 14.

0868~

0.987

0.9685

0986+

0.9855

SERR

0564 &

08835+

0863

0.9625

0557

0.9665

0585

09655

RR

-

@ 09645 -
0.94 -
0.9635

093

0.9825

-

' ! 5 : b

1 ' S < il '
Y ot o ) L
1o e T G e KON, ]
e W
e et et et e 1
SRS I I PO T S :
e teseot e
(TRt eI S\
UtV
R
{79253 0“\ AR
AW it :
e '

S
LA
"Q

Lags for Input

0965

0.5645+

" L s L

o 2 4 B 8 10 12 14 6 1B 2

Lags for Output

(b)

0965 §

0 3 10 15

Lags for Input

(c)

FPE
2 8

o 8

Lags for Input

(d)

s L L & A r 2
2 4 ] 8 0 12 4 6 1B 20
Lags for Output

(e)

Lags for Input

®

Figurel3 The criteria SERR and FPE calculated from a set of linear models for the system in Example 6.
(a) SERR; (b) SERR vs n,. (c) SERR vs f’lu ; (d) FPE; (e) FPE vs ?Iy; (f) FPE vs nu .

27




o 100 200 300 400 500
Time [hours]

700 800 200

Figure 12 The input and output data of the terrestrial magnetospheric dynamic system in Example 6

Table 8 The selected model terms, estimated parameters and the corresponding ERR values for the model (40) in Example 6

Rrusiher B,() o, ERR, x100%
1 Py (y(E-1D)@, (¥ —2)) 1.01366e+000 99.74059
2 Py 1 (¥ —1))@, , (u(z—1)) 9.65055e-001 0.08546
3 By o (¥ =100, (y(z —4)) 5.31751e+000 0.05724
4 Ps 1, (u(t —2)) -1.49386e-002 0.00578
5 Po0 (Y —2))@, _, (u(t —2)) -2.40523e+000 0.00434
6 Os 1, (¥ —4)) -8.47144e-003 0.00392
7 Ps 26 (¥( = 2)) 3.69205e-003 0.00264
8 Ps 1, (u(@ —1) -1.18424e-002 0.00167
9 By o (Y(E—1)@y, (¥(2-3)) 5.10037e+000 0.00146
10 0o, (u(t =1))@ _; (u(r —2)) 7.95453e-001 0.00138
11 D00 (Y& =1y, (¥(=T)) 7.25787¢-001 0.00131
12 @5 1o (@ —1)) 1.21153e-002 0.00127
13 Ps 5 (y(1—2)) -3.92299¢-003 0.00096
14 Bs (¥ -3) 3.42082e-003 0.00158
15 Py 5 (Y& —2))@, 0 (¥(z—-3)) -4.03856e+001 0.00087
16 P54 (¥ —6)) 3.27063¢-003 0.00073
Note: 9., (x) =272 ¢(2’ x — k) — the 4th-order B-spline scaling functions
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Figure 14 Comparisons of the 6-step-ahead predictions, model predicted outputs and the measurement for the solar wind Dst
index in Example 6. (a) Six-step-ahead predictions; (b} Model predicted outputs. ( Solid—measurements; Dashed—o6-step-
ahead predicted outputs; Dotted—model predicted outputs)

(D) Example 7—a multi-input and multi-output system
Consider a mechanical system with viscous damping and constant Coulomb friction, which was taken from
the work of Chen and Tomlinson et al. (1996) and Ghanem and Romeo (2001). The motion equations of the

system are given by

m ¥, +c x, + 0, sign(x,) +kyx, + k,x, =u(2) (41a)
m, i, + ¢, %, + 0,sign(x,) + ky x, +kypx, =u,(t) (41b)
Y1) =x,(1)+e @) (410)
¥, () =x,(t) +e,(t) (41d)

where u, (1) = A, sin(,?) and u,(t) = A, sin(@,t) are the forces applied on the first and second mass,
respectively; y, (f) and y,(t) are the outputs of the two subsystems, and ¢, () and e, () are additive noise
uniformly distributed on [—€,,&,]. where & =10"". The parameters were set to be m, =m, =1.0,
¢, =c, =10, 6, = 6,=1.0, k;; = ky, =20000, k,, = k,, =-10000.

