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Abstract.  18 

Characterisation of particle flow using Positron Emission Particle Tracking (PEPT) is based on 19 

tracking the position of a single particle in a dynamic system. Recent developments in PEPT have 20 

facilitated tracking multiple particles aiming at improvements in data representation. Nevertheless for 21 

systems with a wide residence time distribution and/or dead zone, the conditions for getting 22 

representative data which could reflect the bulk behaviour of the powders need to be analysed and 23 

specified. In the present work, an attempt is made to simulate PEPT experiments for a paddle mixer 24 

using Discrete Element Method (DEM), with a view to investigate the effect of increasing the number 25 

of tracers on their time-averaged velocity distribution and whether it can represent the data on whole 26 

population of particles. The time averaged velocity distribution of the individual tracer particles 27 

(resembling simulated PEPT) is obtained and compared with the time averaged data on entire particle 28 

population. The DEM results indicate that for the investigated paddle mixer, it takes 251 seconds for 29 

one tracer to travel adequately in all the active space of the system. The instantaneous tracer velocity 30 

fluctuates around the average value obtained for all the particles, suggesting the average tracer 31 

velocity is adequately representative of the average particle velocity in the system. The data of PEPT 32 

experiment with one tracer with those of DEM with one tracer are in good agreement, however DEM 33 
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simulation suggests that increasing the number of tracers in the paddle mixer system does not 34 

influence the average velocity distribution. Furthermore, the velocity for all particles in the DEM 35 

shows a smooth distribution with a peak frequency of the velocity distribution that is lower than PEPT 36 

and DEM tracer. When tracking a single tracer in DEM or PEPT, it may not be detected to have zero 37 

velocity at any instant of time, while the data for all particles show that about 0.3% of particles are 38 

stagnant. 39 

 40 

Keywords: Discrete Element Method (DEM), Positron Emission Particle Tracking (PEPT), Paddle 41 

mixer, Number of Tracers 42 

 43 

1. Introduction 44 

In industries such as detergent, cosmetic, food and pharmaceutical manufacturing, powder mixing is a 45 

common process. Optimisation and control of mixing are critically important but very challenging. A 46 

key step in optimising the mixing process is to understand the powder kinematic behaviour (flow 47 

fields, mixing patterns, etc.) to enable efficient process design and control [1]. However it is difficult 48 

to obtain an insight into the internal flow field during mixing processes and to address the kinematic 49 

behaviour of powders using experimental approaches, particularly at large scales. Advances in 50 

experimental measurements of internal flow based on Positron Emission Particle Tracking (PEPT) 51 

have made it possible to get detailed information on the rate of mixing, but are limited to small scales 52 

[2, 3]. In PEPT, the motion of an irradiated tracer particle is tracked using appropriate sensors, from 53 

which the temporal and spatial information about the particle is deduced [4]. A natural question which 54 

emerges is to what extent the data from a single particle are representative and how such information 55 

could be applicable to larger scales. For this purpose Hassanpour et al. [5] simulated a paddle mixer 56 

using the Distinct Element Method (DEM) and compared the results to those of PEPT. A qualitative 57 

comparison between the time-averaged velocity profiles of a representative case from PEPT 58 

measurements and corresponding DEM simulations showed a good qualitative agreement on the 59 

internal flow patterns. In order to make quantitative comparisons, the particle dynamics were analysed 60 

in terms of normalised velocity distributions (i.e. magnitude of particle velocity normalised to paddle 61 



3 
 

tip speed). Due to the computational limitations, DEM simulations were carried out for a maximum of 62 

10 s of real time only. Within this short period, the data were insufficient for one single particle 63 

relating to comparison with PEPT measurements; therefore the data from all particles in the DEM 64 

simulations were used in the calculations. The time-averaged normalised velocity distribution 65 

obtained from DEM analysis was compared with that from PEPT measurements for representative 66 

process conditions. It was found that the DEM model predicted a smooth distribution of particle 67 

velocities while the PEPT data showed more scatter or fluctuation in the frequency plot. This 68 

difference was attributed to the fact that the PEPT analysis was based on data from only one particle, 69 

i.e. the tracer, while the DEM results were from the velocity profiles of the whole population of 70 

particles. Overall there was a reasonable agreement in the velocity distribution, but the comparison 71 

was not rigorous.   72 

 73 

In PEPT the tracking process is carried out for a few minutes to generate sufficiently accurate time-74 

averaged data.  However, the total length of experiment for reliable and statistically representative 75 

data is based on trial and error and there is no solid evidence confirming the tracer could represent the 76 

data for all particles.  It has recently been shown [6] that using manipulated algorithms, multiple 77 

tracers can be used in PEPT, however its effect on providing better representative data for all the 78 

particles has yet to be critically evaluated. In the present work, an attempt is made to simulate PEPT 79 

experiments for a paddle mixer using DEM, with a view to investigate the effect of increasing the 80 

number of tracers on the time-averaged velocity distribution. The velocity information is available for 81 

all individual particles in DEM; therefore, the average particle velocity and velocity distribution of the 82 

whole population of particles could be compared with those of individual tracers in the simulation. 83 

