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NETWORK IMPACTS OF A ROAD CAPACITY REDUCTION: 
EMPIRICAL ANALYSIS & MODEL PREDICTIONS 

 
David Watling1, David Milne1 & Stephen Clark2 

 
 

Abstract – In spite of their widespread use in policy design and evaluation, relatively little evidence has 
been reported on how well traffic equilibrium models predict real network impacts. Here we present what we 
believe to be the first paper that together analyses the explicit impacts on observed route choice of an actual 
network intervention and compares this with the before-and-after predictions of a network equilibrium 
model. The analysis is based on the findings of an empirical study of the travel time and route choice impacts 
of a road capacity reduction. Time-stamped, partial licence plates were recorded across a series of locations, 
over a period of days both with and without the capacity reduction, and the data were ‘matched’ between 
locations using special-purpose statistical methods. Hypothesis tests were used to identify statistically 
significant changes in travel times and route choice, between the periods of days with and without the 
capacity reduction. A traffic network equilibrium model was then independently applied to the same 
scenarios, and its predictions compared with the empirical findings. From a comparison of route choice 
patterns, a particularly influential spatial effect was revealed of the parameter specifying the relative values 
of distance and travel time assumed in the generalised cost equations. When this parameter was ‘fitted’ to the 
data without the capacity reduction, the network model broadly predicted the route choice impacts of the 
capacity reduction, but with other values it was seen to perform poorly. The paper concludes by discussing 
the wider practical and research implications of the study’s findings. 

  

1. INTRODUCTION 
 
It is well known that altering the localised characteristics of a road network, such as a planned 
change in road capacity, will tend to have both direct and indirect effects. The direct effects are 
imparted on the road itself, in terms of how it can deal with a given demand flow entering the link, 
with an impact on travel times to traverse the link at a given demand flow level. The indirect effects 
arise due to drivers changing their travel decisions, such as choice of route, in response to the 
altered travel times. There are many practical circumstances in which it is desirable to forecast these 
direct and indirect impacts in the context of a systematic change in road capacity.  
 
For example, in the case of proposed road widening or junction improvements, there is typically a 
need to justify economically the required investment in terms of the benefits that will likely accrue. 
There are also several examples in which it is relevant to examine the impacts of road capacity 
reduction. For example, if one proposes to reallocate road space between alternative modes, such as 
increased bus and cycle lane provision or a pedestrianisation scheme, then typically a range of 
alternative designs exist which may differ in their ability to accommodate efficiently the new traffic 
and routing patterns. Through mathematical modelling, the alternative designs may be tested in a 
simulated environment and the most efficient selected for implementation. Even after a particular 
design is selected, mathematical models may be used to adjust signal timings to optimise the use of 
the transport system. Road capacity may also be affected periodically by maintenance to essential 
services (e.g. water, electricity) or the road itself, and often this can lead to restricted access over a 
period of days and weeks. In such cases, planning authorities may use modelling to devise suitable 
diversionary advice for drivers, and to plan any temporary changes to traffic signals or priorities. 
Berdica (2002) and Taylor et al (2006) suggest more of a pro-active approach, proposing that 

                                                 
1 Institute for Transport Studies, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK. 
2 Leeds City Council, Leonardo Building, 2 Rossington Street Leeds LS2 8HD, UK. 



 2  

models should be used to test networks for potential vulnerability, before any reduction 
materialises, identifying links which if reduced in capacity over an extended period3 would have a 
substantial impact on system performance. 
  
There are therefore practical requirements for a suitable network model of travel time and route 
choice impacts of capacity changes. The dominant method that has emerged for this purpose over 
the last decades is clearly the network equilibrium approach, as proposed by Beckmann et al (1956) 
and developed in several directions since. The basis of using this approach is the proposition of 
what are believed to be ‘rational’ models of behaviour and other system components (eg link 
performance functions), with site-specific data used to tailor such models to particular case studies. 
Cross-sectional forecasts of network performance at specific road capacity states may then be made, 
such that at the time of any ‘snapshot’ forecast, drivers’ route choices are in some kind of 
individually-optimum state. In this state, drivers cannot improve their route selection by a unilateral 
change of route, at the snapshot travel time levels. 
 
The accepted practice is to ‘validate’ such models on a case-by-case basis, by ensuring that the 
modelwhen supplied with a particular set of parameters, input network data and input origin-
destination demand datareproduces current measured mean link traffic flows and mean journey 
times, on a sample of links, to some degree of accuracy (see, for example, the practical guidelines in 
TMIP, 1997, and Highways Agency, 2002). This kind of aggregate level, cross-sectional validation 
to existing conditions persists across a range of network modelling paradigms, ranging from static 
and dynamic equilibrium (Florian & Nguyen, 1976; Leonard & Tough, 1979; Stephenson & Teply, 
1984; Matzoros et al, 1987; Janson et al, 1986; Janson, 1991) to micro-simulation approaches 
(Laird et al, 1999; Ben-Akiva et al, 2000; Keenan, 2005).  
 
While such an approach is plausible, it leaves many questions unanswered, and we would 
particularly highlight two: 
 
1. The process of calibration and validation of a network equilibrium model may typically occur in 

a cycle. That is to say, having initially calibrated a model using the base data sources, if the 
subsequent validation reveals substantial discrepancies in some part of the network, it is then 
natural to adjust the model parameters (including perhaps even the OD matrix elements) until 
the model outputs better reflect the validation data4. In this process, then, we allow the 
adjustment of potentially a large number of network parameters and input data in order to 
replicate the validation data, yet these data themselves are highly aggregate, existing only at the 
link level. To be clear here, we are talking about a level of coarseness even greater than that in 
aggregate choice models, since we cannot even infer from link-level data the aggregate shares 
on alternative routes or OD movements. The question that arises is then: how many different 
combinations of parameters and input data values might lead to a similar link-level validation, 
and even if we knew the answer to this question, how might we choose between these 
alternative combinations? In practice, this issue is typically neglected, meaning that the 
‘validation’ is a rather weak test of the model. 

 
2. Since the data are cross-sectional in time (i.e. the aim is to reproduce current base conditions in 

equilibrium), then in spite of the large efforts required in data collection, no empirical evidence 
is routinely collected regarding the model’s main purpose, namely its ability to predict changes 

                                                 
3Clearly, more sporadic and less predictable reductions in capacity may also occur, such as in the case of breakdowns 
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al, 2004), but this has no material effect on the essential points above. 
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in behaviour and network performance under changes to the network/demand. This issue is 
exacerbated by the aggregation concerns in point 1: the ‘ambiguity’ in choosing appropriate 
parameter values to satisfy the aggregate, link-level, base validation strengthens the need to 
independently verify that, with the selected parameter values, the model responds reliably to 
changes. Although such problemsof fitting equilibrium models to cross-sectional datahave 
long been recognised by practitioners and academics (see, e.g., Goodwin, 1998), the approach 
described above remains the state-of-practice. 

Having identified these two problems, how might we go about addressing them? One approach to 
the first problem would be to return to the underlying formulation of the network model, and 
instead require a model definition that permits analysis by statistical inference techniques (see, for 
example, Nakayama et al, 2009). In this way, we may potentially exploit more information in the 
variability of the link-level data, with well-defined notions (such as maximum likelihood) allowing 
a systematic basis for selection between alternative parameter value combinations.  
 
However, this approach is still using rather limited data and it is natural not just to question the 
model but also the data that we use to calibrate and validate it. Yet this is not altogether 
straightforward to resolve. As Mahmassani & Jou (2000) remarked: ‘A major difficulty … is 
obtaining observations of actual trip-maker behaviour, at the desired level of richness, 
simultaneously with measurements of prevailing conditions’. For this reason, several authors have 
turned to simulated gaming environments and/or stated preference techniques to elicit information 
on drivers’ route choice behaviour (e.g. Mahmassani & Herman, 1990; Iida et al, 1992; Khattak et 
al, 1993; Vaughn et al, 1995; Wardman et al, 1997; Jou, 2001; Chen et al, 2001). This provides 
potentially rich information for calibrating complex behavioural models, but has the obvious 
limitation that it is based on imagined rather than real route choice situations. 
 
Aside from its common focus on hypothetical decision situations, this latter body of work also 
signifies a subtle change of emphasis in the treatment of the overall network calibration problem. 
Rather than viewing the network equilibrium calibration process as a whole, the focus is on 
particular components of the model; in the cases above, the focus is on that component concerned 
with how drivers make route decisions. If we are prepared to make such a component-wise analysis, 
then certainly there exists abundant empirical evidence in the literature, with a history across a 
number of decades of research into issues such as the factors affecting drivers’ route choice (e.g. 
Wachs, 1967; Huchingson et al, 1977; Abu-Eiseh & Mannering, 1987; Antonisse et al, 1989; 
Bekhor et al, 2002; Liu et al, 2004), the nature of travel time variability (e.g. Smeed & Jeffcoate, 
1971; Montgomery & May, 1987; May et al, 1989; McLeod et al, 1993), and the factors affecting 
traffic flow variability (Bonsall et al, 1984; Huff & Hanson, 1986; Ribeiro, 1994; Rakha & Van 
Aerde, 1995; Fox et al, 1998).  
 
While these works provide useful evidence for the network equilibrium calibration problem, they 
do not provide a framework in which we can judge the overall ‘fit ’ of a particular network model in 
the light of uncertainty, ambient variation and systematic changes in network attributes, be they 
related to the OD demand, the route choice process, travel times or the network data. Moreover, 
such data does nothing to address the second point made above, namely the question of how to 
validate the model forecasts under systematic changes to its inputs. The studies of Mannering et al 
(1994) and Emmerink et al (1996) are distinctive in this context in that they address some of the 
empirical concerns expressed in the context of travel information impacts, but their work stops at 
the stage of the empirical analysis, without a link being made to network prediction models. The 
focus of the present paper therefore is both to present the findings of an empirical study and to link 
this empirical evidence to network forecasting models.  
More recently, Zhu et al (2010) analysed several sources of data for evidence of the traffic and 
behavioural impacts of the I-35W bridge collapse in Minneapolis. Most pertinent to the present 
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paper is their location-specific analysis of link flows at 24 locations; by computing the root mean 
square difference in flows between successive weeks, and comparing the trend for 2006 with that 
for 2007 (the latter with the bridge collapse), they observed an apparent transient impact of the 
bridge collapse. They also showed there was no statistically-significant evidence of a difference in 
the pattern of flows in the period September-November 2007 (a period starting six weeks after the 
bridge collapse), when compared with the corresponding period in 2006. They suggested that this 
was indicative of the length of a ‘re-equilibration process’ in a conceptual sense, though did not 
explicitly compare their empirical findings with those of a network equilibrium model. 
 
The structure of the remainder of the paper is as follows. In §2 we describe the process of selecting 
the real-life problem to analyse, together with the details and rationale behind the survey design. 
Following this, §3 describes the statistical techniques used to extract information on travel times 
and routing patterns from the survey data. Statistical inference is then considered in §4, with the 
aim of detecting statistically significant explanatory factors. In §5 comparisons are made between 
the observed network data and those predicted by a network equilibrium model. Finally, in §6 the 
conclusions of the study are highlighted, and recommendations made for both practice and future 
research. 
 
