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Decomposing the drivers of aviation fuel demand using simultaneous equation models 

Abstract 

Decomposition analysis is a widely used technique in energy analysis, whereby the growth in energy 

demand is attributed to different components. In this paper the decomposition analysis is extended 

in a system econometric modelling framework in order to understand the drivers of each of the 

components in the decomposition analysis. The growth in aviation fuel demand is decomposed into 

five components: population, passenger per capita, distances per passenger, load factor and fuel 

efficiency, and then seemingly unrelated regression methods is applied in order to model each of 

these. Results show that the fuel demand in the US air transport sector most closely follows the 

trend of passenger per capita. The growth in fuel demand is slowed by improvements in fuel 

efficiency and usage efficiency (load factor). Increases in income affects both passengers per capita 

and distances per passenger. However, increases in travel costs have opposite effects on passenger 

per capita (decreases) and distance per passenger (increases). Increases in jet fuel prices improves 

both the load factor and fuel efficiency.  

Keywords 

Fuel demand, aviation, decomposition analysis, econometric model, simultaneous equation model 

1. Introduction 

Aviation is responsible for a modest 2% of all anthropogenic carbon emissions and around 5% of 

global radiative forcing (Owen et al. 2010). Yet demand for global passenger and cargo transport by 

air and subsequent demand for aviation fuel and carbon emissions have been growing at a higher 

rate compared to other economic sectors. Even in as mature a market as the US, which accounts for 

almost 40% of global aviation carbon emissions, carbon emissions are set to quadruple in absolute 

terms by 2050 (McCollum et al. 2009). However, due to a lack of alternate energy carriers to power 

aircrafts, liquid fuel remains the only viable aviation fuel and the carbon mitigation options often 

boil down to reduction in fossil fuel use through technological means or replacement of fossil fuels 

by renewable biofuels (McCollum et al. 2009). For both of these options, demand for aviation fuel is 

an important metric for mitigation planning and policy making. At the same time, fuel costs 

constitute a major share of airlines' operational costs (one-quarter in 2012, ATAG 2014) and as such 

fuel consumption is an important planning and forecasting metric for the aviation industry as well. 

As such, understanding and modelling fuel demand for air transport is an important area of applied 

research.   



Wadud (2015): Decomposition of aviation fuel demand: Energy (accepted) 

In the aviation sector, fuel demand is often modelled using hybrid econometric-engineering models.  

Aggregate econometric methods are used to model or forecast demand, which may or may not be 

divided among different travel segments (e.g. business vs. leisure, short haul vs. long haul etc.). 

Projected aggregate demand in passenger or passenger-mile is then allocated to different aircraft 

types or sizes to determine aircraft-miles and number of aircrafts. An engineering-economic fleet 

turnover model along with technologies available (or projected) is then used to determine the fleet 

fuel efficiency and overall fuel consumption. Details vary, but models used by EIA (2013) for USA, DfT 

(2013) for UK or Owen et al. (2010) for global aviation fuel demand and carbon emissions all follow 

the same hybrid modelling approach. These models are quite data intensive, and are particularly 

useful to simulate the effects of new technologies on aggregate fuel consumption or carbon 

emissions, yet the feedback loop from technology to demand is often absent, making them less 

useful to understand the effects of some of the demand drivers or policy initiatives.    

On the other hand, decomposition analysis is a retrospective modelling approach: the method 

decomposes energy consumption in an economy into various component elements and seeks to 

explain the co-evolution of energy demand and these components on a temporal scale. In aviation, 

Andreoni and Galmarini (2012) have recently applied the method directly to analyze the evolution of 

air transport fuel use in the European Union, while Schafer et al. (2009) also implicitly follow the 

decomposition framework to explain historical determinants of aviation fuel use. The advantage of 

the decomposition method is that it reveals the relative effect of the components on aviation fuel 

demand. These components often include items like energy intensity of the sector, the contribution 

of the sector to overall economy, the economic growth, etc. However, traditional decomposition 

analysis stops at explaining energy demand at the component level and any understanding of the 

drivers of these individual components are often qualitative in nature. For example, a decomposition 

analysis will be able to allocate the growth in aviation fuel demand due to a growth in activity 

(travel), but it cannot explain the factors that leads to the growth in activity. On the other hand, 

policy tools generally address the drivers instead of the components directly. For example, policies 

cannot directly target the number of passengers flying (unless by rationing), but would rather use 

taxes or duties to affect the demand and thus energy consumption. Therefore it is important to 

understand the quantitative impacts of the drivers of these components which gives a more 

comprehensive picture of the underlying factors affecting aviation energy consumption.  

In this work, the traditional decomposition analysis is extended to quantitatively understand the 

drivers of the individual decomposition components. In order to achieve this objective, each of the 

decomposition components is modelled using econometric techniques within a simultaneous 
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equation  framework. To the author's knowledge, such an approach has not been applied in the area 

of energy decomposition or aviation fuel demand before. The paper is laid out as follows: section 2 

describes the decomposition techniques, applies it to aviation fuel consumption in the US and 

presents the findings of decomposition analysis. Section 3 presents the simultaneous equation 

modelling approach to each of the decomposed components of section 2, presents the econometric 

detail and results. Section 4 links the decomposition analysis with the econometric model while 

section 5 concludes.  