The results of DEM are also compared to those of PEPT experiment using a single tracer. 84 

 85 

2. DEM simulation of the paddle mixer 86 

DEM simulations provide dynamic information of transient forces acting on individual particles 87 

throughout the simulations, which is otherwise difficult to obtain. The interactions between the 88 

constituent particles are based on theories of contact mechanics. More details on the methodology of 89 
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the DEM and its applications are presented elsewhere [7, 8]. The simulations were conducted using 90 

EDEM® software provided by DEM Solutions, Edinburgh, UK. The calculation of the contact forces 91 

of the particles is based on the Hertz-Mindlin model [9]. The experimental work using PEPT was 92 

carried out on dry, free-flowing particles; hence the contact model did not include adhesive term. Due 93 

to the limitation of computer power, it is not possible at this stage to simulate the actual number of 94 

particles (around 50 millions) within a reasonable time. Therefore, the simulation was carried out with 95 

a smaller number but larger particles. In this case particle density is adjusted to maintain a similar 96 

momentum exchange between particles as of the real case [10]. In the previous work by Hassanpour 97 

et al. [5] it was shown that the steady state average velocity magnitude slightly decreased as the 98 

particle size was reduced in the same paddle mixer system. This shows that the average particle 99 

velocity is slightly sensitive to the particle size, but the effect is not very significant. Here, the same 100 

particle size similar to that used by Hassanpour et al. [5] is used. The geometry of the simulated 101 

paddle mixer is the same as the previous work, for which a CAD drawing was imported into the 102 

EDEM computer code (Figure 1). 103 

 104 

Figure 1: The imported geometry of the paddle mixer simulated by the DEM. 105 

 106 

As it can be seen, the mixer consists of two intersected semi-cylinders of the same span and two 107 

counter-rotating impellers, each with 10 paddles positioned pair-wise along 5 axial positions. 108 
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Properties of the particles are also the same as the previous work [5], which can be seen in Table 1 109 

and 2. Particles were generated randomly at spatial locations above the impellers (the position shown 110 

in Figure 1).  111 

 112 

Table 1: The properties of particles and walls used in DEM simulation 113 

Property Particles Equipment wall  
Particle diameter (mm) 4.52 - 
Shear modulus (GPa) 0.1 70 
Density (kg/m3) 1000 7800 
Poisson's ratio (-) 0.2 0.3 

 114 

 115 

Table 2: The contact properties used in DEM simulation 116 

Property Particle-particle Particle-wall 
Coefficient of sliding friction 0.3 0.3 
Coefficient of rolling friction 0.01 0.01 
Coefficient of restitution 0.4 0.4 

 117 

The filling of 60000 particles was carried out while the mixer impellers were stationary similar to 118 

previous work [5]. The particles were subjected to gravitational acceleration and gradually settled 119 

toward the bottom of the mixer. The simulations were carried out under a constant rotational speed of 120 

impellers for 10 minutes of real time which took three months to complete. For confidentiality reasons 121 

it is not possible to disclose the impeller rotational speeds. 122 

 123 

3. PEPT experiments 124 

The experimental results of PEPT are taken from the previous work of Hassanpour et al [5]. In their 125 

work, the Positron Emission Particle Tracking (PEPT) facility of the University of Birmingham 126 

(Birmingham, UK) was used to track particle motion. In a typical experiment, particles were loaded 127 

into the mixer which was then started and run for a couple of minutes to ensure that the steady state 128 

was reached before starting the data requisition process. Radioactive particles (0.7 mm in diameter 129 

with 1200 kg/m3 density) were used as tracers, which were activated by an ion exchange method with 130 

radioactive water produced in a cyclotron [4]. For each experiment one tracer was used and the data 131 
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acquisition was performed for at least 15 min for each run which gave at least 20,000 data points in 132 

the form of spatial locations in the Cartesian coordinate as a function of time. 133 