 
2. EXPERIMENTAL DESIGN 
 
The ultimate objective of the study was to compare actual data with the output of a traffic network 
equilibrium model, specifically in terms of how well the equilibrium model was able to correctly 
forecast the impact of a systematic change applied to the network. While a wealth of surveillance 
data on link flows and travel times is routinely collected by many local and national agencies, we 
did not believe that such data would be sufficiently informative for our purposes. The reason is that 
while such data can often be disaggregated down to small time step resolutions, the data remains 
aggregate in terms of what it informs about driver response, since it does not provide the 
opportunity to explicitly trace vehicles (even in aggregate form) across more than one location. This 
has the effect that observed differences in link flows might be attributed to many potential causes: it 
is especially difficult to separate out, say, ambient daily variation in the trip demand matrix from 
systematic changes in route choice, since both may give rise to similar impacts on observed link 
flow patterns across recorded sites. While methods do exist for reconstructing OD and network 
route patterns from observed link data (e.g. Yang et al, 1994), these are typically based on the 
premise of a valid network equilibrium model: in this case then, the data would not be able to give 
independent information on the validity of the network equilibrium approach. 
 
For these reasons it was decided to design and implement a purpose-built survey. However, it 
would not be efficient to extensively monitor a network in order to wait for something to happen, 
and therefore we required advance notification of some planned intervention. For this reason we 
chose to study the impact of urban maintenance work affecting the roads, which UK local 
government authorities organise on an annual basis as part of their ‘Local Transport Plan’. The city 
council of York, a historic city in the north of England, agreed to inform us of their plans and to 
assist in the subsequent data collection exercise.  
 
Based on the interventions planned by York CC, the list of candidate studies was narrowed by 
considering factors such as its propensity to induce significant re-routing and its impact on the peak 
periods. Effectively the motivation here was to identify interventions that were likely to have a 
large impact on delays, since route choice impacts would then likely be more significant and more 
easily distinguished from ambient variability. This was notably at odds with the objectives of York 
CC, in that they wished to minimise disruption, and so where possible York CC planned 
interventions to take place at times of day and of the year where impacts were minimised; therefore 
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our own requirement greatly reduced the candidate set of studies to monitor. A further 
consideration in study selection was its timing in the year for scheduling before/after surveys so to 
avoid confounding effects of known significant ‘seasonal’ demand changes, e.g. the impact of the 
change between school semesters and holidays. A further consideration was York’s role as a major 
tourist attraction, which is also known to have a seasonal trend. However, the impact on car traffic 
is relatively small due to the strong promotion of public transport and restrictions on car travel and 
parking in the historic centre. We felt that we further mitigated such impacts by subsequently 
choosing to survey in the morning peak, at a time before most tourist attractions are open.  
 
Aside from the question of which intervention to survey was the issue of what data to collect. 
Within the resources of the project, we considered several options. We rejected stated preference 
survey methods as, although they provide a link to personal/socio-economic drivers, we wanted to 
compare actual behaviour with a network model; if the stated preference data conflicted with the 
network model, it would not be clear which we should question most. For revealed preference data, 
options considered included (i) self-completion diaries (Mahmassani & Jou, 2000), (ii) automatic 
tracking through GPS (Jan et al, 2000; Quiroga et al, 2000; Taylor et al, 2000), and (iii) licence 
plate surveys (Schaefer, 1988). Regarding self-completion surveys, from our own interview 
experiments with self-completion questionnaires it was evident that travellers find it relatively 
difficult to recall and describe complex choice options such as a route through an urban network, 
giving the potential for significant errors to be introduced. The automatic tracking option was 
believed to be the most attractive in this respect, in its potential to accurately map a given 
individual’s journey, but the negative side would be the potential sample size, as we would need to 
purchase/hire and distribute the devices; even with a large budget, it is not straightforward to 
identify in advance the target users, nor to guarantee their cooperation.  
 
Licence plate surveys, it was believed, offered the potential for compromise between sample size 
and data resolution: while we could not track routes to the same resolution as GPS, by judicious 
location of surveyors we had the opportunity to track vehicles across more than one location, thus 
providing route-like information. With time-stamped licence plates, the matched data would also 
provide journey time information. The negative side of this approach is the well-known potential 
for significant recording errors if large sample rates are required. Our aim was to avoid this by 
recording only partial licence plates, and employing statistical methods to remove the impact of 
‘spurious matches’, i.e. where two different vehicles with the same partial licence plate occur at 
different locations.  
 
Moreover, extensive simulation experiments (Watling & Maher, 1992; Watling, 1994) had 
previously shown that these latter statistical methods were effective in recovering the underlying 
movements and travel times, even if only a relatively small part of the licence plate were recorded, 
in spite of giving a large potential for spurious matching. We believed that such an approach 
reduced the opportunity for recorder error to such a level to suggest that a 100% sample rate of 
vehicles passing may be feasible. This was tested in a pilot study conducted by the project team, 
with dictaphones used to record a 100% sample of time-stamped, partial licence plates. 
Independent, duplicate observers were employed at the same location to compare error rates; the 
same study was also conducted with full licence plates. The study indicated that 100% surveys with 
dictaphones would be feasible in moderate traffic flow, but only if partial licence plate data were 
used in order to control observation errors; for higher flow rates or to obtain full number plate data, 
video surveys should be considered.  Other important practical lessons learned from the pilot 
included the need for clarity in terms of vehicle types to survey (e.g. whether to include motor-
cycles and taxis), and of the phonetic alphabet used by surveyors to avoid transcription ambiguities.  
 
Based on the twin considerations above of planned interventions and survey approach, several 
candidate studies were identified. For a candidate study, detailed design issues involved identifying: 
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likely affected movements and alternative routes (using local knowledge of York CC, together with 
an existing network model of the city), in order to determine the number and location of survey 
sites; feasible viewpoints, based on site visits; the timing of surveys, e.g. visibility issues in the 
dark, winter evening peak period; the peak duration from automatic traffic flow data; and specific 
survey days, in view of public/school holidays. Our budget led us to survey the majority of licence 
plate sites manually (partial plates by audiotape or, in low flows, pen and paper), with video 
surveys limited to a small number of high-flow sites. From this combination of techniques, 100% 
sampling rate was feasible at each site. Surveys took place in the morning peak due both to 
visibility considerations and to minimise conflicts with tourist/special event traffic. From automatic 
traffic count data it was decided to survey the period 7:45–  as the main morning peak period. 
This design process led to the identification of two studies: 
 
Lendal Bridge study (Figure 1). Lendal Bridge, a critical part of York’s inner ring road, was 
scheduled to be closed for maintenance from September 2000 for a duration of several weeks. To 
avoid school holidays, the ‘before’ surveys were scheduled for June and early September. It was 
decided to focus on investigating a significant southwest-to-northeast movement of traffic, the river 
providing a natural barrier which suggested surveying the six river crossing points (C, J, H, K, L, M 
in Fig 1). In total, thirteen locations were identified for survey, in an attempt to capture traffic on 
both sides of the river as well as a crossing.  
 
Fishergate study (Figure 2). The partial closure (capacity reduction) of the street known as 
Fishergate, again part of York’s inner ring road, was scheduled for July 2001 to allow repairs to a 
collapsed sewer. Survey locations were chosen in order to intercept clockwise movements around 
the inner ring road, this being the direction of the partial closure. A particular aim was to detect 
rerouting from Fulford Road (site E in Fig 2), the main radial affected, with F and K monitoring 
local diversion possibilities, and sites G, H, I, J to capture wider-area diversion.  
 
In both studies, the plan was to survey the selected locations in the morning peak over a period of 
approximately twenty weekdays, covering the three periods before, during and after the 
intervention, with the days selected so as to avoid any known public holidays or special events. 
  
In the Lendal Bridge study, while the ‘before’ surveys proceeded as planned, the bridge’s actual 
first day of closure on September 11th 2000 also marked the beginning of the UK fuel protests 
(BBC, 2000a; Lyons & Chaterjee, 2002). Traffic flows were considerably affected by the scarcity 
of fuel, with congestion extremely low in the first week of closure, to the extent that any changes 
could not be attributed to the bridge closure; neither had our design anticipated how to survey the 
impacts of the fuel shortages. We thus re-arranged our surveys to monitor more closely the planned 
re-opening of the bridge. Unfortunately these surveys were hampered by a second unanticipated 
event, namely the wettest autumn in the UK for 270 years and the highest level of flooding in York 
since records began (BBC, 2000b). The flooding closed much of the centre of York to road traffic, 
including our study area, as the roads were impassable, and therefore we abandoned the planned 
‘after’ surveys. As a result of these events, the useable data we had (not affected by the fuel protests 
or flooding) consisted of five ‘before’ days and one ‘during’ day.  
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In the Fishergate study, fortunately no extreme events occurred, allowing six ‘before’ and seven 
‘during’ days to be surveyed, together with one additional day in the ‘during’ period when the 
works were temporarily removed. However, the works over-ran into the long summer school 
holidays, when it is well-known that there is a substantial seasonal effect of much lower flows and 
congestion levels. We did not believe it possible to meaningfully isolate the impact of the link fully 
re-opening while controlling for such an effect, and so our plans for ‘after re-opening’ surveys were 
abandoned. 
 
  
3. ESTIMATION OF VEHICLE MOVEMENTS & TRAVEL TIMES 
 
The data resulting from the surveys described in section 2 is in the form of (for each day and each 
study) a set of time-stamped, partial licence plates, observed at a number of locations across the 
network. Since the data include only partial plates, they cannot simply be matched across 
observation points to yield reliable estimates of vehicle movements, since there is ambiguity in 
whether the same partial plate observed at different locations was truly caused by the same vehicle. 
Indeed, since the observed system is ‘open’ʊin the sense that not all points of entry, exit, 
generation and attraction are monitoredʊthe question is not just which of several potential matches 
to accept, but also whether there is any match at all. That is to say, an apparent match between data 
at two observation points could be caused by two separate vehicles that passed no other observation 
point. The first stage of analysis therefore applied a series of specially-designed statistical 
techniques to reconstruct the vehicle movements and point-to-point travel time distributions from 
the observed data, allowing for all such ambiguities in the data. Although the detailed derivations of 
each method are not given here, since they may be found in the references provided, it is necessary 
to understand some of the characteristics of each method in order to interpret the results 
subsequently provided. Furthermore, since some of the basic techniques required modification 
relative to the published descriptions, then in order to explain these adaptations it is necessary to 
understand some of the theoretical basis. 
 
 
3.1 Graphical method for estimating point-to-point travel time distributions 
 
The preliminary technique applied to each data set was the graphical method described in Watling 
& Maher (1988). This method is derived for analysing partial registration plate data for 
unidirectional movement between a pair of observation stations (referred to as an ‘origin’ and a 
‘destination’). Thus in the data study here, it must be independently applied to given pairs of 
observation stations, without regard for the interdependencies between observation station pairs. On 
the other hand, it makes no assumption that the system is ‘closed’; there may be vehicles that pass 
the origin that do not pass the destination, and vice versa.  
 