2. Decomposition Analysis 

2.1 Brief literature review 

Index Decomposition Analysis (IDA) is a widely used technique to separate out the impacts of 

structural change (changes in the mix of economic sectors, modes of transport etc.) and energy 

intensity/efficiency change in an economy. The technique, in various formats, is applied in national 

energy efficiency monitoring in several countries such as the US, the UK and New Zealand. Although 

primarily used for understanding the aggregate energy consumption or carbon emissions of an 

economy, the method has been applied to individual sectors or subsectors of the economy as well. 

For example, Ang and Xu (2012) applied the technique for industrial energy demand in Canada, 

while Nie and Kemp (2004) used it for residential energy demand in China. In the transportation 

sector, Timilsina and Shrestha (2009) used decomposition analysis for the entire transport energy 

use in 12 countries in Asia, while Kveiborg and Fosgerau (2007) applied it to the energy used in road 

freight in Denmark.  

The indices used for IDA can be divided into two major types - Divisia and Laspeyer - with several 

variations possible under each type. Laspeyer-type indices have an easier interpretation as they are 

based on simple per cent changes. The impact of a specific component is determined by changing 

that component, while keeping others constant. On the other hand, Divisia indices, first introduced 

by Boyd et al. (1987), are based on logarithmic changes and offer some theoretical advantages over 

Laspeyer indices. These include a complete decomposition with no residuals and the symmetry of 

the indices (Ang, 2004). Therefore Divisia indices are used more in recent literature. Among the 

different Divisia indices Ang (2004) recommends the use of Log Mean Divisia Index ʹ type I (LMDI-I). 

A description of different indices used IDA and there advantages and disadvantages are available in 

Ang (2004).   

Although there are a number of techniques for IDA, in the transportation sector or at the individual 

transportation mode level, the decomposition often gets simplified because only one sector or mode 



Wadud (2015): Decomposition of aviation fuel demand: Energy (accepted) 

is analyzed. This simplified approach is a multiplicative Divisia method in essence but is often known 

in other popular names such as the KAYA method or ASIF method. The multiplicative Divisia 

approach dominates the decomposition analysis in transport energy or transport carbon emissions, 

although additive decomposition methods can be found occasionally too (e.g. Timilsina and 

Shrestha, 2009 for carbon analysis).  

So far, the only study that explicitly apply the IDA technique for energy or carbon emissions in 

aviation is Andreoni and Galmarini (2012), who conduct the analysis for several European Union 

countries (and the European Union as a whole) for the period 2001-2008. That analysis was carried 

out using the Laspeyer type index, and it is not clear why such a choice was made, given the 

superiority of Divisia type indices and their dominance in recent literature. The time period used is 

also quite small and misses the growth in aviation demand and thus aviation carbon emissions pre-

2001, or the reduction during the recession post-2008.  

2.2 Decomposition of aviation fuel demand 

The first stage of any decomposition analysis is to select the decomposition components and the 

identity structure. There is no precise scientific rule governing the choice of the components and 

often policy relevance, research questions and data availability dictates this choice. A larger number 

of components generally allow a better understanding of the evolution of fuel demand, however too 

many components can lead to a difficulty in interpretation. The only previous work on decomposing 

aviation fuel consumption by Andreoni and Galmarini (2012) used three components: total GDP in a 

country, contribution of aviation to total GDP and energy intensity of aviation industry output 

;ĞǆƉƌĞƐƐĞĚ ŝŶ MJͬΦͿ͘ HŽǁĞǀĞƌ͕ ƚŚĞ ƉƌŝŵĂƌǇ ŝŶƚĞƌĞƐƚ ŽĨ ƚŚŝƐ ǁŽƌŬ ŝƐ Ă ŵŽƌĞ ĚŝƐĂŐŐƌegated and detailed 

understanding of the components and their drivers - especially drivers that can be addressed by 

policy tools (such as income or price) to influence energy demand. Thus, aviation's fuel consumption 

has been decomposed into the following five components:   ݈݁ݑܨ ൌ ݊݅ݐ݈ܽݑܲ ൈ Ǥݏݏܽܲ ܽݐ݅ܽܿ ݎ݁ ൈ Ǥൊݏݏܽ ݎ݁ ݏ݈݁݅ܯ ݎݐ݂ܿܽ ݀ܽܮ ൈ  (1)        ݕ݂݂ܿ݊݁݅ܿ݅ܧ

Each of the five components on the right hand side is directly measurable or computable and has a 

physical meaning. The first three items together generates the traditional measure of demand in 

aviation: revenue passenger miles (RPM). However, decomposing the revenue passenger miles into 

three components allows us to understand the impact of each of these three components on 

demand for passenger air transport. The two right-most components together represent a metric for 

fuel efficiency: fuel used per revenue passenger mile. This fuel efficiency is a combination of usage 

efficiency and technical efficiency. Usage efficiency is expressed as load factor: ratio of revenue 



