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Frictionless flow in a binary polariton superfluid
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2Department of Physics, University of Warwick, Coventry, United Kingdom

3NNL, Istituto Nanoscienze - CNR, Lecce, Italy

(Dated: February 16, 2012)

We study the properties of a binary microcavity polariton superfluid coherently injected by two
lasers at different momenta and energies. The crossover from the supersonic to the subsonic regime,
where motion is frictionless, is described by evaluating the linear response of the system to a weak
defect potential. We show that the coupling between the two components requires that either both
components flow without friction or both scatter against the defect, though scattering can be small
when the two fluids are weakly coupled. By analyzing the drag force exerted on a defect, we give a
recipe to experimentally address the crossover from the supersonic to the subsonic regime.

PACS numbers: 03.75.Kk, 03.75.Mn, 71.36+c.

Coherent quantum fluids can undergo a transition to
the superfluid phase, where the fluid viscosity is zero.
When the system excitations are described in terms of
quasi particles, the Landau criterion [1] establishes the
value of the fluid critical velocity below which no excita-
tion can be created and the fluid exhibits superfluidity.
In particular, for weakly interacting Bose-Einstein con-
densates (BECs), the critical velocity equals the speed
of sound. The description of the superfluid properties of
coupled multicomponent condensates, where each com-
ponent can have a different density, and so a different
speed of sound, and a different velocity, is far from triv-
ial. Yet, exploring how the superfluid properties of one
fluid are modified by the presence of a second one is of
fundamental interest. Binary superfluids in cold atomic
BECs have recently attracted noticeable interest: here,
the formation of solitary waves (see, e.g., Ref. [2]), the
emission of Cherenkov-like radiation from a dragged de-
fect [3], and the critical velocities [4] have been studied.
Because of their versatility in control and detection, cav-
ity polaritons — the strong coherent mixture of a quan-
tum well exciton with a cavity photon — represent an
ideal framework to address this problem. In particular,
the injection of polaritons by two external laser fields al-
lows us to independently tune the two fluid degrees of
freedom such as energies, momenta (and therefore flow
velocities), and particle densities, something not possi-
ble to implement in atomic condensates. At the same
time, their finite lifetime makes polaritons prototypical
systems for the study of condensation out of equilibrium.

Superfluidity in resonantly excited one component po-
lariton fluids has been tested both theoretically [5, 6]
and experimentally [7] through the observation of a dra-
matic but not complete [8] reduction of the scatter-
ing against a defect. As far as multicomponent polari-
ton fluids are concerned, superfluidity has been demon-
strated in the optical parametric oscillator (OPO) regime
through the frictionless propagation of wave packets [9]
and the observation of quantized vortices and persistent

currents [10, 11]. However, a thorough analysis of the su-
perfluid properties of multicurrent systems is still miss-
ing.
In this Letter we consider a two-component polariton

system resonantly injected via two pumping lasers at dif-
ferent momenta and energies, and analyze its superfluid
properties. Following a Landau criterion approach, we
study the Bogoliubov excitation spectra in the linear ap-
proximation, showing the conditions under which the sys-
tem can sustain frictionless flow, and analyzing how the
superfluid properties of one component depend on the
density and velocity of the other component. We per-
form the linear response analysis for defects with size
smaller than the healing length. The case of bigger and
stronger defects is more complex since nonlinear waves
can be emitted and a linear analysis of the problem might
not be sufficient [12]. Remarkably, we find that, within
the validity of the Landau criterion, the possibility of
the system to display frictionless flow in one component
and simultaneously a flow with friction in the other is
impeded by the coupling between the two components.
Naturally, when coupling a supersonic (SP) fluid with a
subsonic (SB) one, the amount of scattering induced by
the SP component to the SB one depends on the cou-
pling strength between the two fluids and their individ-
ual properties. Further, by making use of a full numerical
analysis of the system mean-field nonlinear dynamics, we
study the drag force exerted by both condensates on a
defect, and give a recipe to experimentally address the
SB to supersonic SP crossover.
We describe the dynamics of resonantly-driven micro-

cavity polaritons via a Gross-Pitaevskii equation for cou-
pled cavity (ψC) and exciton (ψX) fields generalized to
include decay and resonant pumping (~ = 1) [13]:

i∂t

(

ψX

ψC

)