While limited in considering only two-point surveys, the attraction of the graphical technique is that 
it is a non-parametric method, with no assumptions made about the arrival time distributions at the 
observation points (they may be non-uniform in particular), and no assumptions made about the 
journey time probability density. It is therefore very suitable as a first means of investigative 
analysis for such data. The method begins by forming all pairs of possible matches in the data, of 
which some will be genuine matches (the pair of observations were due to a single vehicle) and the 
remainder spurious matches. Thus, for example, if there are three origin observations and two 
destination observations of a particular partial registration number, then six possible matches may 
be formed, of which clearly no more than two can be genuine (and possibly only one or zero are 
genuine). A scatter plot may then be drawn for each possible match of the observation time at the 
origin versus that at the destination. The characteristic pattern of such a plot is as that shown in 
Figure 4(a), with a dense ‘line’ of points (which will primarily be the genuine matches) 
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superimposed upon a scatter of points over the whole region (which will primarily be the spurious 
matches). If we were to assume uniform arrival rates at the observation stations, then the spurious 
matches would be uniformly distributed over this plot; however, we shall avoid making such a 
restrictive assumption. 
 
The method begins by making a coarse estimate of the total number of genuine matches across the 
whole of this plot. As part of this analysis we then assume knowledge of, for any randomly selected 
vehicle, the probabilities: 

 ),...,2,1(plate) onregistrati partial of  type  theof is vehiclePr(ș th mkkk   

where 

 1ș
1




m

k
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The particular methods for estimating these probabilities in the case-study examples will be 
described in section 3.3. It is noted that in the original reference of this work, the simplifying 
assumption of equally-probable types was made throughout, i.e. ),...,2,1(ș 1 mkmk  , but the 

analysis is readily generalised to the more general case considered here (see below). 
 
Now, even if the streams of vehicles passing the origin and destination were entirely independent, 
we would still by chance get a number of possible matches, all of which would clearly be spurious. 
Given a total number of vehicle observations (disregarding the registration information) at the 
origin and destination respectively of 1n  and 2n , then there are 21nn  pairs of observations that 
could match in this way ‘by chance’. But, under the assumption of independent traffic streams at 
the observation points, the probability of any randomly selected pair of observations having the 
same partial registration plate type, purely by chance, is: 

 
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
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Multiplying this probability by 21nn  gives the expected number of ‘chance’ matches (namely 





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2
k21nn ) under the hypothesis of independent traffic streams. In any real study (where we hope 

the independence assumption will fail, i.e. some vehicle pass both observation points), this figure 
may then be used as an estimate of the ‘background level’ of spurious matches; subtracting this 
from the number of possible matches therefore gives an estimate of the number of genuine matches. 
However, this is a relatively crude method since we have treated the data en masse; since any point 
on the scatter graph implies a ‘journey time’, this suggests that we should be able to deduce an 
improved method that essentially exploits the plausibility of these implied journey times in different 
parts of the scatter plot (clearly negative values for the implied journey times could easily be ruled 
out for example, but our approach can go beyond this). 
 
Applying this same principle, therefore, to sub-sections of the scatter plot of possible matches, then 
for any given value of y (representing a journey time), we can focus on a triangular section of the 
plot bounded by the edges of the graph and the inequality yst  , where the s and t respectively 
denote observation time at the origin and destination. Within such a triangular region, we can 
subtract the background level of spurious matches from the number of possible matches, yielding an 
estimate of the number of genuine matches with a journey time y . Dividing this figure by the 
estimated number of genuine matches over the whole plot (as derived above), we obtain an estimate 
of the proportion of genuine matches with a journey time y . In this way, we are building up an 
empirical estimate of the journey time cumulative distribution function for genuine matches, 
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)()(ˆ  yyF . Clearly this can be used to deduce an estimate of the genuine journey time 

probability density, )(ˆ yf  )(  y .  
 
In simulation experiments, reported in Watling & Maher (1988), F̂ was seen to be an ‘improper’ 
estimator, in that it is not guaranteed to be non-decreasing, and is not confined to the range [0,1]. 
On the other hand, there was seen to be a ‘trust region’, safely between the 20th and 80th percentile, 
within which the method was seen to recover reliably the overall shape of the journey time densities 
specified to the simulation experiments. 
 
 
3.2 Maximum likelihood estimation of no. of genuine matches and journey time parameters 
 
While the graphical method is attractive as a first line of investigation, due to its limited 
assumptions, there have been found to be methods with much greater potential precision for point 
estimation, in particular for estimating quantities such as the number of genuine matches and 
moments of the journey time density (Watling, 1990), specifically the maximum likelihood method 
(Watling, 1994). This also has the advantage over the graphical method of being able to 
simultaneously analyse data from multiple entry and exit sites to the study area (we shall henceforth 
refer to these as ‘origins’ and ‘destinations’), rather than having to match origin-destination pairs 
independently or in some priority order. Clearly, by its name, the maximum likelihood method is a 
parametric technique, and its success depends on the validity of the distributional assumptions 
made. In extensive simulation trials, the method was seen to be robust to all assumptions (such as 
errors in the kș  probabilities) except for that of the assumed distributional form of the journey time 

density function of genuine matches (Watling, 1990). 
 
The assumptions made are simply that: at each origin, traffic splits as a multinomial distribution 
between the available destinations (including a ‘sink’ destination, representing vehicles observed at 
an origin which do not travel to any of the observed destinations); the journey times between each 
origin-destination pair are Normally distributed; for each destination, before arriving at the 
destination, the combination of traffic from all origins is joined by traffic from a nuisance ‘source’ 
origin (representing vehicles observed at a destination that were not observed at any origin), which 
arrives according to a time-homogeneous Poisson process. The estimation task is then to estimate 
the parameters of this model, namely the multinomial split probabilities for each origin, the mean 
and variance of the Normal journey time distribution for each origin-destination movement, and the 
arrival rate of the nuisance source Poisson process for each destination. 
 
Allowing for ambiguities in matching the data, a likelihood function may then be deduced, though 
this cannot be maximised analytically. A direct maximum likelihood technique thus involves 
numerically maximising a likelihood function with an enormous number of terms, relating to all the 
possible complete matchings of the observed data. Even with efficient gradient-based optimization 
algorithms, this was seen to limit the practicality of the method for large-scale data sets. Therefore, 
an alternative method was proposed, based on a general purpose statistical algorithm for maximum 
likelihood estimation in the presence of ‘incomplete’ data. This method, known as the EM 
algorithm, operates by alternately (i) (E-step) computing the expected complete data log-likelihood 
based on the current estimates of the parameters from step (ii); (ii) (M-step) forming estimates of 
the parameters by maximising the expected complete data log-likelihood from step (i). Each of 
these steps can be performed analytically, and are performed alternately until convergence. 
 
In simulation experiments (Watling, 1994), the algorithm was seen to converge reliably, recovering 
parameter estimates with high precision (notably comparable in magnitude to the precision obtained 
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by direct tracking of vehicle movements, with no matching ambiguity). It was found, however, that 
bias could arise in the parameter estimates in two circumstances, as described below.  
 
Firstly, the presence of end effects may cause a bias most seriously in the multinomial split 
estimates, but also in the journey time parameters. Such effects arise due to the finite observation 
time intervals, meaning that a vehicle recorded within the observation period at an origin may travel 
to a destination but arrive outside the observation period there5. These are termed ‘end effects’ as 
they are most serious for vehicles observed towards the end of the origin observation periods. The 
impact is a systematic underestimation in the proportion of origin-vehicles that travel to each of the 
destinations. A secondary impact is a potential underestimation in the journey time mean and 
variance, since the distribution is ‘right-censored’ by the destination period: vehicles with longer 
journey times are more likely to be missed. While a theoretical fix to the method is possible to 
overcome this problem (see Appendix, Watling, 1994), this is at a relatively high computational 
cost, as the resulting M-step of the EM algorithm is no longer analytically solvable, and numerical 
optimization must be used. The problem was seen instead to be more readily overcome at the 
experimental design stage, by adjusting the relative sizes of the observation periods: see the 
discussion of §2 and analysis of §4.1.  
 
Secondly, if the assumed journey time distribution is a poor fit to the shape of the actual data, then 
the journey time parameter estimates may be poor, and this can have a knock-on effect to the 
estimates of the multinomial split probabilities (and hence the estimated number of genuine 
matches). This issue was addressed in the present study by first using the graphical method as an 
investigative technique to deduce an appropriate distributional form. This also required a (minor) 
generalisation of the original maximum likelihood matching method, which was based on an 
assumption of Normal journey times, to allow parameters of alternative distributional forms such as 
the lognormal to be estimated. 
 
 
3.3 Estimation of registration plate type probabilities 
 
An important input to all of the registration plate analysis methods described aboveas it affects 
the chance of a spurious matchis the estimate of the probabilities: 

 ),...,2,1(plate) onregistrati partial of  type  theof is vehiclePr(ș th mkkk  . 

 
A simple estimate can be made based on the assumption that all types are equally likely: we shall 
refer to this as the equi-probable estimate. In order to understand this issue better, we need to 
understand the system of assigning registration plates in the UK. In fact there have been several 
changes to the system of registering plates, meaning that at any one time one will observe vehicles 
corresponding to several systems. In particular the surveys were all conducted in a period where a 
now-defunct system of registration plate assignation was in operation. This meant that in the 
surveys to be analysed, the vast majority of partial registration plates were of the form ‘Xijk’, where 
the X can be one of 21 letters of the alphabet denoting the year of registration of the vehicle and the 
‘ijk’ is a numerical code of up to three digits. Assuming all combinations of year letter and 
numerical code are theoretically possible to arise therefore gives 21000 combinations, i.e. possible 
‘types’ in the terminology of the present paper. In fact, while this system described the vast 
majority of possible ‘types’, there are also a small number of partial registration plates that do not, 
such as some very old vehicles following an older registration system, non-UK registration plates, 

                                                 
5 End effects also occur when vehicles observed toward the beginning of a ‘destination’ survey period passed an 
‘origin’ point before the start of the period there. Simulation experiments indicated the main impact of such cases to be 
a bias in the estimates of the mean arrival rates of the nuisance Poisson sources (which are of no direct interest), with 
little impact on the main parameters of interest. Hence they are not considered further in this paper. 
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and some personalised number plates.  It is difficult to estimate the true prevalence of such 
possibilities, so as an approximation we assumed that these in total amounted too a 1000 more 
possible types, giving 22000 possible types in total. Thus, the equi-probable estimate used was: 

 )22000,...,2,1(ˆ
22000

1  kk  . 

 
As an alternative to the equi-probable estimate, an empirical estimate was made from the available 
data for the Fishergate study. While in principle this would be possible for all year-letter and 
number combinations, a problem is that if we pool all data from all sites then there will be a natural 
bias (double-counting) toward vehicles passing more than one site; this is not a trivial issue since 
the whole purpose of these estimates is to distinguish the chance of a genuine or spurious match. If, 
on the other hand, we use only data from entry sites, then we will have many types observed only at 
exit sites for which we have no frequency information. The approach adopted, then, was to make an 
estimate of the year-letter frequencies, pooling all entry sites, while assuming the three-digit 
numerical components to be equally likely. The frequencies of year letter can be affected by several 
things, on the whole one would expect a decay going back in time as vehicles are scrapped, but on 
the other hand (local and global) economic factors will affect the rate at which new cars are 
purchased. The empirical distribution estimated from the data is given in Figure 3. 

 
 
4. ANALYSIS OF STUDY DATA (OVER DAYS) 
 
The methods described in section 3 were applied to each study site and to each day of data in turn. 
In the present section, we shall explore the combination of all such analyses over all study days. 
 