Wadud (2015): Decomposition of aviation fuel demand: Energy (accepted) 

passenger miles to available seat miles, whereas technical efficiency is expressed as fuel required 

per available seat mile. The advantage of these five components over a traditional GDP based 

decomposition of Andreoni and Galmarini (2012) is that these have useful meanings in transport 

literature as well. Especially, the chosen components are able to link travel and energy consumption 

together, which was missing in a GDP based decomposition. Linking air travel to energy consumption 

is also important since the energy consumption is a direct result of air travel.Eq. 1 is derived from 

the following identity relationship, which also provides the definition of the five components: 

݈݁ݑܨ ൌ ݊݅ݐ݈ܽݑ ൈ ௦௦ ௗ௨௧ ൈ ௩௨ ௦௦Ǥ௦௦௦ ௗ ൈ ௩ ௦௧ ௦௩௨ ௦௦Ǥ௦   

                ൈ ௨௩ ௦௧ ௦            (2) 

Note that this decomposition is a little different from traditional decomposition analysis where many 

of the efficiency or activity components are expressed in relation to GDP. In an additive 

decomposition, the absolute change in aviation fuel consumption is attributed to the different 

components in an additive format as follows: ο݈݁ݑܨ ൌ ο݈݁ݑܨ  ο݈݁ݑܨ௦௦   ο݈݁ݑܨெ௦   ο݈݁ݑܨௗ ௧  ο݈݁ݑܨா௬  (3) 

where,  ο݈݁ݑܨ ൌ ௧݈݁ݑܨ െ ݈݁ݑܨ and  ο݈݁ݑܨ ൌ ி௨ିி௨బி௨ିி௨బ ൈ ሺ݈݊ܲ௧ െ  .ሻ and so on݈ܲ݊

Subscript 0 refers to the base year, whereas t refers to the year for which the analysis is being 

undertaken. The logarithmic differences in fuel and population makes it an LMDI-I decomposition. 

The multiplicative LMDI decomposition is fairly straight forward as only one sector - passenger 

aviation - is considered here. The multiplicative decomposition is a direct extension of the identity in 

Eq. (1):  

ி௨ி௨బ ൌ బ ൈ ௦௦  ௧௦௦  ௧బ ൈ ெ௦  ௦௦ெ௦  ௦௦బ ൊ ௗ ௧ௗ ௧బ ൈ ா௬ா௬బ    (4) 

Clearly, the decomposition in Eq. (1) allows us the understanding of the historical fuel consumption 

from passenger air transport and its relationship with population, propensity of people to travel by 

air, average distances travelled by air, load factor of the aircrafts and the technical efficiency of the 

aircrafts. Each of these components, in turn, depends on other external factors and the influence of 

these factors on the components cannot be detected from the decomposition. This is where 

econometric models can be useful - in quantitatively determining the influence of the external 

factors on each of these components, as described later in this paper.  
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2.3 Data 

The primary source of data for the analysis is Bureau of Transport Statistics (BTS). Annual revenue 

passenger miles, revenue passenger enplanement and available seat mile for US carriers from 1979 

to 2012 are collected from T1 schedule of BTS. US annual average domestic airfare and yield per mile 

are collected from Airlines for America (2014), which in turn sources its data from BTS T100 ticket 

prices. Disposable income per capita and population data are from National Income and Product 

Account of Bureau of Economic Analysis (BEA 2014). Airfare, yield and disposable income per capita 

ĂƌĞ Ăůů ĐŽŶǀĞƌƚĞĚ ƚŽ ĐŽŶƐƚĂŶƚ US ĐƵƌƌĞŶĐǇ ƵƐŝŶŐ BƵƌĞĂƵ ŽĨ LĂďŽƵƌ SƚĂƚŝƐƚŝĐƐ͛ ;ϮϬϭϰͿ CŽŶƐƵŵĞƌ PƌŝĐĞ 

Index (CPI-All urban). Load factor was calculated as the ratio of revenue passenger miles to available 

seat miles. Annual fuel consumption by US air carriers was obtained from the Transportation Energy 

Data Book (Davies et al. 2013). However, this fuel consumption data is for both passenger and 

freight aircrafts and disaggregated data for passenger and freight aircrafts are available only for 

recent years. Around 90% of the fuel consumption is by the passenger aircrafts, therefore fuel per 

available seat mile is overestimated by around 10% in this study if it is assumed that the trend of 

efficiency will be the same for passenger and freight aircrafts.  

2.4 Decomposition results 

Fig. 1 presents the evolution of passenger aviation fuel consumption for US carriers, along with the 

five decomposition components and real disposable income per capita. The curves have all been 

normalized with respect to each variable's 1979 values. In 1979 the fuel consumption for US air 

passenger carriers was 10.7 billion gallons. Jet fuel consumption peaked in 2000 at 20.4 billion 

gallons, which was almost double that of 1979 consumption, but has since fallen to 17.1 billion 

gallons by 2012. This represents around 60% increase in fuel consumption between 1979 and 2012.  

Fig. 1 reveals that fuel consumption most closely tracks the series of passenger per capita. This does 

not necessarily mean that the number of passengers has more influence on fuel consumption since 

all five components of the decomposition analysis have equal influence on fuel consumption (in 

economics terms, the elasticity of fuel consumption with respect to any of the five components is 1). 

Therefore the close coupling of fuel demand with passenger per capita is rather the result of 

relatively large fluctuations in passengers per capita during the period.  