=

(

0
F

)

+

[

Ĥ0 +

(

gX |ψX |2 0
0 VC

)](

ψX

ψC

)

Ĥ0 =

(

ωX − iκX ΩR/2
ΩR/2 ωC(−i∇)− iκC

)

. (1)
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Here, two continuous wave pumping lasers, F =
F1(r)e

i(k1·r−ω1t)+F2(r)e
i(k2·r−ω2t) resonantly inject po-

laritons at frequencies ω1,2 and momenta k1,2 – both
lasers pump along the x-axis, k1,2 = (k1,2, 0). We
assume the exciton dispersion ωX to be constant and

the cavity one quadratic, ωC(−i∇) = ω0
C − ∇

2

mC
, with

mC = 2 × 10−5m0 and m0 being the electron mass. ΩR

is the Rabi frequency (ΩR = 4.4 meV) and κX and κC
are the excitonic and photonic decay rates. The exciton-
exciton interaction strength gX is set to one by rescaling
both ψX,C and F1,2. We set the energy zero to ωX = ω0

C

(zero detuning). Finally, the potential VC(r) describes
either a defect naturally present in the cavity mirrors or
generated by an extra laser pump [14].
In the linear approximation regime, and for a homoge-

neous pump (F1,2(r) = F1,2), we can limit our study
to the following approximated solution of the Gross-
Pitaevskii equation

ψX,C(r, t) =
∑

j=1,2

e−iωjt
[

eikj ·rψss
jX,C

+ θjX,C
(r, t)

]

,

(2)
where ψss

jX,C
are the mean-field steady state solutions,

and where θiX,C
(r, t) are small fluctuation fields describ-

ing the linear response of the system to a weak defect
potential VC(r). Similarly to Refs. [5, 6], by substitut-
ing (2) into (1), at the zeroth order (θjX,C

= 0 = VC(r))
the mean-field solutions ψss

jX,C
solve a system of four cou-

pled complex equations, while the fluctuation fields as
well as their (Bogoliubov-like) spectra can be obtained
by expanding linearly in θjX,C

and VC(r). For additional
details, see the Supplemental Material and Ref. [15].
The SP vs. SB character of the excitations generated

by the defect potential can be studied by analyzing the
real part of the Bogoliubov spectra ω±

LPj ,UPj
(k). Ac-

cording to the Landau criterion for superfluidity, a fluid
moving against a defect is in a SB regime if it is unable to
excite quasi particle states (i.e., when elastic scattering is
forbidden). This happens when the system’s excitation
spectra, is either gapped, i.e.,

ℜ[ω±

LPj
(k)] 6= 0 ∀k , (3)

or it satisfies the condition ℜ[ω±

LPj
(k0)] = 0 for one value

of the momentum only, namely that of the condensate’s
momentum k0 (linear spectrum). Conversely, when for
at least two values of k, ℜ[ω±

LPj
(k)] = 0, the system

is in the SP regime. Note that, unlike for superfluid
systems in thermal equilibrium, for polaritons the above
definition of the SB regime does not mean a complete
suppression of the energy dissipation into the creation of
quasi particles [8, 16]. In fact, because of the polariton
finite lifetime, the spectra are broadened and a residual
drag is always present.
In order to analyze the superfluid properties of the