4.1 Exploratory analysis of journey time distributions 
 
As a first step in the exploration of the data, the graphical method (described in §3.1) was applied to 
pairs of observation points for individual days in the survey period. As this method does not 
account for the interdependence in matching between anything more than two observation stations, 
the analysis is intended more for exploration, and to inform the subsequent parametric analysis. For 
illustration, we shall focus on the Fishergate study, and particularly on the movement most affected 
by the intervention, namely that from E to A. Figures 4(a)–4(d) give the results for this movement 
on the last day before the intervention (2nd July). Figure 4(a) shows the raw scatter plot of possible 
matches. Figure 4(b) presents the same information as in the scatter plot, but allows us to examine 
how the apparent journey times vary by observation time at E (i.e. the presence of any ‘dynamic 
effects’). Figure 4(c) presents the estimated cumulative distribution function F̂  corresponding to 
genuine matches. Finally, Figure 4(d) translates F̂  into the form of an estimated journey time 
density function f̂ .  
 
Consistently with the simulation experiments reported in Watling & Maher (1988), Figure 4(a) 
reflects (here for the real data) the characteristic clustering around the line  st , where   is the 
mean journey time of genuine matches, and (s,t) is a pair of observation times at E and A 
respectively. Since the observation periods at both sites finish at the same time, some end effects 
must occur. From the upper right corner of the plot, it appears that this relates to vehicles passing E 
after time 550 (i.e. in the last ten minutes of the survey), since this is where the trend line is 
censored, but it would appear to affect relatively few vehicles. From Figure 4(b), since the trend 
line appears relatively flat, there appears to be no appreciable temporal effects within the survey 
period (such as a within-day change in journey time distribution). Figure 4(c) presents the estimated 
journey time cumulative distribution function, which appears to have a legitimate shape over the 

‘trust region’ of  8.0ˆ2.0  F  noted in §3.1. Figure 4(d) illustrates the derived journey time 
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density function over this trust region. Qualitatively similarly results were found for other 
movements over both days before the intervention and during the suspension day (figures not 
shown here due to space limitations): that is to say, a similar general shape of the density function, 
similar structure to the scatter plot, and the lack of any appreciable temporal effects.  
 
A more interesting comparison is found by examining plots for this same movement (E to A) for the 
first two days during the intervention, namely 3rd and 4th July, respectively shown in Figures 5(a)–
5(d) and Figures 6(a)–6(d). Obviously, caution needs to be exercised in drawing more than 
indicative findings from this comparison, as it only involves a small number of days, but it does 
suggest important qualitative features to guide the further analysis. In particular, there are a number 
of striking contrasts between the plots for the intervention days and those without (not all shown 
here). Considering Figure 5(a), the dense trend line is more broken than in the ‘before’ case, the 
location of this line has shifted (indicating a location shift of the journey time distribution), and 
there is a much greater problem with end effects impacting on the last thirty minutes or more of the 
survey period at E. From Figure 5(b), there appears to be a build-up in journey times as the survey 
period progresses, as demonstrated by the slope of the dense trend line relative to the horizontal. Of 
particular relevance for the later parametric analysis, it is apparent from Figures 5(c)–5(d) that there 
has been a considerable change (relative to the ‘before’ situation) in the location, dispersion and 
shape of the journey time distribution, with a strong positive skew and much greater dispersion now 
evident. In Figures 6(a)–6(d), the evidence is similar, though with less apparent skewness in the 
distribution.  
 
For reasons of space, we do not present here the equivalent graphs for other movements, but note 
that they did not demonstrate the same striking changes in the shape of the distribution as for the E 
to A movement. In particular, detailed attention was paid to two movements which, by their 
location, might also have been expected to be significantly affected, namely the E to K and G to A 
movements, with the resulting approximately symmetric journey time distributions for the two 
‘during’ days resembling those for the ‘before’ and ‘suspension’ days.  
 
Overall, the main suggestive evidence of this exploratory data analysis to take forward to the 
parametric analysis, were that a symmetric distribution of journey times appears to be a justifiable 
approximation for the vast majority of movements, but that for the journey E to A during periods of 
disruption there is evidence to suggest that a skewed distribution may on some days be more 
appropriate. Also, there is evidence of ‘end effects’, again especially for days during the 
intervention, which may need to be considered for their potential biasing effect on parameter 
estimates. 
 
 
4.2 Parameter estimation for individual days & Between-day comparison tests 
 
The exploratory analysis in §4.1 was able to make independent comparisons between pairs of sites, 
but did not consider the interdependencies between sites in the matching process. In any case, more 
(statistically) efficient parametric estimation methods exist, as noted earlier. Thus, for the purpose 
of allowing for the interdependencies between sites and of obtaining more precise estimates of 
summary measures, the maximum likelihood method described in §3.2 was applied. This was done 
for the Fishergate data across all sites and for each survey day in turn, and to selected days of the 
Lendal Bridge data set. The empirically-investigated registration plate type probabilities (see §3.3) 
were used throughout this analysis, though in tests it was found that the alternative assumption of 
equi-probable types did not have a major impact on the results; this is consistent with earlier 
simulation-based findings about the relative insensitivity of the method to these estimates. Starting 
values for the EM algorithm may be found by reference to the results of the graphical method study 
in §4.1: as noted in §3.1, the denominator of the estimator of the journey time cumulative 
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distribution function is effectively a coarse estimator of the number of genuine matches between a 
pair of points, and this may be divided by the total number of vehicles observed at an origin to 
obtain an initial estimate of the relevant multinomial split probability. This information may also be 
used to obtain an estimate of the number of nuisance source vehicles at each destination, and 
divided by the length of the observation period to get an estimate of the relevant Poisson rate. 
Finally, initial journey time estimates may clearly be made from the summary statistics of the 
density functions estimated by the graphical method. It is noted, however, that our tests here (not 
shown) confirmed earlier simulation results, that the EM algorithm final results were relatively 
insensitive to the choice of starting condition, so the precise manner of obtaining such initial 
estimates is not so important. Our discussion below will primarily focus on the Fishergate study, 
due to the better data quality in that case (as explained earlier), but we shall conclude by examining 
the Lendal Bridge study data to examine transferability of the qualitative findings to other sites. 
 
According to the exploratory data analysis of §4.1, Normal journey times were assumed in the 
maximum likelihood method in all cases, except for movement E to A during the capacity 
reduction, when a three-parameter log-normal was adopted. Table 1 contains selected results of this 
analysis for the Fishergate data in terms of the estimated number of genuine matches, and journey 
time mean and standard deviation, across all survey days. The matching is given for the most 
significant movements (in terms of their potential to be affected by the capacity change), namely E 
to A, E to B, E to K, E to F, G to A and G to B, where the survey locations are depicted on Figure 1. 
The columns of Table 1a are, working from the left, the date, the number of genuine matches for the 
four movements from E for that day, the total observed flow at E for that day (irrespective of 
whether it matched with any of the destination sites), the percentage of the flow at E which was 
matched with one of the destinations, and then similar information for the movements from point G. 
 
For the purposes of an initial analysis it was decided to test between two groups of days: the five 
‘before’ days, preceding July 3rd, and the six ‘during’ days where the capacity reduction was in 
operation, excluding the final two survey days (the temporary suspension day of July 13th and the 
day following it). The mean matched flow over the six during days (which can be calculated as 
247.7) is substantially less than the mean over the five before days (297.6). A two-sample, unequal 
variance t-test for a reduction in the mean yields a one-sided p-value of p = 0.000872, and so this 
apparent reduction is highly significant.  
 
This reduction in the EA flow could be due to a number of reasons; since the location of the 
capacity reduction means that this will be a major affected route, we investigate the potential 
reasons in some detail below: 

1. Firstly, it might be that due to some external factors, the ‘during’ days were particularly ‘low 
flow days’ generally. However, performing the same analysis as above on the mean total flow at 
E, then there is in fact an observed increase during the capacity reduction (from 1427.4 to 
1495.8), though this is hardly significant (2-sided test, p = 0.092254)6. Thus, there is certainly 
no evidence that the total E flow is the cause of the reduction in the EA flow. It is noted that this 
also apparently rules out ‘strategic’ re-routing, in the sense of there being no evidence of a 
decreased propensity to choose routes that pass through E as a result of the capacity reduction. 

2. Secondly, it might be a ‘capacity’ effect, in the sense that a reduced throughput over a fixed 
time interval would be reflected in a decreased matched flow. In particular, it should be recalled 
that a substantial impact was observed when applying the graphical method in section 4.1 to the 
‘during’ data for EA, resulting in significant problems with ‘end effects’. To explore the impact 
of the end effects, the EM algorithm was re-applied to a reduced form of the data. This was 

                                                 
6 The subsequent end-effect corrections, described later in the section, only further highlight the non-significance of the 
change in total E flow: with the increase then from 1099.4 to 1164.2, at a two-sided value of p = 0.154348.  
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achieved by discarding origin data at point E that departed in the period after 8:55, that is to say 
discarding the last 20 minutes of the origin survey, but matching against the full survey periods 
at the other sites. The reason for choosing the time 8:55 is illustrated in Tables 2 and 3, whereby 
the truncation period at E has been altered over a range, and the impact on parameter estimates 
examined. For the 26th July, reductions below 9:10 begin to show an impact on the estimated 
parameters, with the flow decreasing, as matches are “lost”. On the 3rd July, however, a large 
reduction in the survey period is possible, down to less than 8:55, before the parameters begin to 
change. 

Table 4 provides the counterpart to Table 1 for this truncated data set (i.e. with the ‘origin’ site 
truncated at 8:55). Clearly, as would be expected, the absolute number of matches are smaller 
than in the untruncated case. However, it can be verified that the truncation is successful in 
appreciably increasing the percentage of origin vehicles that are matched with some destination 
vehicle. 
 
Repeating the test on the mean EA flow before and during the capacity reduction, the reduction 
from 250.0 to 237.3 gives a one-sided p-value of p = 0.033699. That is to say, the significance 
has been greatly reduced by the truncation, indicating that a major factor in the difference of the 
original (untruncated) EA matched flow was indeed a capacity effect. However, the difference 
is still highly significant, and so this is not the only explanatory factor. 
 

3. Thirdly, there may have been a diversion away from EA, either because of advanced publicity 
of the road maintenance, en route diversion, or a ‘learning effect’. In particular we examine 
whether this could be the explanation for the remaining significance in the EA mean flow 
reduction, after the truncation described in point 2. above has been applied. This is achieved by 
examining, for each day, the proportion of the total vehicles observed at E that are EA-matched 
journeys, and then testing the change in the mean proportion between the ‘before’ and ‘during’ 
days. This reveals a decrease in the fraction of drivers passing E that follow path EA, from 
0.228 to 0.204, which (while it might appear small) is highly significant at a one-sided p = 
0.000477. The reason for being able to detect significance with apparently such a small mean 
change is the remarkably small between-day variance in flow proportions for each of the two 
scenarios individually: the actual proportions being 0.233, 0.242, 0.228, 0.221, 0.216 before the 
capacity reduction; and 0.207, 0.200, 0.196, 0.213, 0.208, 0.200 during the capacity reduction. 
(In other words, the between-day variations in the EA flow are, taking either the ‘before’ or 
‘during’ scenarios in isolation, most strongly explained by between-day variations in E, not by 
between-day variations in the fraction of E drivers selecting EA). It is noted, however, that one 
cannot discern any ‘learning’ effect, in the sense that the ‘during’ days are stable from the first 
day (perhaps an indicator of good advance warning of the works). In conclusion, it can be said 
that the capacity reduction certainly appears to have had a significant effect on the fraction of 
drivers passing E that select path EA.  