Among the five components, population growth has been the most consistent and the least 

fluctuating. Between 1979 and 2012, population grew steadily by around 40%. Miles per passenger 

(MPP), which represents the average distances travelled by the passengers, also increased year-on-

year except for a few years. Overall, average travel distance per enplanement increased by around 
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30% between 1979 and 2012. Increases in population, passengers per capita and miles per 

passenger contributed toward an increase in fuel demand.  

 

Fig. 1 Indexed evolution of fuel consumption and its components for US passenger air transport 

The increasing trend in fuel consumption is countered by substantial improvements in load factor 

and fuel efficiency. Between 1979 and 2012, the average load factor on US air carriers have 

improved by 28%, while the fuel consumption per available seat-mile has improved (i.e. decreased) 

by 32%. These operational and technical improvements had substantial influence in slowing the 

growth in jet fuel consumption. The improved load factor is not only a result of higher passenger 

demand (thus allowing existing aircraft to fill) but also of air travel liberalization, availability of more 

aircrafts of different sizes, improvements in airlines' fleet assignment capabilities, pricing 

management through the internet, etc. (Schafer et al. 2009). Improvement in fuel consumption per 

available seat mile is generally a result of improved engine efficiency, larger aircrafts flying longer 

stages and other operational improvements. 

Discussions on the changes between two end points of 1979 and 2012 miss important subtle 

differences in periods in between. Therefore the study time period is divided into 5-year bands 

backward from 2012.
1
 Both an additive and multiplicative decomposition analysis are then carried 

out for each 5-year band, the results of which are presented in Figs. 2 and 3. In additive 

decomposition the absolute difference in fuel consumption is decomposed into five components, 

while in multiplicative decomposition it is the ratio that is of interest. The additive decomposition in 

Fig. 2 presents the changes in fuel consumption (the diamond markers) during the time bands, and 

the contribution of the different components (the colour-coded or patterned columns) to these 

                                                           
1
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changes. For example, the 4 billion gallons increase in fuel consumption during 1982-1987 is a result 

of increases due to a growth in population (0.5 billion gallons), passengers per capita (4.6 billion 

gallons) and miles per passenger (0.1 billion gallons) and of reductions due to improved load factor 

(0.5 billion gallons) and fuel efficiency (0.7 billion gallons). Note that the sum of effects of 

population, passengers per capita and miles per passenger (i.e. 5.2 billion gallons) is the total effect 

of increases in overall revenue passenger miles on fuel demand. Fig. 3 presents the results of 

multiplicative decomposition in a spider-diagram, as suggested by Ang (2005), whereby the growths 

in different components for each time-band are presented as ratios with respect to the values at the 

initial period of that time-band.
2
  

The additive decomposition reveals the differences in relative importance of the five components 

during the selected time periods. The two components which showed consistent growth during all 

time bands are population and miles per passenger. Passengers per capita showed cycles of 

increases and decreases: it increased substantially during 1982-1987, 1992-1997 and 2002-2007, 

marginally during 1987-1992, and reduced during the rest of the time bands. The passenger per 

capita largely traced that of income, except during 1997-2002 when income was still rising, but air 

passenger demand was adversely hit by the 9-11 terrorist attacks. Passenger growth was the largest 

during 1982-1987 (Figs. 2-3), which was not only due to robust growth of the economy during that 

period but also possibly due to the slightly delayed effects of airline deregulation in the US, which 

made air travel more accessible and affordable.  

 

Fig. 2. Additive decomposition of fuel demand for US passenger air transport 

                                                           
2
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Growth in passengers per capita was the primary driver to changes in fuel demand during four of the 

seven time periods. Improvements in technical efficiency (1997-2002 and 2007-2012) and increases 

in miles per passenger (1987-1992) were the primary drivers for the other three periods. The 

decomposition charts hint at an interesting phenomenon: it appears that when the contribution 

from passenger per capita falls, demand due to increased miles per passenger increases. Although 

the effects of increases in miles per passenger on fuel consumption generally cannot overturn the 

effects of decreasing passenger number during the years they have opposite signs, in 1997-2002 it 

was different: increases in miles per passenger substantially increased fuel demand so as to wipe out 

the effects of reduced passenger numbers. This opposite correlation between miles per passenger 

and number of passengers is further investigated in the econometric modelling section.  

 

Fig. 3 Multiplicative decomposition of fuel demand for US passenger air transport  

3. Econometric Modelling  

3.1 Brief description 

Unlike decomposition modelling, econometric models use statistical techniques to reveal the 

relationship between a dependent variable and various explanatory factors. Modelling demand by 

econometric methods is fairly standard for petrol or diesel consumption in the road transport sector 

and there is an abundance of studies in this area. These models represent petrol, diesel or oil 

demand as a function of income, fuel price and a host of other explanatory variables and quantifies 

the relationship between fuel demand and these explanatory factors. However, in the area of 

aviation fuel demand the application of econometric modelling technique is generally limited to 

passenger demand or travel demand (revenue passenger miles), which then inform the hybrid 

engineering-economic models. This section describes how a structural econometric approach can be 
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used to inform the decomposition methods above to further enhance the understanding of aviation 

fuel demand. 