system, in Fig. 1 we compare the cases of coupled and

FIG. 1. (Color online) 2D contour plots of the space profiles
|ψ1,2C (r)|2 [arbitrary units] (gray maps) and associated ex-
citation spectra ℜ[ωLP (k)] [meV]: the two laser pumps are
shined at momenta k1 = 0.9 and k2 = 0.4 µm−1 (columns
I-IV) and at momenta k1 = 0.6 and k2 = 0.1 µm−1 (columns
V-VIII), while in all cases the laser energies are 0.5 meV blue-
detuned above the bare LP branch (κC = κX = 0.1 meV).
Columns I, III, V, and VII corresponds to the case where
fluid 1 (red) is uncoupled from fluid 2 (blue), while columns
II, IV, VI, and VIII describe the coupled cases. The densi-
ties of the two components have been fixed to gX |ψ1X |2 =
1.5 meV and gX |ψ2X |2 = 1.2 meV (columns I and II), to
gX |ψ1X |2 = 1.5 meV and gX |ψ2X |2 = 2.5 meV (III and IV),
to gX |ψ1X |2 = 1.0 meV and gX |ψ2X |2 = 1.25 meV (V and
VI), and to gX |ψ1X |2 = 1.0 meV and gX |ψ2X |2 = 1.5 meV
(VII and VIII). The momentum labels k′ = −0.4, k′′ = 0.40,
k̄′ = 1.4 and k̄′′ = 2.2 µm−1 are explicitly indicated in the
spectrum of column I.

uncoupled fluids. This can be regarded, both from a the-
oretical and experimental point of view, as the compar-
ison between the case of two fluids pumped in different
regions of the cavity (uncoupled) with the case of two
fluids pumped in the same region (coupled). Clearly,
the densities of two coupled fluids depend on both pump



3

intensities, and thus, in order to correctly compare the
coupled and uncoupled scenarios, such intensities must
be adjusted so that the polariton densities of each fluid
in the coupled case separately coincide with the ones of
the uncoupled fluids. Typical behaviors of the system
are illustrated in Fig. 1, where both 2D contour plots
of the space profiles |ψ1,2C (r)|2 and their associated ex-
citation spectra ℜ[ωLP (k)] are plotted. Let us consider
first the case of the panels corresponding to columns I to
IV: for uncoupled components (columns I and III), the
spectrum of fluid 1 (red) crosses the zero-energy line in
four points at k′, k′′, k̄′ and k̄′′, satisfying k′ + k̄′′ = 2k1
and k′′ + k̄′ = 2k1. Two quasi particles with momen-
tum k1 can be excited, and thus fluid 1 is in the SP
regime. Now Cherenkov-like waves can be emitted from
the δ-like defect positioned in r = 0 (see the |ψ1C (r)|2
map of column I). In contrast, the spectrum of the fluid
2 (blue) is gapped, no Cherenkov waves can be emitted
from the defect, and therefore fluid 2 is in the SB regime.
When, instead, we analyze the case where the same two
fluids are coupled (column II), we see that Cherenkov-
like waves appear in the 2D profiles of both |ψC1

(r)|2
and |ψC2

(r)|2. This is because the interaction between
the two fluids produces an anticrossing, and thus a mix-
ing, of the corresponding Bogoliubov modes. As a con-
sequence, the fluid injected in the component 2 can now
scatter against the defect. An opposite case is shown in
columns III and IV. The polariton density of fluid 2 is
now doubled with respect to the case of columns I and II,
keeping unchanged the fluid 1 density. Now, the effect of
the coupling is to considerably decrease the scattering in
component 1 and the coupled excitation spectra satisfies
Eq. (3): in this case the effect of the coupling is that both
components can flow without friction. From this analy-
sis, we can conclude that a two-component polariton fluid
can be in SB regime only if both components are SB. This
is because, due to the coupling, the Bogoliubov spectra
mix and only the scattering properties of the system as
a whole can be defined. Since the combined state of the
coupled system depends on the densities of both fluids,
the system as a whole is SP or SB depending on which
component dominates. In addition, we find that when a
fluid has either a too low density or a too high velocity
to exhibit frictionless flow on its own, the fluid can in-
stead flow without friction when coupled to another fluid
with the suitable properties. In order to identify the role
played by the coupling strength between the two fluids in
our predictions, we consider in columns V-VIII of Fig. 1
the case of two fluids with a higher photonic component,
and therefore more weakly coupled, with respect to the
case of columns I-IV. While the same qualitative conclu-
sions hold, the scattering induced by fluid 1 over fluid
2 is now substantially smaller and comparable with the
effect due to the polariton linewidth. Applying Eq. (3),
one can study the SP and SB character of the binary
fluid as a function of the two particle densities (see Sup-