 
Following a similar analysis for another of the major movements, EK, and making the truncation to 
remove end effects, a significant increase in the mean EK flow (from 233.0 to 285.8, one-sided test 
for an increase: p = 0.002056) can be seen in comparing the ‘before’ and ‘during’ data. 
Furthermore, when comparing the proportions of E flow following EK, there is again remarkably 
little between-day variation within either the ‘before’ or ‘during’ periods, but a highly significant 
increase in the mean proportion between the periods (from 0.212 to 0.246 at p = 0.00097). The 
analysis of flow proportions on EA and EK therefore suggests the data are consistent with a 
diversion away from EA to the alternative route EK, though we cannot attribute this with certainty.  
 
As an illustration of the intervention’s impact on other movements (detailed figures not given due 
to space limitations), let us also consider movements emanating from site G. In particular, analysing 
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the major movement GA, no significant mean change was detected at 5% significance in either the 
GA absolute flow, the G total flow, or the GA flow proportion. Examining the proportional flow 
GA of G over days, one obtains 0.406, 0.426, 0.419, 0.402, 0.413 before the intervention, and 
0.443, 0.407, 0.376, 0.384, 0.398 for the days during the intervention. Again the proportions are 
quite stable within the before or during periods, except that the first day of the capacity reduction 
appears to stand out as slightly unusual: it has a substantially higher flow proportion than other days 
(and the lowest total flow at G). It might be postulated that this may be consistent with a learning 
effect, and if one could justify removing this day as unusual, then one does obtain a significant 
reduction in the mean GA proportions between the before and during cases (one sided test for a 
reduction, p = 0.022533). 
 
Turning attention now to the journey time statistics, the first question is whether to base the analysis 
on Table 1 or Table 4. End effects have the potential to cause a bias in journey time statistics too, 
since they will tend to disproportionately affect longer journey times, leading to a potential 
underestimation in the journey time mean and standard deviation. However, examining the journey 
time results in Tables 1 and 4, there is no particularly clear evidence of this effect, and both sets of 
tables appear to show similar trends. Therefore, for the purposes of consistency with the graphical 
matching analysis (which was based on the full, untruncated data), and in order to maximise the 
sample size, we shall focus on Table 1, though the findings below would be qualitatively similar 
had we adopted the figures from Table 4.  
 
We consider as an example again movement EA, and focus specifically on the first five survey 
days, before the capacity reduction. From Table 1, there is evidently quite substantial between-day 
variation in the mean journey time. Thus, even if we were to detect a change in the mean journey 
time between (say) the day before and day after the capacity reduction, this could not be confidently 
attributed to be an impact of the capacity reduction. However, treating each of the day-specific 
mean journey times as observations, we can compare the between-day mean of these means in the 
scenarios before and during the capacity reduction. In this comparison, the between-day mean 
shows an observed increase from 7.57 minutes to 10.28 minutes, whicheven in the light of the 
substantial between-day variation noted within each scenariois significant at p = 0.0118.  
 
Having made the analyses and observations above based on the Fishergate study, we look to the 
Lendal Bridge data for the presence of corroborating or conflicting evidence with the qualitative 
findings above. Although the data are more limited (due to the problems described in section 2), 
they do appear to give some interesting corroborative insights. Looking to Figure 1, we particularly 
focus on the flows over the three bridgesʊLendal (site H), Ouse (site J) and Skeldergate (site C)ʊ 
which may be viewed as alternative river-crossing locations for flows from Blossom Street (site A, 
in the west) for traffic destined anywhere east of the river.  
 
The results of the matching analysis from the EM algorithm are given in Table 5, where we 
specifically focus on the estimate of the number of genuine matches. As noted earlier (see §2), the 
first five days represent the ‘before’ data, which are ‘clean’ in that they were unaffected by either 
the fuel protests or floods. The final day (27/9) represents a clean day of ‘during’ data, when Lendal 
Bridge was closed. It would be natural to seek to apply a similar kind of analysis to that applied for 
the Fishergate study above, in particular computing p-values for a null hypothesis of no-change. 
However, a difficulty here is that due to the problems noted earlier in the Lendal Bridge study, we 
have only a single day of data for the during-intervention case, and so we have no opportunity to 
account for ambient day-to-day variability during the intervention. Instead, then, we consider the 
figures in a slightly different way, by first examining the data before the intervention (i.e. excluding 
the 27/9 day), and then making a qualitative comparison with the ‘during’ data.  
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In particular, we may form 95% confidence intervals for the true mean flow from Blossom across 
each of the bridges, before the intervention, which yields confidence intervals (to the nearest 
integer) of [118, 156] for Lendal, [65,118] for Ouse and [89,205] for Skeldergate Bridges. These are 
notably rather wide confidence intervals, especially for Skeldergate, reflecting the considerable 
between-day variability observed, and in such a case it is perhaps not surprising that our single day 
of ‘during’ data does not provide evidence of a significance change in the flow over this bridge (as 
the single day of data, even neglecting the variability in the ‘during case’, is already within the 95% 
confidence interval for the ‘before’ data). For the Ouse bridge the decision is more marginal, with 
the ‘during’ observation on the boundary of the 95% confidence interval for the ‘before’ data, but 
had we allowed for the variability in the ‘during’ data then certainly here too we would have no 
evidence of a statistically significant change in flow. However, it is notable that one reason for this 
difficulty is the considerable day-to-day variability in the total flow from Blossom Street, as seen in 
Table 5.  
 
This suggests adopting a similar strategy to that used in the Fishergate analysis, namely analysing 
the flow proportions over the bridges (i.e. as a proportion of the flow at site A). Forming 95% 
confidence intervals for the true mean proportions of flow at A choosing the different bridges, 
before the intervention, gives intervals of respectively [0.172, 0.200] for Lendal, [0.088, 0.160] for 
Ouse, and [0.153, 0.234] for Skeldergate. On the intervention day the proportion observed at Ouse 
was 0.213 and at Skeldergate 0.257, both outside the 95% confidence interval for the ‘before’ data. 
While we cannot conclude that this gives statistical significance without evidence of the day-to-day 
variability during the closure, it provides a qualitative indication of a potentially significant impact. 
This is not so surprising, given that we have closed one of three bridges and seen a change to the 
traffic choosing the two obvious alternative bridges; the main issue concerns the corroboration of 
the analysis of the earlier Fishergate data, where we were able to see considerably more chance of 
significant information arising from analysing flow proportions as opposed to absolute flows. 
 
 
5. COMPARISON WITH NETWORK EQUILIBRIUM MODEL RESULTS 
 
The final step of the study involved comparing the empirical data with the predictions of a traffic 
network equilibrium model. There are many reasons that make such a comparison less than 
straightforward, and particular issues that need to be borne in mind. Firstly, the question is what 
kind of network equilibrium in particular do we want to use, such as dynamic or static, 
deterministic (Wardrop) or stochastic user equilibrium, route choice based on mean travel times or 
on unreliability considerations, etc. In fact we decided to approach this problem from a practice-
based perspective, and particularly what methods were commonly used in practice. This in fact 
opens up further model classes, which one does not often see considered in the academic literature, 
namely the models that have been developed for particular software packages that often lie 
somewhere between the distinctions seen in the academic literature.  
 
In particular, we chose to use the so-called ‘simulation-assignment’ capabilities incorporated in the 
SATURN suite (Van Vliet, 1982), based on a representation of an asymmetric, static Wardrop 
equilibrium problem with junction interactions. This technique pays particular attention to the detail 
of junction delays in urban networks, using an ‘exploded’ network definition in which each turn is 
represented by a link with its own flow-delay relationship. These flow-delay relationships are, 
however, not pre-specified, but are internally estimated during the assignment procedure, by fitting 
curves to points generated by a ‘simulation’ model. The word ‘simulation’ is perhaps misleading: in 
fact traffic flow propagation through and between junctions is handled through so-called cyclic flow 
profiles, time-sliced flows entering and leaving the links (turns and junction-to-junction links), 
disaggregated typically into a resolution of a few seconds, but with an assumption of cyclical 
behaviour during the whole modelled period that is assumed imposed by the dominant cycle time of 
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the traffic signal intersections. This flow propagation approach allows the method to overcome to 
some extent, albeit in a heuristic way, the problem of static traffic assignment models failing to 
impose capacity constraints on flows, with unserved demand held over on a link to be served in a 
subsequent modelled time period. The algorithm as a whole has the semblance of a diagonalisation 
algorithm: at one iteration of the diagonalisation, conditional on opposing/interacting flows as 
estimated from the previous iteration, separable flow-delay relationships are estimated for each link 
(turn) and a Frank-Wolfe algorithm is applied to find a Wardrop equilibrium route pattern 
conditional on those relationships. This route pattern is then fed into the subsequent iteration of the 
diagonalisation, where a new ‘simulation’ is performed, new flow-delay relationships estimated, 
and a full Frank-Wolfe algorithm again applied. This heuristic method has no guarantee of 
convergence, though extensive use of it in practice indicates that it usually stabilises, except in 
highly congested networks.  
 
We have given the details above for completeness, as they are not so readily found in the public 
domain, and because we felt that the method – while limited by the fact that it uses a static rather 
than dynamic user equilibrium – overcomes at least in a coarse way many of the concerns the reader 
might have with adopting a static approach. In fact our choice of method was also guided by the 
fact that a well-maintained, SATURN-based representation already existed for the City of York, 
and the fact that the project team had some considerable familiarity and experience with the 
software. Other software packages or other modelling methods could have been chosen, and in fact 
we shall not delve into the details of how well each of the elements of SATURN performs, as we 
wish to gain more general, qualitative findings about the model fit that are not specific to a 
particular software package. We believe that our qualitative findings below would hold good had 
other network equilibrium approaches been adopted, though we have not tested this claim. 
 
Aside from the issue of which traffic assignment modelling representation/paradigm to choose, any 
comparison between a network equilibrium model and empirically-observed networks must also be 
made subject to several other considerations. Perhaps most significant among these is the issue of 
data quality: how good and up-to-date are the origin-destination matrix and the input network data? 
A quite different issue is the question of which numerical algorithm was used to implement the 
chosen paradigm: in our study we have used the Frank-Wolfe algorithm, for which we need to 
accept a likely larger convergence error than with several newer algorithms for solving Wardrop 
user equilibrium (e.g. Dial, 2006; Bar-Gera, 2010; Nie, 2010). While this in turn means a risk that 
part of the difference in any modelled comparison is attributable to such convergence error, we feel 
that the systematic nature of the results from the tests we report below provides evidence that, for 
the size of changes we have considered, the effects of changing the input parameters outweighs any 
convergence error (which is unlikely to lead to such systematic effects). In any case, we feel that 
such concerns about convergence error need to be weighed against those of the underlying model 
error, such as is caused by using of a single OD matrix and a single point equilibrium to 
approximate what is in fact a system with considerable real day-to-day variability.    
 