The aim here was to identify a multi-input and multi-output ARMAX or NARMAX model for the system
based on the inputs and outputs observed with additive noise. A general form of the time discrete model for a

MIMO system with 7 inputs and m outputs is

y;(t): f,[)ﬁ(f_l)a,yl(f_”;?)syz(r_l),,yz(l‘_n;})) """ 1ym(t_]-)s‘”aym(r_n;2)!
(=1, (0 =)y (E=1) o uy = ), @ =Dy, -0 (42)
= 12, ettt

The system in Eq. (41) was simulated by setting A, =5, A,=16, @, =207 , @, =167, and 1000 equi-

spaced samples were obtained with a sampling interval of 7=0.005 time units. Based on the first half (z=1,2,,
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500) of the data set, the model order for the system (41) was initially determined using the approach in Section 4
and the model order was selected to be n;? =2 n;n =il n;lz) =7, n;? =2 nﬂ) = nﬁ? =0,
nf) =0, n‘f} =2 . Then an ARX model was identified using the first 500 input-output data. The terms

(variables) and the corresponding parameters are listed in Table 9. Based on this ARX model, the model
predicted outputs were compared and are shown in Figure 15, which clearly indicates that the model predicts

very well.

Table 9 The terms, parameters and the corresponding ERR values of the ARX model for the 2-input and 2-output system in Example 7

Subsystem 1 Subsystem 2
Terms Parameters ERRs Terms Parameters ERRs
yl(t-1) | 0.15483E+01 0.92550E+00 u2(t-1) 0.77178E-05 0.93989E+00
y1(t-2) | -0.94950E+00 0.73012E-01 yl(t-1) 0.17761E+00 0.41358E-02
y2(t-1) | 0.12665E+00 0.47887E-03 yi(t-2) 0.14436E-01 0.33789E-02
ul(t-1) | 0.65726E-05 0.63781E-03 y2(t-1) 0.14947E+01 0.76123E-03
ul(t-2) | 0.13099E-04 0.72448E-04 y2(t-2) -0.91632E+00 0.26097E-02
y2(t-2) | 0.59403E-01 0.22247E-04 u2(t-2) 0.13743E-04 0.55511E-04
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Figure 15 Comparsons of the model predicted outputs and the measurement for the 2-input and 2-output system in Example 6.
(a),(b) Subsystem 1; (c),(d) Subsystem 2
( Solid--measurement; Dashed--model-predicted outputs) (Input-output data with 1000 sampling points were used.)
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6. Conclusions

The model term and variable selection problem has been considered for nonlinear system identification, and
the application of the forward orthogonal least squares (OLS) algorithm to term detection has been described. A
new variable selection algorithm based on calculating the sum of the error reduction ratios (SERR) and the final
prediction errors (FPE) for local linear and cross-bilinear models has been proposed. It has been proved that bias
which would normally affect approximate models does not affect the relative values of the ERR and this
provides a robust variable selection procedure based on the new SERR criterion.

The new term detection procedure can be used to detect significant terms for all linear-in-the-parameter model
structures including NARMAX models, neural networks and fuzzy logic based models and so has wide
applicability.

Unlike operating region dependent local linear model based approaches, the variable selection procedure
proposed here can find the significant variables which are not operating region dependent. These significant
variables can then be used directly to construct nonlinear parametric and nonparametric model structures. The

applicability and effectiveness of the new algorithm has been demonstrated using several numerical examples.

Appendix

The Effects of Noise on ERR Values

Assume that the actual output Y, (#) of a given noise free system can be described by a deterministic linear

regression model
M
Y@ =Y.6,p.@, =12, N (al)
i=1

where y_(t) is the dependent variable, p, () are regressors (predictors), @, are the unknown parameters to be
estimated , N is the data length and M is the number of all the candidate regressors. For input-output systems,

p;(?) (i=1.2,....M) are usually formed from the lagged output variables y, (¢ — J) (=1.2,...,n,) and lagged
input variables u(f —k) (k=1,2,..., n, ) of the system under study, that is, p,(t) = p,(x(t)) with

x(t)=[ya(t—l),---,ya(t—ny),u(t—l),---,u(t—nu)]T €R", and n=n,+n,. A compact matrix

form corresponding to (al) is

Y =PO (a2)

a

where Y =[y,(1),y,(2),---,y, (N)]" is the actual observation vector, P = [Bys Poor=Par]
p, =lp.D,p, (2, p;(N)T', ©=[6,,6,,-,6, 1.

Some assumptions for the regression equation (a2) are now made as below:
(A1) The regression matrix P is full rank in columns to guarantee that PT P is positive definite.

(A2) The system outpur y,(t) is corrupted by a noise sequence £(t) which might be an intrinsic state noise or-

an additive output noise and which is uncorrelated with the regressors p, ®).=12,..., M).
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(A3) - Among all the M regressors {P,, Py."**» Py }. only K (SM) regressors, say {p: Py Py } are

related to the lagged output variables y, (t —1),y,(t—=2),....,y,(t - n, ) and are contaminated by
the noise £(t).