 134 

4. Results and discussion 135 

Figure 2 shows the streamlines of the tracer  from three different viewing angles as well as a view of 136 

all the particles in the system, all coloured based on the normalised speed (i.e. ratio of tracer particle 137 

speed to paddle tip speed): red being the maximum (i.e. 1) and blue being the minimum (i.e. 0).   138 

 139 

Figure 2: The tracer streamlines and particles view: (a) front view streamlines (b) front view of the 140 

particles (c) right view streamlines and (d) top view streamlines in the system. The colour scheme is 141 

based on the normalised speed of the tracer/particles. 142 

 143 

Figure 2 qualitatively shows that the tracer particle has been present almost in all active locations of 144 

the mixer space, which was occupied by the particles. The velocity distribution, which can be 145 
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qualitatively seen by the colour scheme used in the figure, matches with that of the whole population 146 

of particles in the simulation. This has been analysed quantitatively and will be shown in the next 147 

section. 148 

 149 

Figure 3 shows the development of tracer streamlines at four different simulation times: 1, 13, 52 and 150 

384 s. The trace is coloured based on the normalised speed of the tracer particle: red being the 151 

maximum (i.e. 1) and blue being the minimum (0).  152 

 153 

Figure 3: Tracer streamlines development at four different simulation times: (a) 1, (b) 13, (c) 52 and 154 

(d) 384 s. The trace is coloured based on the normalised speed of the tracer particle. 155 

 156 

Figure 3 qualitatively shows the streamlines gradually develop and after about 384 seconds of 157 

simulation time shows presence in almost all the dynamic space of the geometry. 158 

 159 
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Figure 4 shows the average velocity (magnitude of velocity) of the whole particle population as 160 

compared to the tracer velocity for the first 100 seconds of the simulation.  161 

 162 

Figure 4: Average velocity of the whole particle population, tracer velocity and its moving average for 163 

the first 100 seconds of the simulation. 164 

 165 

The figure shows the tracer velocity fluctuates over the average value obtained for all the particles in 166 

the system. In order to better compare the tracer velocity with the average velocity of all particles, the 167 

fluctuations of tracer particle were reduced by arithmetically averaging the tracer velocity for every 5 168 

data points (i.e. every 0.05 seconds instead of every 0.01 seconds) which is also plotted as a function 169 

of time. The moving average trend of the tracer velocity demonstrates fewer fluctuations, suggesting 170 

that the average tracer velocity could be representative of the average particle velocity in the system. 171 

 172 

In order to quantitatively investigate the time needed for the tracer to develop its streamlines, the 173 

normalised tracer velocity distribution is evaluated at different simulations times and is plotted in 174 

Figures 5 and 6. To do so, the active region of the geometry was divided into cuboid bins each of 175 

which had dimensions of 0.0205, 0.02 and 0.02 m in x, y and z direction, respectively. In each 176 

recorded time-step, based on the position of the tracer, the bin in which the tracer existed was 177 

determined. This spatial discretisation is similar to PEPT analysis. The normalised tracer velocity in 178 

each bin which was then evaluated and its distribution among bins is plotted (as seen in Figures 5 and 179 

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

N
or

m
al

is
ed

ve
lo

ci
ty

 (
-)

Time (s)

Tracer All Particles Moving Average



9 
 

6). Throughout the present paper, the velocity distributions for DEM tracer(s) are obtained based on 180 

recording sample rates of 0.01 seconds.  181 

 182 

 183 

Figure 5: Tracer normalised velocity distribution at different simulations time: 7, 21, 39, 73 and 600 s 184 

 185 

As it can be seen in Figure 5, the normalised tracer velocity distribution develops with time. If the 186 

velocity distribution does not change after some simulation time, it can be concluded that at that time 187 

the velocity distribution is developed and therefore there is no need to carry on the simulations (or in 188 

experiments carrying out the PEPT experiments). This can be seen in Figure 6, where the normalised 189 

velocity distribution of the tracer does not change much after about 251 seconds of simulation time. 190 
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 192 

Figure 6: Tracer normalised velocity distribution at different simulations time: 251, 354 and 600 s 193 

 194 

In order to investigate the effects of multiple tracers in the velocity distribution, five particles were 195 

tracked in the simulations. These five particles were selected randomly at different positions inside the 196 

mixer at the end of the simulation (i.e. at t = 600 s), then post processing started from initial time (0 s) 197 

for these particles. Figure 7 shows the normalised tracer velocity distribution using 1-5 tracers at the 198 

end of simulation (i.e. t = 600 s). For the multiple tracer cases, the normalised velocity is calculated 199 

by taking the average value of the normalised velocity of the tracers in each bin. It must be noted that 200 

the sampling rate can affect the distributions however since all the distribution are based on the same 201 

sampling rate (every 0.01 seconds), the comparative conclusions are valid.   202 
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 204 