The approach for comparing observed and modelled routes centred around the subset of observed 
results obtained from the Fishergate study that were reported in Table 1. The reason for choosing 
these results was that they contained the greatest, statistically significant impacts of the road 
capacity change, and so gave maximum potential for making a systematic comparison in the 
presence of the many kinds of error that exist (ambient daily variability, sampling error, model mis-
specification error, convergence error, etc.). The comparison was used to test the hypothesis that the 
steady-state equilibrium flows and travel times from the assignment model could be used as 
approximations to the observed flows and mean travel times average over days, for each of the 
cases with and without the intervention (road capacity reduction). In fact in this comparison, the last 
two days of observed data in Table 1 have been neglected, when the restrictions were temporarily 
lifted for one day and then re-imposed, as we felt that they may contain atypical, transient effects.  
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We performed the comparison of observed and modelled information in two distinct stages: 
1. A comparison of mean flows and travel times between pairs of sites in the base situation, prior 

to the intervention, and with Fishergate modelled at full capacity, to ensure that the model 
provided a sufficiently faithful representation of observed route choice behaviour to use as a 
test-bed.  

2. A comparison of mean flows and travel times between pairs of sites for the “during 
intervention” days (those shaded in Table 1), with Fishergate now modelled at reduced capacity, 
to investigate the performance of the model in predicting changes in route choice behaviour. 

 
It is worth emphasising the difference of this approach from ‘model validation’ as is commonly 
applied in practice. The practical approach usually adopted is (i) to only validate the model in the 
base situation, i.e. there is no step 2, in the sense that the impacts of past interventions on a given 
network are not used to inform the modelling of future interventions; and (ii) to apply step 1 only at 
the level of aggregate link flows and average link travel times, not at the finer level of resolution 
used here of point-to-point flows and point-to-point travel times. Thus the validation tests applied 
here adopt a much higher standard, in asking the model to reproduce changes to some systematic 
input, and to reproduce those changes at a point-to-point rather than single-site level.  
 
From the model, therefore, we need to extract information not just at the link level, but at a finer 
level of resolution. A potential drawback of this, especially for the Wardrop user equilibrium 
model, is that we may then be asking for information that is not uniquely defined by the model 
itself. It is well known that under the assumptions commonly adopted, user equilibrium link flows 
are unique but the route flows are typically non-unique; our level of interrogation will be between 
the level of link and route flow, and therefore also gives rise to potentially a non-unique model 
solution at this level. To be strict, then, what we compare from the model is the final solution 
obtained by the application of a Frank-Wolfe algorithm starting from initial free flow travel costs. 
Recently, Bar-Gera (2010) has investigated the prevalence of such non-unique outputs, and 
particularly the tendency for some equilibrium solution algorithms to stop at extreme solutions, 
favouring particular origin-destination movements. In the case of the Frank-Wolfe algorithm, 
however, Bar-Gera found much less evidence for such extreme behaviour, and we believe that this 
further supports our selection of the Frank-Wolfe algorithm and our decision to use model outputs 
at a higher level of resolution than link flows. 
 
Based on our initial comparisons for step 1. above, we found that the model produced mixed results 
across the network in terms of how well it reproduced the point-to-point flows and travel times in 
the base situation (we will clarify what we mean by this below). While this could be due to 
poor/unrepresentative origin-destination matrix or network data, we did not believe this to be the 
case here, as we knew that (from the model-side) some considerable care had been taken by the 
local council to maintain and update the model inputs over time, and also because (from the 
empirical-side) our survey had been carefully designed so as far as possible it did not reflect 
atypical demand or network conditions (see §2). While several other potential sources of error 
surely made some contribution to this effect (e.g. convergence error, non-uniqueness of model 
outputs, sampling error, model mis-specification error), our investigations revealed a systematic 
feature that we believed could be controlled for. In particular, there was a general tendency 
observed that, relative to the empirical data, the model under-predicted radial movements in favour 
of orbital movements. (It is noted in passing that we did not arrive at this observation ‘by chance’, it 
was a feature that members of the team had previously observed in other transport networks.) It 
transpires that this issue has such a substantial effect on the overall comparison that we shall now 
devote some considerable attention to it, and its causes in the model. 
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In particular, we shall focus on what turns out to be a key contributory factor to this feature within 
the model, namely the assumption in the network equilibrium model (one commonly adopted, in 
UK practice at least) that drivers based their route choice decisions on generalised costs, these 
generalised costs having two components: travel time and distance. Thus, the generalised cost rc (in 
pence) of any route r is given by: 
 
 rrr dtc   
 
where rt  (minutes) and rd  (km) are respectively the travel time and length (distance) of route r, 
and where   (pence per minute) and   (pence per km) are respectively the values placed on a unit 
of travel time and a unit of distance. Since the results of the model are invariant to a scaling of costs 
across all routes, we may divide the generalised costs by   (say) to make it clear that in fact there 

are not two degrees of freedom, but only one in choosing the ratio 
  (km/minute) .  

 
Evidence for the value of this ratio may be drawn from several different sources and we consider 
two particular, common approaches here. The first approach is to interpret the valuation on a km of 
distance as a proxy for the valuation of vehicle operating cost per km, which means that economic-
based surveys may be directly used to derive values of time and operating cost, through stated or 
revealed preference approaches. The second approach is to treat the ratio as a calibration parameter 
for the network model, and to adjust it in order that observed network data is reproduced in the base 
situation. Each of these approaches has their merits and drawbacks, and it is useful to be clear on 
these points as they will be pertinent to our subsequent discussion. 
 
On the one hand, economic surveys are methodologically consistent with traditional approaches for 
evaluating the benefits of investment, so tend to be favoured by economists and policy-makers. 
However, the surveys on which these values are estimated rarely include spatial route choice 
scenarios, so rely on the assumption that values derived from other (non-spatial) transport contexts 
are transferable. Furthermore, in practice many assignment modelling applications are created 
without access to locally-derived economic data to set coefficient values. In the absence of local 
data, value from national data are used, but these may be systematically biased estimates of local 
circumstances (eg due to differences between the local and national mix of socio-economic 
attributes) and of the context of the trips made (eg traffic assignment models typically focus on 
peak-hour commuting trips). 
 
On the other hand, direct calibration ensures that coefficients are chosen to best replicate observed 
local conditions in terms of flows and journey times, but these may still be relatively crude 
indicators of actual route choices, and the performance of the model will depend critically upon the 
accuracy of the network representation, which in many cases may be being calibrated in parallel. 
Furthermore, this in turn raises questions when a subsequent economic appraisal is conducted: is it 
justifiable to use behavioural values in the route choice model that differ from the values used in the 
economic appraisal (since the latter may be set down in national guidelines)? 
 
Let us now turn attention to our particular case-study. This network has been set up originally 
assuming a ratio for the generalised cost parameters of 2 km/minute, partially based on a local 
stated preference study. It is a little difficult to understand the units of this ratio, and what it is 
implying, and so to aid in the discussion Table 6 has been created. The purpose of this table is to 
show, for a given average speed of travel, what the implication is of assuming a particular value for 

the ratio 
  in terms of its impact on the relative contribution of travel time and distance to 

generalised cost. The values in the table are simply derived from noting that if generalised cost 
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dtc  , with t in minutes and d in km, then the time component (t ) makes up a proportion of 
the whole generalised cost ( dt  ) of: 
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where s is the speed in km/h (the 60 divisor just scales speed to more familiar units). Table 6 gives 
the resulting value of this proportion, converted to a percentage by multiplying by 100, for a 

number of given values of the ratio 
  and the speed s. For the York network as a whole, the 

average modelled network speed7 for the full study area, including the fast A64 orbital bypass 

route, was around 40 km/h, and so from Table 6 we see that assuming 2
  can be interpreted as 

saying that on average, the weighted travel time component makes up around 75% of generalised 
cost: that is to say, we might interpret this as assuming that travel time is a rather dominant factor in 
the choice of route. 
 
Moreover, for particular travel movements this contribution (of the weighted travel time to 
generalised cost) will vary: the figure of 75% represents a network-wide summary. The focus of our 
comparisons will be on urban radial routes close to the city centre, which will have speeds lower 
than the network-wide average. For these movements, we can see from Table 6 that the contribution 
will be even greater; for example, weighted travel time makes up 92% of generalised cost at a speed 

of 10 km/h, assuming a relative valuation of 2
 .  

 
In order to set this value in some context, several previous studies (e.g. May & Milne, 2000; 
Sumalee, 2005) have adopted values based on UK economic data (DfT, 1989) which gives 

coefficients of 63.7 pence/minute and 27.5  pence/km, implying a ratio 4.1
 . At that 

time, UK national data did not differentiate at all by region, by road type (urban vs inter-urban) or 
by time-of-day. In addition, since most traffic assignment studies operate with a single composite 
user class, distinctions available in the data for vehicle type and journey purpose are typically not 
utilised. So, the values adopted were national all-day all-location means based on assumptions of 
typical traffic composition. While regional aggregation may be expected to impact upon both values 
of time and operating costs (potentially in equal proportions), the road-type, time-of-day, trip-
purpose and vehicle-type aggregations would be expected to impact primarily on the value of time. 
It would therefore not be unreasonable to suggest that an appropriate value for this ratio for the a 
peak-hour traffic assignment study might be somewhat lower than this national average of 1.4., 
since in our present context the traffic composition may reasonably be expected to be skewed 
towards private car-based commuter trips at the expense of business traffic, with the latter usually 
considered to have the highest values of time. Indeed, from anecdotal evidence of discussions with 

practitioners, it would not be unusual to see ratios of around 1
  assumed. National economic 

data in the UK has subsequently become more sophisticated, adding differentiation by road-type 
and time-of-day as models of urban peaks have become the norm. However, the practice of using a 
single composite user class remains, so aggregation of vehicle type and journey purpose is still 

                                                 
7A complicating factor is that obviously this modelled speed varies with the assumed value of the ratio, since this ratio 
affects the choice between routes of different lengths and travel times, but the effect is not so great that we need to 
concern ourselves with it for the purposes of the qualitative discussion of Table 6, which is only intended to be 
indicative. 
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common practice. Even taking account of the greater differentiation that exists, coefficients based 
on national UK data still tend to be consistent with ratios in the range of 1.2 to 1.4. 
 
Referring again to Table 6, we can see that for ratios in excess of 1 (as applies to all the examples 
quoted above) and for the slower speeds typical in congested urban peak periods (10-30 km/h), 
travel time makes up 70% or more of total generalised cost. The concept of Wardrop User 
Equilibrium assignment implies that route choice decisions are extremely sensitive to small changes 
in total generalised cost. As the time-related proportion of total generalised cost increases, so it 
follows that route choice will become increasingly sensitive to small changes in travel time and 
delay. 
 
So what effect does this have on the modelled results for our Fishergate study? Table 7 reports the 
comparison for the observed and modelled flows and travel times, for the base scenario without the 

capacity reduction. A range of values for the ratio 
  has been tested, greater than the range 

suggested by the economic studies above. As can be seen from the top two lines of Table 7, there 
was a great discrepancy between the modelled and observed results, under the initial assumption of  

2
 , with (a) the total flow modelled as choosing routes through E being only 80% of that 

observed and (b) the two major movements EA and EK carrying only 42% and 19% of the traffic 

expected. Even reducing the ratio to 1
 , as noted from the evidence above, only achieves a 

small benefit in bringing the modelled and observed values closer. On the other hand, treating the 
ratio as a calibration parameter, then we can see from the table that assuming considerably smaller 
values potentially allows us to better match modelled and observed flows. However such values for 
the ratio are considerably outside the range suggested by economic surveys: so what evidence might 
we have to support such an approach? 
 