FIG. 2. (Color online) Phase diagram, as a function of the

rescaled pump intensities
√
gXF1,2 [meV3/2], showing the re-

gions where the system is SP (red) or SB (blue). In this case,
the two lasers pump at an energy 0.5 meV blue-detuned from
the bare LP branch and κX = κC = 0.1 meV. In panel I, the
lasers momenta are k1 = 0.6, and k2 = 0.1 µm−1. In panels
II and III the x-component of the momentum of laser 2 is
increased by 0.2 and 0.4 µm−1 respectively. Points A and B
correspond to cases discussed in the text.

plemental Material). It is however useful to perform this
study also as a function of the two pump intensities, be-
ing these the experimentally accessible parameters. Pan-
els I-III of Fig. 2 show the SB regions for three values
of the fluid 2 velocity. Clearly, if any of the two pumps
is switched off (Fj = 0), one reproduces the single-fluid
case. As k2 < k1, the SB region for F1 = 0 starts at
lower pump intensities than the SB region for F2 = 0
(panel I): for higher fluid velocities, the system requires
higher polariton populations, and therefore higher pump
intensities, in order to be in the SB regime. Even if the
analytical dependence of the SB region on the two pump
intensities cannot be evaluated, one can qualitatively un-
derstand its behavior: for fixed cavity and laser parame-
ters, the SB regime depends on the total particle density
seen by the two components |ψss

X |2 = |ψss
1X |2 + |ψss

2X |2.
For F2 = 0 and

√
gXF1 = 0.45 meV3/2 (point A of Fig.

2), the total particle density |ψss
X |2, seen by the fluid is

|ψss
X |2 = |ψ1X |2 = 1.37 meV/gX and the system is SB.

If now the second pump is turned on and
√
gXF2 set to

0.3 meV3/2 (point B), the total particle density decreases
to |ψss

X |2 = 1.34 meV/gX and the system is in the SP
regime. This is because when F2 is turned on the parti-
cle density increases by a factor |ψ2X |2 but, at the same
time, the fluid 1 particle density is decreased by a big-
ger factor. Since the system starts in a SB regime, the
dressed LP branch is blue-detuned with respect to the
pump frequency ω1 and, therefore, the effect of F2 6= 0
is to further bluedetune it, making it more difficult for
pump 1 to fill the cavity.

Evaluating the linear spectrum of excitations in exper-
iments can be a challenging task. In principle, the ap-
pearance and disappearance of Cherenkov waves could
be used to determine the SP to SB crossover, similarly
to Ref. [7]. However, for a quantitative description of the
crossover we propose to determine the drag force exerted
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by the binary fluid on the defect VC(r) [8, 16, 17]:

Fd =
1

∫

dr|ψC(r)|2
∫

dr|ψC(r)|2∇VC(r) . (4)

We evaluate the time average of the cavity field ψC(r),
numerically solving the dynamics of Eq. (1) on a 2D grid
(256 × 256 points) of 150 × 150 µm, by using a fifth-
order adaptive-step Runge-Kutta algorithm. The pump-
ing lasers have a smoothen top-hat spatial profile F1,2(r)
with a full width at half maximum of σ = 130 µm; the
weak defect has a Gaussian shape. In Fig. 3 we plot
the drag force that the binary fluid exerts on the de-
fect as a function of the two fluid numbers of particles,
comparing the coupled and uncoupled cases. The limit
when one of the two pumps is turned off recovers the
results for a single fluid [8]: when the particle density
increases, the drag force decreases from high values to
a residual finite value. For the case with two currents,
we find that the drag force exerted by two coupled flu-
ids on the defect is weaker than the drag force exerted
by the two uncoupled components. This is because, in
the coupled case, particles of each component move in
an effectively denser medium than in the uncoupled case
(Eq. (3) of the Supplemental Material), thus the drag
force is smaller. From the experimental point of view, in
order to determine the drag force, one could measure the
near-field cavity emission in a region around the defect
as a function of position, and, if the shape of the defect
is known, one could evaluate the drag force making use
of Eq. (4). Note, that the important quantity needed for
this measure is the shape of the potential, not its precise
height. Any uncertainty in the defect potential intensity
will systematically affect the drag force overall scale but
not its global dependence on the polariton densities. Fi-
nally, we would like to stress that higher fluid velocities
and shorter polariton lifetimes give rise to higher values
(therefore more easily measurable) of the drag force and
of its residual value at high polariton density.
To conclude, we would like to note that we can draw