Note that Eq. (1) is an identity; therefore, no econometric estimation is necessary in order to 

determine the quantitative relationship of aviation fuel demand with any of the right hand side 

components. However, most of the right hand side components are intermediate drivers of aviation 

fuel consumption, and there are other independent factors that determine how these intermediate 

components, and thus how fuel demand evolves over time. Therefore each of the right hand side 

components, except population, is modelled using a simultaneous equation modelling framework.   

3.2 Explanatory factors 

The metric total revenue passenger miles has earlier been decomposed into three components: 

population, revenue passenger miles per capita and miles per passenger. Of these, population (POP) 

is exogenous and therefore not modelled further. Revenue passenger enplanement per capita (PPC) 

represents the propensity of people to travel by air: this is primarily a function of (financial) ability to 

travel, which is proxied by disposable income per capita (INC) following recent literature (Bhadra 

and Kee 2008, FAA 2012). In order to incorporate possible diminishing marginal effects of income, a 

squared income per capita variable is added. In addition, unemployment rate (UNEM) is included as 

another potential explanatory factor for PPC. Air fare (FARE) is the third explanatory factor as air 

travel decreases with an increase in real air fare as shown in prior studies (Wadud 2014, 2015). US 

annual average round trip domestic air fare is used to to represent this.  Although the share of 

domestic and international travel changed over the years, the trend of air fare remains similar for 

domestic and international fare. In addition, the terrorist attacks in September, 2001 had a profound 

effect on US aviation growth, which is modelled via a dummy variable (D911). The most recent 

recession also hit the US air carriers substantially more than before, and another dummy (D0809) is 

added to account for this.  

Over the last few decades not only did the propensity to travel increase, but people travelled to 

farther destinations, increasing average miles per passenger (MPP). Economic growth and resulting 

increases in income are one of the major drivers for increases in travel distances as people fly to 

farther holiday or business destinations. The other influencing factor is air fare. However, average 

domestic airfare of the previous paragraph cannot be used as an independent explanatory factor to 

model average travel distances. This is because air travel distance not only depends on air fare but 

travel distance also is one of the major drivers of air fare: the farther one travels, larger is the air 

fare, other things remaining the same (Geslin 2006). Average round trip air fare is therefore 
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endogenous for air travel distances. Hence yield per mile (YLD) is chosen as an explanatory factor 

for average flying distances.  

Average load factor (LF) represents how full an aircraft is during flying. This is a function of number 

of passengers (RPENP), which in turn depends on income (INC). Size of the aircraft (reflected by 

average number of seats per aircraft in operation, SEAT) is another important determinant of load 

factor as, for a given passenger number, larger aircrafts lead to a smaller load factor. Given the 

highly competitive nature of air passenger transport business, airlines have a strong incentive to 

reduce their costs and increasing load factor is an important way to reduce these costs. The 

operating costs are proxied by jet fuel prices (JFP). In addition, air travel liberalization, availability of 

more aircrafts of different sizes, improvements in airlines' fleet assignment capabilities, pricing 

management through the internet etc. have all contributed to improved load factor over the years 

(Schafer et al. 2009). Since all of these factors had gradual impact in the businesses, a time trend 

(TIME) can be used to capture these additional factors. However, since income and time trend are 

very highly correlated - with a correlation coefficient of 0.989 - only income is used. Also, since 2001, 

there has been a number of mergers and bankruptcies among major US air carriers, which has led to 

substantial restructuring and consolidation of the airline industry, which is likely to have some effect 

on load factor. Therefore a dummy (D2001) is added for post 2001 time periods.   

Technical efficiency (FSM) is expressed as fuel required for one available seat mile. This is the 

measure that reflects the technical progress made in new engines or new aircraft technologies or 

innovations in other operational procedures. Over the years engine and aircraft technologies have 

been improving (Peeters et al. 2005) and a time trend (TIME) is included to reflect this 

improvement. As mentioned earlier, the fuel consumption variable includes the fuel consumption 

for the small share (<10%) of freight aircrafts and a change in that share also affects the FSM 

variable. The time trend will capture that effect as well. There is an increasing return to scale with 

respect to aircraft size, as larger aircrafts are more fuel efficient on a per passenger basis. Therefore 

aircraft size (average number of seats per aircraft, SEAT) is our second explanatory factor. Jet fuel 

prices (JFP) is also included as an explanatory factor to reflect the external push toward more fuel 

efficiency.   

3.3 Econometric model specification 

Having determined the explanatory factors for different components, specifying the functional form 

is the next step. The chosen specification is the Cobb-Douglas form, whereby the dependent and the 

explanatory variable all enter the model specification in logarithmic form (except any dummy 
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variable or time trend). This is a widely used specification in many demand models and results in an 

elasticity which remains constant for different values of the dependent or explanatory variables. The 

specification also has the advantage of interpretation as the parameter estimates directly represent 

the corresponding elasticities (except for dummy variables and time trend).   