For this purpose, we further interrogated the traffic assignment model, in order to identify the origin 
and destination points of all trips which choose routes along the surveyed corridor, allowing us to 
find out which, if any, non-surveyed routes may also have been chosen. The first stage of this more 
in-depth route choice analysis involved identifying the potential for increased usage of the Fulford 
Road corridor within the model. A simple indicator for this was derived via a select link analysis to 
identify those O-D movements choosing routes through point E (as shown in Figure 1) in a given 
scenario, allowing a comparison with the volume of trips for the same O-D movements assigned to 

alternative routes. This showed that under the initial assumption of 2
 , although the volume 

of trips predicted to travel through point E was just 880, the total number of trips in the SATURN 
matrix for the O-D movements identified was 1339. Thus, of the journeys for which Fulford Road 
was identified as a feasible route within the assignment model, 34% of trips were choosing to go 
other ways.  Given the topology of the York road network, any trips avoiding E would potentially 
need to take a considerable detour around the outer orbital route, so this degree of multiple routing 
was a little surprising. 
 
The second stage of the route choice analysis involved exploring the assignment outcomes for a 
selection of O-D movements that might be expected to use routes through site E. The left hand 

column of Figure 7 illustrates the routes identified in the model under 2
 , for four journeys 

with origins (represented by green stars) to the south of point E, but destinations (represented by red 
stars) that are geographically dispersed. Links highlighted in red show chosen routes, while green 
bandwidths show the proportional magnitude of flows. In all cases, it can be seen that the most 
direct routes along the Fulford Road corridor (i.e. through point E and, in particular, movements EA 
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and EK) are largely avoided in favour of more circuitous alternatives chosen on the basis of lower 
travel times. While some diversion onto faster, longer orbital routes may be intuitively sensible in a 
congested peak period, the extent of the avoidance of Fulford Road does seem rather surprising.  

On the basis of this analysis, the evidence for problems with the route choice model being the 
primary cause of the discrepancy between observed and modelled data seemed strong. It was, 
therefore, decided to attempt recalibration of the model through the / ratio. From the initial route 
choice plots in Figure 2, we might expect that ratios placing greater emphasis on travel distance 
would encourage increased use of Fulford Road, so a range of / ratio values was tested from 1 to 
0.1. In addition, a distance-only assignment (/ = 0) was added as a limiting case. As noted above, 
the results of these tests are shown in Table 7; and for a particular case (/ = 0.2) the right-hand 
column of Figure 7 illustrates the corresponding routing patterns. 
 
From Table 7 it may be noted that the volume of traffic through site E, and for the major 
movements EA and EK, increases steadily as the ratio / is altered so as to favour distance 
relatively more highly to travel time. The modelled flow EB is always zero since the spatial 
aggregation of zoning system means there is nowhere for local for trips to terminate in the model, 
and because this movement is always likely to be costlier than EK for through traffic. The modelled 
flow EF increases from a negligible back-route to a significant rat-run as the ratio is decreased. The 
comparison of modelled and observed travel times is also informative for calibration: in the initial 
situation, under / = 2, the modelled travel times are much lower than those observed. This can be 
explained by the fact that, since in such a case the Wardrop Equilibrium is based largely on travel 
time, this causes drivers to be better at avoiding delays by finding the most efficient routes in terms 
of travel time minimisation. Only when the / ratio is in the range of 0.3 to 0.2 are the modelled 
travel times comparable to those observed, and this is also the range where the modelled flows fit 
best. On the basis of these comparisons, we would suggest that /=0.2 provides the best balance 
between satisfying the flows and the travel times. Returning to the issue discussed earlier in relation 
to Table 6, we note that with /=0.2 then the contribution of weighted travel time to generalised 
cost has fallen to 23% at the network-wide average speed of 40 km/h (compared with 75% when 
/=2 was assumed), and to 55% at a speed of 10 km/h (compared with 92%). 
 
The right hand column of Figure 7 shows the routing patterns for this preferred case of /=0.2, for 
the same selection of O-D pairs investigated under /=2 in the left hand column. In three of the 
cases under /=0.2, a route along Fulford Road which previously (under /=2) carried only a 
small proportion of the total O-D flow has become the dominant route. In the one case where the 
/=2 assignment produced no route that travelled the length of the Fulford Road corridor, the 
majority of the O-D flow in the preferred case still avoids it, but nevertheless there is now a 
minority route following the shortest path through the centre.  
 
Thus overall there is good evidence that a major part of the discrepancy between modelled & 
observed site-to-site flows and travel times can be eliminated by ‘calibration’ of a single parameter 
controlling the ratio of values of travel time to distance. Following the identification of the 
preferred scenario (with /=0.2), we believed it was then reasonable to use the traffic equilibrium 
model as a basis for predicting the effect of the intervention on Fishergate. As noted in §2, this 
intervention involved the closure of a lane on Fishergate, meaning that the turns to sites A and B in 
Figure 2 needed to share a single lane during the intervention, whereas they had a separate lane 
each prior to the intervention. Since the internal SATURN traffic model deals with the competition 
effects of lane-sharing on the capacities of the two turns, the intervention is represented by a change 
to the input Saturation Flow (SF) for each of the turns – defined as the theoretical maximum flow 
that could exit a turn in the modelled period if there were no competition from other turns. While an 
assumption of a 50% reduction in SF may at first seem reasonable, the frictional effects of 
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temporary narrowing may reduce the figure further than this, therefore a number of reductions in SF 
were tested. The results of this exercise are given in Table 8.  
 
From Table 8 we can see that the modelled results during the intervention are quite sensitive to the 
SF assumption. The case SF=40% provides a reasonable ball-park estimate of the flows and travel 
times during the intervention, even though in absolute terms the fit of the flows in not as good as in 
the pre-intervention case (but this is not surprising, as we calibrated to that case). However, it 
should be borne in mind that there is an effect in the observations that the network equilibrium 
model will never be able to reflect, namely that the observed mean flow through site E actually 
increases during the intervention days. This is counter-intuitive to the logic of the equilibrium 
model, however calibrated, as there has been a decrease in capacity for routes passing through E, 
meaning that travel times must increase and so traffic will tend to avoid it relative to the pre-
intervention case. In practice, of course, the effects may be more complex given the heterogeneity 
of movements: through-trips may avoid passing through E, which may release capacity that attracts 
shorter trips, but the observations show increases in both major through movements EA & 
(especially) EK. The network equilibrium model could never replicate this, and in fact would 
predict an effect in the opposite direction, although in this case it does show that the effects on total 
volume passing E are very small. Given the remarks made in §4 on the substantial level of ambient 
daily variability in E, what we are seeing in the observed data could well be explicable by such 
ambient variation, manifested now in the observed ‘sample mean’ flows. Whatever the source of 
this effect, it will confound any comparison between modelled and observed data; nevertheless, 
even though the modelled flows for EA and EK during the intervention are rather low, the model 
does predict the understandable rise of EK to become the main through-movement observed as EA 
falls. However, the fact that the absolute levels of EA and EK in the model are too low could be 
speculated to be indicative of behavioural features that cannot be captured in the Wardrop 
equilibrium model. These could include a habitual tendency to stay on familiar routes, inertia 
caused by the difficulty in predicting travel times in such a variable situation or by drivers adopting 
satisficing decision rules, or a transient effect (as travellers learn of the new traffic conditions over 
days) that may have decayed had the capacity reduction been in place for longer. While models 
exist in the literature to reflect any of these behavioural features and which could no doubt be fitted 
to the data observed, it is difficult to identify without additional evidence which of these 
behavioural paradigms would be most suitable in truly describing the underlying causality. 
 

 

6. CONCLUSIONS 
 
In the paper we have reported the findings of an empirically-driven investigation of the network 
effects of a road capacity reduction, performing statistical analyses of the results to account for 
ambient daily variation, and then we have compared these findings with those predicted by a 
network equilibrium model. A particular feature of the partial registration plate data used is that it 
can provide evidence of site-to-site movements (i.e. not just point surveillance data) in a non-
intrusive way, and we have shown how careful analysis can remove concerns about matching the 
resulting data. Such data is potentially considerably richer in information terms than a much greater 
quantity of point-data. In the empirical analysis, the impact of the capacity change on the location, 
dispersion and shape of the travel time probability distribution was evident. Considering 
observations across days, it was seen how considerable ambient daily variation in flows could 
easily mask any systematic effect, but that this effect could be partially avoided by considering flow 
proportions between sites, providing statistically significant evidence of changes in routing patterns 
as a result of the interventions modelled. 
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The comparison of the observed data with the base (pre-intervention) network equilibrium model 
outputs revealed a major influence of a particular parameter that typically attracts little attention in 
network analysis: namely that parameter controlling the relative valuation of travel distance in the 
generalised cost equation. With a calibration of this parameter, the model was seen to provide a 
reasonable estimate of the site-to-site flows and travel times predicted in the vicinity of the 
intervention site, though the parameter value that achieved this fit was substantially lower than that 
typically obtained from economic studies in which distance is assumed a proxy for vehicle 
operating cost. It was demonstrated how such a lower value has an important spatial effect, placing 
greater emphasis on distance in the generalised cost equation, and thereby balancing flows towards 
radial routes at the expense of orbital routes, as was evident in the observed data. In predicting the 
impact of a capacity reduction, the network equilibrium model was more mixed in its performance. 
If a frictional effect of the capacity reduction is assumed and ‘tuned’, then the model could be made 
to give broad agreement with the direction of change observed in the data. On the other hand, there 
were features observed in the empirical data that could not be captured in the Wardrop equilibrium 
approach, however specified, with considerable ambient daily variation in flows leading to apparent 
paradoxical increases in demand for facilities whose capacity had been reduced, and with apparent 
inertia/learning effects in travellers’ decisions. 
 
The evidence in this study relates to two studies of real-life network interventions, and it would 
clearly be beneficial to conduct and report further studies in order to explore the generality and 
transferability of findings. This is probably more suited for a research study, where we can be more 
open about short-comings and negative findings, as opposed to practical studies for which there 
might be considerable political fall-out of any ambiguities in the model results. However, we feel 
that the low-cost, non-intrusive methodology used here could be adopted by local agencies wishing 
to periodically update and improve their transport network models, especially as the site-to-site 
flows and travel times can provide richer information for calibration than can surveillance data at a 
single point. This has been demonstrated in the present paper with the focus on the major spatial 
effects of the assumed valuations of travel time and distance in the generalised cost expression. 
Such a methodology would involve an agency: 

a) Identifying in advance a planned network disruption, e.g. due to road or utilities 
maintenance, that is likely to have a significant impact on congestion and route choice. 

b) Designing a registration plate survey of the kind described in section 2 to monitor routing 
patterns before, during and after the disruption. 

c) Comparing the before-and-after data with the predictions of a network equilibrium model, 
adjusting the network model so as to reflect the empirical findings. 

d) Periodically repeating steps a)–c), reflecting additionally on the consistency of findings 
from step c) over time. 