Figure 7: Normalised tracer velocity distribution using 1-5 tracers at t = 600 s 205 

 206 

As it can be seen, increasing the number of tracers in this paddle mixer system does not influence the 207 

velocity distribution. In addition, for the system studied in this work it has been observed that 208 

increasing the number of tracers does not significantly shorten the time required to achieve a 209 

representative and time independent data. Furthermore for experimental PEPT the data acquisition 210 

and analysis could be more complex and time consuming. Therefore, one conclude that the use of 211 

multiple tracers in PEPT measurements does not provide improvements in the velocity distribution 212 

results and hence little benefit in this respect could be achieved.  Figure 8 compares the normalised 213 

velocity distributions obtained from the experimental PEPT, one tracer particle in DEM and all the 214 

population of particles in DEM. The data on all particles has not been analysed in bins and rather data 215 

on each particle was time averaged and their distribution was plotted. The aim was to compare if  216 

PEPT results are representative of entire system in terms of entire particle population velocity 217 

distribution. 218 
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 220 

Figure 8: Comparison of normalised velocity distributions obtained from the experimental PEPT, 1 221 

tracer particle in DEM and all the population of particles in DEM. 222 

 223 

The figure shows although the peak frequencies of the velocity distribution for PEPT and DEM with 224 

one tracer are very similar, there are discrepancies over the width of the distribution and the 225 

frequencies of tracer with higher velocities. DEM tracer predicts a wider velocity distribution 226 

compared to PEPT. For normalised velocity of 0.7 and higher, the frequency distribution of DEM 227 

tracer is significantly higher than PEPT.  One reason for this observation could be the differences in 228 

particle shape and size distribution for DEM and the experiment. Furthermore, the velocity for all 229 

particles in DEM shows a smooth distribution with a peak frequency of the velocity distribution lower 230 

than PEPT and DEM tracer. The velocity distribution data for the population of particles in DEM are 231 

based on a large number of particles (60,000 in this case), while for PEPT and DEM tracers it is based 232 

on time-averaged velocity distribution of a single tracer. Therefore the scatter and fluctuations in 233 

PEPT and DEM one tracer data, relative to DEM population, is expected. Potential explanations for 234 

the difference in the peak of the distribution could be attributed to the aforementioned particle size 235 

discrepancies and/or the sampling method: PEPT and DEM tracer analyses are based on data from 236 

only one particle within a discretised domain, i.e. the bins, while the DEM results consider the 237 

velocity profiles of the whole population of particles.  Furthermore, in contrast to the DEM with one 238 

tracer data and PEPT, it can be seen that the data for all particles show that about 0.3% of particles are 239 
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stagnant at any instance. When tracking a single tracer in DEM or PEPT, it may not be possible to 240 

detect zero velocity at any time. This could have implications for diagnosing stagnant regions where 241 

some particles in the mixer have no motion. This is a short coming of single tracer data which could 242 

not be representing all particles, particularly those which are stagnant. This requires further attention 243 

in future work. 244 

 245 

5. Conclusions  246 

The DEM results indicate that for the investigated paddle mixer, it takes 251 seconds for one tracer to 247 

travel adequately in all the dynamic space of the system. The tracer velocity fluctuates around the 248 

average value obtained for all the particles in the system suggesting the average tracer velocity could 249 

be representative of the average particle velocity in the system. Increasing the number of tracers in the 250 

paddle mixer system does not influence the average velocity distribution. The data of PEPT with one 251 

tracer with those of DEM with one tracer provide a good agreement; however for normalised velocity 252 

of 0.7 and higher, the frequency distribution of DEM tracer was found to be higher than PEPT.  One 253 

reason for this observation could be the differences in particle shape and size distribution for DEM 254 

and the experiment. The velocity for all particles in DEM shows a smooth distribution with a peak 255 

frequency of the velocity distribution lower than PEPT and DEM tracer. The velocity distribution data 256 

for the population of particles in DEM are based on a large number of particles which reduce the 257 

scatter and fluctuations. Potential explanations for the difference in the peak of the distribution could 258 

be attributed to the particle size differences and the sampling method: PEPT and DEM tracer analyses 259 

are based on data from only one particle within a discretised domain, while the DEM results consider 260 

the velocity profiles of the whole population of particles. When tracking a single tracer in DEM or 261 

PEPT, particle having zero velocity may not be detected, while the data for all particles shows that 262 

about 0.3% of particles are stationary. 263 

 264 
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