this Letter’s conclusions independently on the polariton
lifetime, as they exclusively depend on the real part of
the Bogoliubov spectra and therefore hold in equilibrium
conditions, e.g., for the case of atomic superfluids. How-
ever, even for extremely long polariton lifetimes, binary
polariton superfluids are more general than atomic ones.
This is because, while for the latter case the chemical
potential fixes the atom density, for the former, the laser
frequency can be tuned independently on its power which
determines the polariton density. Further, the polari-
ton dispersion deviates from quadratic at large momenta.
This together with the finite polariton lifetime has impor-
tant consequences on the Bogoliubov spectrum, even in
the case of one fluid only: while for atoms, Bogoliubov
spectra are all linear at small wave vectors, for coher-
ently pumped polaritons they can in addition be gapped
or diffusive [6].

FIG. 3. (Color online) Time average of the drag force of the
fluid as a function of the number of particles N1 and N2.
The two lasers are pumping at momenta k1 = 0.9, and k2 =
1.0 µm−1 and energies 0.3 meV blue-detuned from the bare
LP branch, and κX = 0.22 meV, κC = 0.22 meV. Red dots
correspond to the case of two uncoupled fluids, while black
cubes correspond to the case of coupled fluids. The drag force
for the uncoupled case is evaluated as: Fd = 1

N1+N2

(N1Fd1 +

N2Fd2).
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Frictionless flow in a binary polariton superfluid: Supplementary

Material

This supplementary material contains, in Appendix A, the background information about the linear approximation
solutions of the generalized Gross-Pitaevskii equation describing a binary microcavity polariton superfluid. We give

the equations describing the mean-field steady state solutions of the system, and derive the linearized
Bogoliubov-like theory, needed for the evaluation of the excitation spectra. Moreover we give the equations for the
evaluation of the response of the system to a weak external perturbation, and for the evaluation of the photonic and

excitonic wave-functions in real space. In appendix B we introduce a phase diagram where the sub-sonic or
super-sonic behavior of the suplefluid is studied as a function of the particle density.

APPENDIX A

Stationary solutions in the homogeneous case

We describe the system of resonantly-driven microcavity polaritons via Gross-Pitaevskii equation for coupled cavity
(ψC) and exciton (ψX) fields generalized to include the description of the finite life-time of photons and excitons and
the injection of polaritons in the cavity through resonant pumping (~ = 1) [13]:

i∂t

(

ψX

ψC

)

=

(

0
F

)

+

[

Ĥ0 +

(

gX |ψX |2 + VX 0
0 VC

)](

ψX

ψC

)

Ĥ0 =

(

ωX − iκX ΩR/2
ΩR/2 ωC(−i∇)− iκC

)

. (5)

Polaritons are continuously injected into the cavity by two spatially homogeneous continuous-wave laser fields:

F (r, t) = F1e
i(k1·r−ω1t) + F2e

i(k2·r−ω2t) ,

with intensities F1,2, and with independently tunable frequencies ω1,2 and momenta k1,2, which can be experimentally
changed by changing the laser angle of incidence with respect to the growth direction. Under the continuous pump
conditions and in the homogeneous case (i.e., in absence of an external potential, VC,X(r) = 0), the mean-field
solutions of Eq. (5) can be written as:

ψX,C(r, t) = ψss
1X,C

ei(k1·r−ω1t) + ψss
2X,C

ei(k2·r−ω2t) . (6)