(A4) There exists some modelling error ; (t) when using the linear regression equation (al).

Denote Y(?) as the noisy dependent variable corresponding to y,(f)in the regression equation (al), and

Y =[y(1),y(2), -, y(N)]" the noisy measurement vector. Based on assumptions (A2)-(A4), the regression

equation for the noisy dependent variable y(f) can be described as

y(®) =Y 0,p,(x(: £+ Y, 0,p,(x)+{(®)

i=K+1

=N 0IpO+EDT+ Y O,p,0)+(@)
i=1

i=K+1
M K
=200+ X0£0+{)

M
=20,p,(0)+n(@), 1=12,--,N -

i=1
where &, (t) are the noise effects on the regressors p; () (i=1.2,...,K) introduced by the noise&(2),{ () is

some modelling error which is uncorrelated with p, (¢) (1‘=1,2,...,M) ,and 7(t) = 2; BL(M)+ () isa

coloured noise which includes the effects of measurement noise, unmeasured disturbances and modelling errors,

such as unmodelled nonlinear effects.

Before analysing the noise effects on the ERR values, another assumption is added and stated as below:

(A5) The derivative noise effects on the regressors p,(t) (i=1,2,...,K) introduced by &, (t) are uncorrelated

with the regression matrix P.

A matrix form for (a3) is

Y=PO+I1 (ad)

with IT=[7(1),7(2), -, n(N)]".
Guaranteed by the assumption (A1), the regression matrix can be orthogonally decomposed as
P=WA (a5)
where A is an M X M unit upper triangular matrix and W is an N X M matrix with orthogonal columns
W, W,, -+, W, in the sense that WTW:Dzdiag{dl,dz,---,dM] with d, =<w,,w, > ZZ:ZIW,- (Hw, (1),
and the symbol < -, - > denotes the inner product of two vectors. The space spanned by the orthogonal basis

s Wa o775 Wy, i the same as that spanned by the basis set p,, p,, -, p,, , and (a5) can be expressed as

Wl
(8o}




Y = (PA™)(A®) + 1 =WG +I1 . (a6)

where G=[8,,8,,""", 8y 1" isan auxiliary parameter vector. From the assumptions (A2) and (AS), the noisy

output variance can be expressed as

Y'Y =G'DG+ 2(WG) TT+ 111

=G'DG+IT"T1+2(PO)"I1
=G 'DG+I1"T1+207 (PII)
=G 'DG+IT'TI
=YY +11'11 (@7)
or
o)+ =05 + O+l + (a8)

where {4, (4, and [, are the means of the output measurements y(#) , the actual system output y,(7) and
the coloured noise 77(2); 02 ,0> and 0 are th dard variati f y(t),y (¢) andn(z) tivel
ni); o,,0, andG, are the standard variations of yi7).Y, and 77(Z ) , respectively.

Therefore, the error reduction ratio effected by a noise 7(¢), ERR(Z) , introduced by w, , can be calculated by

Lew.ow > <Y, w >*
ERR(I) - g: W:’wr = ’wx
<Y,Y> <Y Y ><w,w, >

! <Y +ILw,>*
<Y, +ILY, +II><w,w >

N <Y,w >
[€X,. T, > +<ILIL >] <w,w, >

N <Y .Y > <Y,,w >
<Y, .Y, >+<ILIl> <Y, Y, ><w,w, >

_ O, tH, <Y,,w, >’
2 2 2 2
o, +o, i, +u, <Y,.Y ><w,w >
= A ERR (i)
<ERR,(i), i=12,-,M, (a9)
where
2 2 2 2
o, +H o, + U,
A==t rg) @10
o, +0,tU, +u, O,+H,




Eq. (29) clearly indicates that the coloured noise 77(¢) makes the values of FRR become smaller compared
with the actual values ERR_. This implies that the contribution made by the ith regressor to the system

measurement ¥ may appear to be slightly less significant than would be the case if ¥, were used and the data
were noise free. Notice, however, that the correct terms (regressors) can still be selected despite the coloured
noise 77() , and just as important the order of the selected terms will be the same as in the noise free case. The
only difference will be that terms will be selected with slightly smaller ERR values because of the effects of the

noise. Clearly, if O‘; + ,uff =0 or O'; + ﬂ; e O'i + [Ji . then A =1, this means that the values of the
ERR will be affected to a neglected degree by the noise (7).

The above analysis shows that the relative values of the ERR are always preserved, which means that it should
still be possible to select the significant model terms even with coloured noise. However, the existence of noise,
especially coloured noise with a large variance, will affect the choice of the threshold value mentioned in

Remark 3.
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