 
In future research, the range of modelling methods considered may also be expanded, for example 
to include network models incorporating notions of day-to-day variability, within-day dynamic 
effects and departure time choice (e.g. Xie & Olszewski, 2011), or behavioural laws of 
learning/habit (see, for example, Guo & Liu, 2011; Gao et al, 2011). On the other hand, we believe 
it also relevant to test simpler models (such as the static Wardrop equilibrium model considered in 
the present paper) to be clear on the benefits of more complex specifications and/or those with 
higher numbers of parameters. For example, we may propose a model with a time-sliced OD 
matrix, but can we estimate such a matrix to a reasonable degree of accuracy, and how stable are 
such estimates over time? In the end, would this give us a more accuracy picture of traffic 
conditions, or just a model with more parameters that might be poorer for prediction? Finally, as 
emerging data sources become more widely available, such as those based on mobile 
communications traces, we will have the potential (in principle at least) to more accurately link data 
spatially across a network, and even to connect the trajectories followed by individuals on different 
days. This has the potential to provide the richest kind of data for empirical analysis of network 



 25  

models, yet still many of the conceptual and methodological issues raised in the present paper will 
be pertinent. 
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Table 1: Fishergate study, maximum likelihood estimates for journeys emanating from site E: 

‘during intervention’ days shaded (full survey period at site E)  
 

Date 
Flows Journey time mean Journey time standard dev. 

EA EB EK EF E total EA EB EK EF EA EB EK EF 

26/6 289 18 237 54 1387 8.96 9.95 8.49 7.29 1.75 2.25 1.43 1.18 

27/6 270 19 229 48 1306 9.29 9.51 9.00 7.23 2.04 1.56 2.54 1.38 

28/6 310 13 289 54 1469 7.90 8.39 5.22 7.26 2.92 1.68 1.71 1.73 

29/6 300 22 283 68 1448 5.47 6.08 5.05 7.24 1.20 2.12 1.11 1.42 

2/7 319 22 291 70 1527 6.21 5.97 5.55 6.95 1.61 1.75 1.08 1.05 

3/7 234 11 325 61 1448 12.12 9.38 6.72 6.78 7.96 4.83 3.27 0.96 

4/7 234 12 328 66 1494 11.52 10.08 6.26 7.20 5.69 3.06 2.10 1.54 

5/7 240 13 358 77 1522 11.06 11.23 4.95 7.81 4.96 6.61 0.92 3.14 

6/7 265 17 352 69 1518 8.48 6.93 4.84 6.72 4.27 3.75 1.02 1.34 

11/7 261 12 272 78 1481 8.67 11.97 4.98 6.87 5.12 6.42 1.33 1.62 

12/7 252 13 329 67 1512 9.84 11.70 4.93 6.83 4.78 7.60 1.21 0.77 

13/7 274 14 318 103 1603 5.14 6.22 4.58 7.55 1.02 3.05 0.94 1.69 

16/7 286 17 357 65 1578 9.50 9.17 5.21 6.32 5.51 4.93 1.32 0.76 

 
 

Table 2: Fishergate study, maximum likelihood estimates for E to A journeys on 26/6 (before 
intervention): impact of truncation of survey period at site E 

 
Time span at E Mean St. dev alpha Matched flow 

7:45 to 8:35 8.74 1.72 0.2321 186 

7:45 to 8:40 8.83 1.77 0.2294 199 

7:45 to 8:45 9.00 1.81 0.2285 213 

7:45 to 8:50 9.10 1.80 0.2275 228 

7:45 to 8:55 9.18 1.74 0.2290 243 

7:45 to 9:00 9.13 1.70 0.2313 262 

7:45 to 9:05 9.01 1.76 0.2317 281 

7:45 to 9:10 8.94 1.75 0.2235 290 

7:45 to 9:15 8.94 1.75 0.2095 290 
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Table 3: Fishergate study, maximum likelihood estimates for E to A journeys on 3/7 (during 
intervention): impact of truncation of survey period at site E 

 
Time span at E Mean St. dev alpha Matched flow 

7:45 to 8:35 9.53 5.86 0.2018 186 

7:45 to 8:40 10.73 6.91 0.2029 204 

7:45 to 8:45 11.96 7.88 0.2002 222 

7:45 to 8:50 12.52 8.17 0.2000 234 

7:45 to 8:55 12.52 8.08 0.1932 235 

7:45 to 9:00 12.42 8.12 0.1820 237 

7:45 to 9:05 12.32 8.06 0.1680 238 

7:45 to 9:10 12.26 7.99 0.1543 235 

7:45 to 9:15 12.17 8.01 0.1493 234 

 
 
 
 
Table 4: Fishergate study, maximum likelihood estimates for journeys emanating from site E: 

‘during intervention’ days shaded (with truncated survey period at site E) 
 

Date 
Flows Journey time mean Journey time standard dev. 

EA EB EK EF E total EA EB EK EF EA EB EK EF 

26/6 243 15 205 50 1044 9.18 10.53 8.60 7.43 1.74 1.95 1.32 1.16 

27/6 234 15 215 49 966 9.38 9.51 9.05 8.15 2.17 1.67 2.61 2.61 

28/6 258 13 251 50 1131 8.32 8.50 5.36 7.30 3.03 1.64 1.83 1.83 

29/6 257 19 235 59 1161 5.61 6.67 5.24 7.28 1.08 2.10 0.85 1.37 

2/7 258 19 259 51 1195 5.96 5.62 5.46 7.14 1.63 1.57 1.06 1.12 

3/7 235 11 303 52 1134 12.52 9.47 6.43 6.82 8.08 4.88 3.19 1.01 

4/7 231 12 282 56 1153 11.80 10.13 5.85 7.39 5.62 3.10 1.90 1.84 

5/7 230 13 295 67 1174 10.79 10.49 4.84 7.05 5.05 7.52 0.93 2.01 

6/7 253 13 294 59 1188 8.22 6.12 4.73 6.91 4.06 2.22 1.04 1.29 

11/7 231 10 266 64 1113 8.31 12.89 5.01 7.57 4.90 7.91 1.35 2.34 

12/7 244 13 275 52 1223 9.72 11.66 5.00 6.94 4.69 8.06 1.33 0.76 

13/7 226 14 273 96 1265 5.21 6.59 4.60 7.63 1.05 3.33 0.96 1.78 

16/7 272 17 288 58 1246 9.33 9.26 4.97 6.40 5.37 4.94 1.26 0.77 
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Table 5: Maximum likelihood estimates of matched vehicles emanating from site A crossing 
bridges in the Lendal Bridge study, ‘during intervention’ day shaded 

 
 
Date 

Total flow at 
Blossom St 

(site A) 

Matched flow from site A to … 

Lendal 
(site H) 

Ouse 
(site J) 

Skeldergate 
(site C) 

27/6 843 157 58 165 

28/6 880 149 120 192 

6/9 735 137 102  

7/9 635 129 91 136 

8/9 606 115 87 94 

27/9 546  118 141 

 
 
 

Table 6: Percentage of generalised cost attributable to (weighted) travel time 
at different speeds and different relative valuations of time and distance 

Speed 
(km/h) 

Assumed valuation ratio / (km/minute) 

2 1 0.5 0.3 0.2 0.1 

10 92 86 75 64 55 38 

20 86 75 60 47 38 23 

30 80 67 50 38 29 17 

40 75 60 43 31 23 13 

50 71 55 38 26 19 11 

60 67 50 33 23 17 9 

80 60 43 27 18 13 7 

100 55 38 23 15 11 6 

 
 
 

Table 7: Comparison of observed data and modelled data for Fishergate study, 
in base scenario (without capacity reduction, 13/7 day neglected) 

Scenario 
Flows Journey time mean 

EA EB EK EF E total EA EB EK EF 

Observed 250 16 233 52 1099 7.7 8.2 6.7 7.5 

Modelled (/ = 2) 104 0 45 1 880 5.3 5.6 4.5 5.2 

Modelled (/ = 1) 146 0 95 5 995 5.8 6.2 5.0 5.4 

Modelled (/ = 0.5) 148 0 139 36 1107 6.4 6.7 5.5 5.8 

Modelled (/ = 0.3) 187 0 156 64 1204 8.1 8.4 7.2 6.0 

Modelled (/ = 0.2) 229 0 150 66 1250 8.2 8.5 7.5 6.7 

Modelled (/ = 0.1) 296 0 176 61 1400 12.0 12.2 11.0 6.3 

Modelled (/ = 0) 225 0 411 0 1387 16.9 16.2 16.2 5.2 
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Table 8: Comparison of observed data and modelled data for Fishergate study (/ = 0.2), 
before and during capacity reduction, under different Saturation Flow (SF) assumptions       

(observed data for 13/7 and 16/7 days neglected) 

Scenario 
Flows Journey time mean 

EA EB EK EF E total EA EB EK EF 

Observed (full capacity) 250 16 233 52 1099 7.7 8.2 6.7 7.5 

Modelled (full capacity) 229 0 150 66 1250 8.2 8.5 7.5 6.7 

          

Observed (reduced capacity) 237 12 286 58 1164 10.2 10.1 5.3 7.1 

Modelled (SF = 50% of base) 234 0 150 66 1253 8.3 8.5 7.5 6.6 

Modelled (SF = 40% of base) 171 0 172 64 1229 10.1 9.8 6.2 6.6 

Modelled (SF = 33% of base) 128 0 200 63 1226 12.6 9.0 5.8 6.3 
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Figure 1: Intervention and survey locations for Lendal Bridge study 

 
 

 
 

Figure 2: Intervention and survey locations for Fishergate study 
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Initial Route Choices (/ = 2)  Calibrated Route Choices (/ = 0.2) 

Figure 7: Comparison of selected initial and ‘calibrated’ route choices 
based on network equilibrium model for Fishergate base scenario 
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Figure 3: Empirical distribution of year letters for Fishergate study 

 



 
 

460

470

480

490

500

510

520

530

540

550

560

460 470 480 490 500 510 520 530 540 550 560

E

A

 
(a) 

 

-100

-80

-60

-40

-20

0

20

40

60

80

100

460 470 480 490 500 510 520 530 540 550 560

E

K
 -

 A

 

0

0.2

0.4

0.6

0.8

1

1.2

-80 -60 -40 -20 0 20 40 60 80 100

y(l)

F
1

(y
(l

))

 
 (c) 

 
 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

4 5 6 7 8 9 10

Journey time (y(l))

P
ro

b
a

b
il

it
y

 
 (d) 

 

(b) 

Figure 4: Matched partial plates between sites E & A, Fishergate study, July 2nd (before intervention): 
(a) scatter plot of matched time-stamps at E and A; (b) implied journey times of partial plates against time-stamp at E; 

(c) estimated cumulative frequency distribution for journey times of genuine matches; 
(d) estimated genuine journey time  probability distribution. 
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Figure 5: Matched partial plates between sites E & A, Fishergate study, July 3rd (after intervention): 
(a) scatter plot of matched time-stamps at E and A; (b) implied journey times of partial plates against time-stamp at E; 

(c) estimated cumulative frequency distribution for journey times of genuine matches; 
(d) estimated genuine journey time  probability distribution. 
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(d) 

Figure 6: Matched partial plates between sites E & A, Fishergate study, July 4th (after intervention): 
(a) scatter plot of matched time-stamps at E and A; (b) implied journey times of partial plates against time-stamp at E; 

(c) estimated cumulative frequency distribution for journey times of genuine matches; 
(d) estimated genuine journey time  probability distribution. 