Substituting the expression (6) into (5) we obtain 4 contributions, two of which oscillate at the main frequencies ω1

and ω2 and the additional two at the replica (or satellite state) frequencies ω1−∆ω and ω2+∆ω, where ∆ω = ω2−ω1.
Similarly to what is done in the OPO regime [13, 18] where replica states in addition to the pump signal and idler states
are neglected, here, we consider only the terms oscillating at the main frequencies ω1 and ω2. In this approximation
the mean-field values for ψss

1,2X,C
, can be obtained solving the following system of complex equations:



















[ωX − ω1 − iκX +G12]ψ
ss
1X + ΩR

2 ψ
ss
1C = 0

[ωC(k1)− ω1 − iκC ]ψ
ss
1C + ΩR

2 ψ
ss
1X + F1 = 0

[ωX − ω2 − iκX +G21]ψ
ss
2X + ΩR

2 ψ
ss
2C = 0

[ωC(k2)− ω2 − iκC ]ψ
ss
2C + ΩR

2 ψ
ss
2X + F2 = 0 ,

(7)

where Gij = gX(|ψss
iX
|2+2|ψss

jX
|2) with i 6= j = 1, 2. The mean-field system of equations (7) can have up to 9 solutions,

i.e. 6 solutions more than in the case of one pumping laser, but only a maximum of 3 solutions are stable. For details
see Ref. [15].
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Linearized Bogoliubov-like theory

The perturbative Bogoliubov-like analysis, first introduced for resonantly pumped polaritons in Refs. [5, 6], is here
generalized to the case of two pumping lasers. Adding small fluctuations to the homogeneous solution, the Bogoliubov-
like theory allows for the study of the dynamical stability of the two-pump-frequency mean-field solution, as well as
for the study of the subsonic or supersonic character of the fluid. Moreover, the Bogoliubov theory allows for the
evaluation of the real and momentum space representation of the photonic and excitonic distributions in the presence
of weak perturbing potentials. We start our analysis by adding small fluctuations (θ1,2X,C

) to the homogeneous
solutions:

ψX,C(r, t) = e−iω1t
[

eik1·rψss
1X,C

+ θ1X,C
(r, t)

]

+ e−iω2t
[

eik2·rψss
2X,C

+ θ2X,C
(r, t)

]

, (8)

where the fluctuation fields can be divided into particle-like and hole-like excitations:

θiX,C
(r, t) =

∑

k

[e−iωt+ik·ruiX,Ck + eiωt+i(2ki−k)·rv∗iX,Ck
] .

Inserting Eq. (8) in Eq. (5) and expanding up to linear terms in θ1,2X,C
, we obtain 4 terms oscillating at frequencies

ω1 − ∆ω ± ω and ω2 + ∆ω ± ω, which we neglect, and 4 terms oscillating at ω1,2 ± ω which we consider. In other
words, we limit our study to the case where only the two states with frequencies ω1,2 are occupied and analyze the
excitation of particles with frequencies ω1,2 ± ω.

Excitation Spectra

Within this analysis, the stability of the system and the scattering properties of the collective excitations are
evaluated through the spectra of the particle-like uiX,Ck and of the hole-like v∗iX,Ck

excitations which are given by the
solutions of the eigenvalue equation:

[ωI− Lk]Uk =

[

ωI−
(

L11k L12k

L21k L22k

)]

Uk = 0 , (9)

where the excitation fields have been arranged in the 8-component vector UT = (u1X , u1C , v1X , v1C , u2X , u2C , v2X , v2C ).
In the above equation the matrices Lijk with i 6= j are given by

2gXe
i(ki−kj)·r









ψss
iX
ψss⋆
jX

0 ψss
iX
ψss
jX

0
0 0 0 0

−ψss⋆
iX
ψss⋆
jX

0 −ψss⋆
iX
ψss
jX

0
0 0 0 0









and Ljjk are given by









ωX − ωj − iκX + 2gX |ψss
X |2 ΩR

2 gXψ
ss
jX
ψss
jX

0
ΩR

2 ωC(k)− ωj − iκC 0 0
−gXψss⋆

jX
ψss⋆
jX

0 −ωX(2kj − k) + ωj − iκX − 2gX |ψss
X |2 −ΩR

2

0 0 −ΩR

2 −ωC(2kj − k) + ωj − iκC









,

with |ψss
X |2 = |ψss

1X |2 + |ψss
2X |2 being the total excitonic density. At given values of the pumping strength F1 and F2,

the solutions of the mean-field equations (7) are stable if all the eight eigenvalues ω±