Given our dataset is time series, an autoregressive dynamic modelling approach is applied, as 

opposed to a static one. In an autoregressive dynamic model, the time-lagged dependent variable is 

also included as an explanatory factor along with other explanatory factors. The econometric model 

specifications for the four decomposition components, thus are:   

lnPPCt = Ƚ1 + Ƚ2lnPPCt-1 + Ƚ3lnINCt + Ƚ4(lnINCt)2 + Ƚ5lnFAREt + Ƚ6lnUNEMt + Ƚ7D911t + ɂPPC,t    (5) 

lnMPPt ε Ⱦ1 + Ⱦ2lnMPPt-1 + Ⱦ3lnINCt + Ⱦ4lnYLDt + ɂMPP,t                     (6) 

lnLFt ε ɀ1 + ɀ2lnLFt-1 + ɀ3lnINCt + ɀ4lnSEATt + ɀ5lnJFPt + ɀ6D2001t + ɂLF,t                   (7) 

lnFSMt = Ɂ1 + Ɂ2lnFSMt-1 + Ɂ3lnSEATt + Ɂ4lnJFPt + Ɂ5TIMEt + ɂFSM,t                   (8) 

where, the Ƚ's, Ⱦ's, ɀ's and Ɂ's are parameters to be estimated and represent the elasticities of the 

dependent components with respect to the relevant independent variables. The ɂi,t's - where i=PPC, 

MPP, LF and FSM - are the errors of the respective models, with the subscripts used to separate the 

errors of the different equations. Subscript t represents the period of the observation and t-1 

represents the lagged observation.     

3.4 Model estimation 

As long as each of Eqs. 5-8 is independent of each other, they can be estimated separately. In such a 

case, each of the equations can be estimated by using ordinary least squares (OLS) technique if the 

errors are independent, serially uncorrelated and normally distributed. However, it is possible that 

these four equations are related to each other through their error terms. For example, load factor 

can be a direct function of the number of passengers, and although income is included in order to 

account for this, there could be other omitted variables that affect both of these (e.g. consistently 

bad weather over a year). In that case the errors in the two equations will not be independent of 

each other and will be correlated (i.e. for this specific example, E[ɂPPM,tɂLF,t тϬͿ͘ TŚŝƐ ǁŽƵůĚ ŵĞĂŶ 

that the parameters are simultaneously determined by both the equations and in such cases, a 

system wide estimation of the parameters are preferred. Therefore Zellner's (1962) Seemingly 

Unrelated Regression (SUR) is used as it allows consistent and efficient estimation of the parameters 

in an equation system where such cross-equation correlation can occur. SUR uses the feasible 

generalized least squares (FGLS) technique to estimate the parameters. Such simultaneous solution 
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of the four equations as a system allows the utilization of the full information potentially contained 

in the data as a whole and generally results in a more efficient estimation of the parameters as 

compared with OLS. Statistical tests can then be used to test if such cross-equation correlation 

among the errors exists or not.  

In addition, time series data can be often non-stationary, i.e. their mean and variance do not remain 

constant over time. Regression of non-stationary variables can be spurious unless there exists at 

least one combination of the variables that is stationary. In such cases, the variables are said to be 

cointegrated and there exists a valid long-run relationship among the variables. Engle and Granger 

(1987) suggested that the OLS estimate of a static equation involving the cointegrating variables will 

be valid for the long-run relationship of the non-stationary variables (and stationary, if any) and it is 

a widely used technique in time-series multivariate econometrics. However, Hendry (1986) argued 

that such OLS estimation from the static models can leave substantial autocorrelation in the 

residuals, and thus the inference on the parameter estimates can be misleading. Therefore, Banerjee 

et al. (1986) suggest that the long run parameters should be determined from a dynamic model. As 

long as the dynamics are specified such that the residuals are not autocorrelated, then the inference 

on the parameter estimates are valid, provided a long-run cointegrating relationship exists 

(Patterson 2000). Our choice of a dynamic autoregressive model is therefore appropriate in this 

context, too. Whether ƚŚĞ ͚ŝŵƉůŝĞĚ͛ ůŽŶŐ-run relationship from the dynamic model is spurious or not 

is then tested. 

3.5 Econometric modelling results 

Table 1 presents the parameter estimates and relevant diagnostic tests in the SUR framework. For 

each individual equation one lagged dependent variable produces residuals without serial 

correlation. Residuals of the 'implied' long run relationship for each equation show that there exists 

a valid cointegrating relationship in each equation, ensuring that the findings are not spurious. The 

Breusch-Pagan test for the presence no-cross correlation among the errors of the different 

equations is rejected, justifying the use of SUR framework.
3
  

All of the explanatory factors are statistically significant at 99% confidence level for passengers per 

capita. As expected, income has a positive effect and this effect decreases as income rises, which 

reveals the diminishing marginal effects of income on air passenger travel. The short run elasticity of 

                                                           
3
 While Eqs. 5-8 are the chosen specifications, a number of alternate specifications are also estimated and 

tested against the chosen model. These alternate specifications include dropping squared INC and replacing 

INC with time trend (separately) in the PPC equation, adding squared INC variable in the MPP equation and 

increasing the number of lags of the dependent variables in all equations. The reported chosen specification 

outperforms these alternate ones through goodness of fit measures such as AIC and BIC.  
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passengers per capita with respect to income is 0.78 at the mean income of the sample. A 10% 

increase in trip air fare reduces passenger per capita by 2.2% in the short run. Increases in 

unemployment rate also reduce passengers per capita. Both the dummies are statistically significant 

and negative, indicating a reduction in passengers per capita as a result of the 9-11 terrorist attacks 

and the additional effects of the recent recession.  