LPj ,UPj
(k) of Eq. (9) have negative

imaginary part for every value of the momentum k. When the stability of the solution for given values of the pump
intensities has been checked, the information about the scattering properties of the fluctuations can be extracted by
the analysis of the real part of the eight eigenvalues.

Response to a weak potential

We evaluate now the response of the excitonic and photonic density profiles to a weak static potential VC(r). The
starting point is the equation of motion for the fluctuation fields in the presence of a perturbation [6]: i∂tUk =
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FIG. 4. (Color online) Phase diagram, as a function of gX |ψiX |2 [meV], showing the regions where the system is SP (red) or
SB (blue). The white regions correspond do particle densities for which the system is not stable. In this case, the two lasers
pump at an energy 0.5 meV blue detuned from the bare LP branch and κX = κC = 0.1 meV. In Panel I, the lasers momenta
are k1 = 0.6, and k2 = 0.1 µm−1. In Panels II and III the x-component of the momentum of laser 2 is increased by 0.2 and
0.4 µm−1 respectively. The points A and B correspond to cases discussed in the text.

LkUk + Pk, where

Pk =



























ṼX(k)ψss
1X

ṼC(k)ψ
ss
1C

−ṼX(k− 2k1)ψ
∗ss
1X

−ṼC(k− 2k1)ψ
∗ss
1C

ṼX(k)ψss
2X

ṼC(k)ψ
ss
2C

−ṼX(k− 2k2)ψ
∗ss
2X

−ṼC(k− 2k2)ψ
∗ss
2C



























, (10)

where ṼC,X(k) is the Fourier transform into momentum space of VC,X(r). Since we are interested in the steady state
of the system we can extract the perturbed photonic and excitonic fields in momentum space as:

Uk = −L
−1
k

Pk , (11)

and back-Fourier transform them in order to obtain the perturbation fields in real space. At this point, the total pho-
ton/exciton field intensity for each component (homogeneous solution + potential induced perturbation), normalized
to the intensity of the homogeneous solution without the potential is obtained as:

|ψiC,X
|2 =

|ψss
iC,X

+ θiX,C
(r, t)|2

|ψss
iC,X

|2 . (12)

APPENDIX B

Phase diagram for the sub (super) sonic behavior of a binary fluid

Looking at the spectra of small excitations over the stationary state, it is possible to determine the sub-sonic (SB)
or super-sonic (SP) behavior of the coupled binary fluid. For given values of the lasers and cavity parameters, it
is possible to evaluate the stability of the system and, for the stable conditions, the existence of a SB solution. As
discussed in the article, if the real part of the excitation spectra satisfies the condition:

ℜ[ω±

LPj
(k)] 6= 0 ∀k , (13)
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the fluid is considered to be SB. In Fig. 4 we plot the stable solutions that are SB (blue) or SP (red) as a function
of the particle densities of the two modes |ψiX |2. The three panels reproduce the same laser and cavity conditions as
panels I − III of Fig. 2 of the article. In the case of one pump turned off (for example F2, i.e. |ψ2X |2 = 0) we have a
SP region at low densities, a wide region for which the system is not stable (in white), a second SP region and, finally,
a SB one that starts at gX |ψ1X |2 = 1.36. In Panel III we show the two points A and B as in the article. Point A is
in the SB region while point B is in the SP one. Note, that the boundary between the SB and the SP region is not
perfectly circular meaning that the SB behavior depends on the two densities but in an unbalanced way. This can
be understood recalling that polaritons at different energies and momenta have different masses and couplings, and
therefore their weight on the SB behavior is different.
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