Table 1. Parameter estimates using SUR 

 lnPPC lnMPP lnLF lnFSM 

Parameter estimates     

Lag dependent var. 0.266
***

 0.784
***

 0.394
***

 0.349
***

 

lnINC 29.330
***

 0.195
**

 0.291
***

  

(lnINC)2 -1.384
***

    

lnFARE -0.222
***

    

lnUNEM -0.124
***

    

lnYLD  0.056
#
   

lnSEAT   -0.385
***

 -0.207
**

 

lnJFP   0.016
*
 -0.024

***
 

TIME    -0.007
***

 

D911 -0.085
***

    

D0809 -0.028
**

    

D2011   -0.034
**

  

Constant -153.186
***

 -0.692 1.464
*
 12.809

***
 

Diagnostic tests     

N 34 34 34 34 

R
2
 0.991 0.976 0.973 0.952 

Stationarity (unit root) 

test for long run residuals 

3.924
**§

 3.800
***

 2.901
*
 3.015

**
 

AIC -704.42 

BIC -669.32 

Breusch-Pagan test for 

independence of errors 

19.04 (p=0.004) 

Statistically significant 
***

 at 99%, 
**

 at 95%, 
*
 at 90%,  

#
 at 89% level 

§
 has an outlier, so requires Vogelsang's (1999) correction on DF-GLS method 

MŝůĞƐ ƉĞƌ ƉĂƐƐĞŶŐĞƌ ŝƐ ƚŚĞ ŵŽƐƚ ͚ƐůƵŐŐŝƐŚ͛ ŽĨ ƚŚĞ ĨŽƵƌ ĚĞĐŽŵƉŽƐŝƚŝŽŶ ĐŽŵƉŽŶĞŶƚƐ ŵŽĚĞůůĞĚ͕ ĂƐ 

evident from the largest parameter estimate for the lagged dependent variable. An increase in 

income increases the average distances flown by each passenger. Unlike in passenger per capita, the 

effect of yield per mile on miles per passenger was positive and significant at 89%; however 

dropping an observation alternately from either end of the dataset (i.e. dropping  observation for 

either 1979 or 2012) makes the positive parameter estimate become statistically significant at 90% 
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confidence level. It is therefore highly likely that the effect of yield per mile on miles per passenger is 

positive, which may appear to contradict the expectations.  

There are two potential responses of miles per passenger to air travel costs per mile. The first is that 

people fly shorter distances in order to reduce their overall costs of air travel. This is likely for leisure 

travel where holiday makers may opt for a closer destination. However, it is also possible that as air 

travel costs increase, marginal users of short-haul flights shift to other transport modes (most likely 

road), which makes the average miles flown of the remaining users larger. In reality both of these 

are likely to occur, and the estimation results show that the second effect is more likely to govern. 

The larger price elasticity of short haul air traffic compared to long haul ones provide anecdotal 

evidence in support of this finding (Smyth and Pearce 2008). The earlier observation from 

decomposition analysis that miles per passenger tend to increase when passenger per miles tend to 

decrease can be explained by this possibility.  

Load factor increases with an increase in disposable income - which increases passenger patronage - 

as evident from the statistically significant positive parameter estimate. Load factor has also been 

increasing over the years due to the reasons mentioned earlier, and therefore the variable 

disposable income picks up not only the effects of increasing passenger numbers but also these 

other time trending external factors. Aircraft size has an inverse relationship with load factor: ceteris 

paribus, a 10% increase in aircraft size reduces the load factor by 3.9% in the short run. An increase 

in jet fuel prices results in a statistically significant improvement in the load factor, which is also 

expected. The post 2001 dummy is also statistically significant and negative.  

The statistically negative parameter estimate for the time trend confirms the improvement in the 

efficiency of the aircrafts over the years. Larger aircraft size also lead to lower fuel consumption per 

available seat-mile. An increase in jet fuel prices has statistically significant effect on improving the 

fuel consumption. Aircrafts do not become fuel efficient instantly as fuel prices increase since there 

is a long lead time for the delivery of new, more efficient aircrafts and engines. Therefore the 

statistically significant effect of fuel prices may be representing the reduction of FSM through other 

operational procedures such as single engine taxiing, reduced thrust take-offs etc. in response to 

increased prices.    

Given the dynamic nature of the model, long run elasticities can also be derived from these short-

run ones, which are presented in Table 2. As expected, all the elasticities are larger in the long run 

than those in the short run.  
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Table 2. Long run elasticities  

                   Elasticity of  PPC MPP LF FSM 

With respect to ...     

  INC 1.064
***

 0.902
***

 0.481
***

  

  FARE -0.303
***

    

  UNEM -0.168
***

    

  YLD  0.259
#
   

  SEAT   -0.634
***

 -0.318
***

 

  JFP   0.026
*
 -0.037

***
 

  TIME    -0.011
***

 

# statistically significant at 85% level 

4. Decomposition and econometric modelling 

The decomposition of aviation fuel demand as in Eq. (1) can also be expressed in the logarithmic 

form as follows: 

lnFUEL = lnPOP + lnPPC + lnMPP - lnLF + lnFSM         (9) 

Each of the right hand side components (except population) in Eq. (9) has been further modelled 

using the econometric technique, and thus it is possible to determine the elasticities of aviation fuel 

demand with respect to the relevant explanatory factors directly using Eqs. 5-9. For example, the 

income elasticity of aviation fuel demand will be 

ɄINC = Ƚ3 + 2Ƚ4lnINC + Ⱦ3 - ɀ3   

At the mean income of the sample, the short-run income elasticity of aviation fuel demand becomes 

0.684 (p=0.00). While the income (or other) elasticity could have been determined directly from a 

'reduced form' single-equation models, the decomposition and subsequent structural equation 

format provides more insight into how different components making up the aggregate fuel demand 

responds to the same external stimulus (here income), which can be useful while designing policies. 

The technique also allows the determination of elasticities of passenger demand with respect to, 

say, income or air fare. Noting that RPM = POP × PPC × MPP, the following relationship also holds: 

lnRPM = lnPOP + lnPPC + lnMPP            (10) 

Hence the income elasticity of air travel demand is Ƚ3 + 2Ƚ4lnINC + Ⱦ3. For the present work this is 

0.976 (p=0.00), which falls within the range of existing literature on air transport demand.  

Similarly the effect of aircraft size on fuel demand can be determined from these structural 

equations. The elasticity of fuel demand with respect to aircraft size is: 
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ɄSEAT = Ƚ4 + Ɂ3  

This is evaluated to be 0.177 in the short run, but is statistically insignificant (z=1.22, p=0.22) at 

conventional confidence levels. Therefore changes in aircraft size has no visible effect on the fuel 

consumption for air travel in the US although it may individually affect load factor and fuel 

consumption per available seat mile. This finding agrees with Schafer et al. (2009) as well.  

Jet fuel prices can affect aviation fuel demand through a number of pathways. Increases in jet fuel 

prices improve the load factor and fuel efficiency per available seat mile. The joint effect therefore is 

ɀ5 + Ɂ4, which equals to 0.04 and is statistically significant at 99%. However, jet fuel prices can also 

indirectly affect fuel consumption through increasing the air fare (since additional costs are generally 

passed on to the consumers in a highly competitive industry like air transport) and its subsequent 

effects on passenger demand. The effects of fuel prices on air fare are beyond the scope of current 

work though.   

5. Conclusions 

In this paper energy decomposition analysis is linked with econometric modelling to understand the 

demand for aviation fuel in the USA. In the first stage, aviation fuel demand has been decomposed 

into five components - population, passengers per capita, miles per passenger, load factor and fuel 

efficiency, which were then each further modelled using econometric techniques. Seemingly 

unrelated regression technique is then applied for estimating the parameters in a system context in 

order to allow for cross-equation correlation among the errors of different equations. Extension of 

the decomposition analysis with econometric modelling of the individual components also allow the 

quantitative understanding of the link between air travel demand and its drivers, as well as energy 

efficiency and its drivers.  

The decomposition analysis in 5-year intervals show that aviation's fuel demand closely follows the 

path of passenger per capita, which is a result of larger fluctuations of this component as compared 

to the others. Despite some variations, the general trend is of a large increase in passenger per 

capita during the sample period between 1979 and 2012. From the aggregate data analysis here, it is 

not clear if the increase in passenger per capita is due to the same people taking more trips or new 

travellers taking trips although it is likely to be a result of both. Two other factors contributing to 

increases in aviation fuel demand are overall population, which increases the potential pool of 

travellers and miles per passenger, which reflects the distances travelled by each passenger. Both of 

these have been increasing steadily, yet their contribution to the increases in jet fuel demand is 

relatively small compared to passengers per capita. Improvements in fuel efficiency and load factor 
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substantially contributed to slowing the growth in fuel demand. The decomposition analysis also 

revealed that a dip in passengers per capita is generally associated with an increase in miles per 

passenger. This has been further substantiated by the econometric model, which show that the 

miles per passenger can indeed increase in response to an increase in per mile cost of air travel, 

while passengers per capita decreases as air fare increases.  

The opposite impact of travel prices on passengers per capita and miles per passenger presents with 

an apparent dilemma for price-based policies to control aviation fuel consumption or carbon 

emissions by managing air passenger demand. Although a  definitive conclusion cannot be made, it 

appears in the short run the effects of travel costs on passengers per capita is larger in magnitude 

than on miles per passenger - therefore the price based policies can still be effective. However, the 

net long run effects require further investigation in future as the long run effects of increased air 

travel costs on miles per passenger is still inconclusive.  

Increases in jet fuel prices reduce fuel consumption by improving load factor and fuel efficiency per 

available seat mile. This indicates both operational and technical improvements take place in 

response to cost increases. Jet fuel prices can also affect the fuel demand indirectly by increasing air 

fare and thus most likely reducing total revenue passenger miles. However, the effects of air fare or 

fuel prices are smaller than the effects of increasing income. Therefore any demand side market 

based policies should be designed considering the counter-effects of income on demand.  

Because of the nature of the annual time series data, it was not possible to include all potential 

explanatory factors in the econometric model (high correlation among some explanatory factors). A 

monthly dataset, which offers more variation, may be useful to provide further insight in future. 

Decomposing the fuel demand into contributions from passenger and freight air traffic can also be a 

useful avenue of future research.  
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