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Multistability of a two component exciton-polariton fluid

E. Cancellieri,1, ∗ F. M. Marchetti,1 M. H. Szymańska,2 and C. Tejedor1

1F́ısica Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain.
2Department of Physics, University of Warwick, Coventry, England.†

(Dated: February 15, 2012)

We study the stability of a multicomponent exciton-polariton fluid under resonant excitation
within the linear response approximation of a generalized Gross-Pitaevskii equation. We show that,
two spatially homogeneous and independently tunable pumping lasers produce, for the same values
of the system parameters, up to three stable solutions. Three-stability is understood by noting
that the cavity can be either little or highly populated and, in this second case, the largest part
of the population lies in either one of the two components. Moreover, we discuss the different
kinds of instabilities appearing at different pumps intensities and compare them with the case of
one-component fluids. Finally, we show that easily tunable multistable hysteresis loops can be
performed by the system.

PACS numbers: 71.36.+c, 42.65.Pc, 03.75.Kk

I. INTRODUCTION

Condensates of resonantly pumped exciton-polaritons
in semiconductor microcavities constitute a novel and ex-
citing system for the study of fundamental physical prop-
erties of superfluids out of equilibrium1, and for future
device applications2,3. Being quantum superpositions of
light and matter they are privileged candidates for the
realization of the next generation of optical devices2, for
example for quantum information technologies.
From the point of view of the fundamental physical

properties, particularly interesting is the case of a coher-
ently pumped polariton superfluid in presence of defects.
Here, in contrast to the corresponding equilibrium case,
a weak residual drag force is always present even at ex-
tremely high polariton densities4. Nevertheless, proper-
ties paradigmatical of an equilibrium superfluids, such as
frictionless flow of polariton bullets5, quantized vortices
and metastable persistent flow6, and the appearance and
disappearance of C̆erenkov-like waves7 have been recently
observed in coherently driven exciton-polaritons.
In view of the potential device applications, especially

important is the unique versatility of the polaritonic sys-
tem, which, combined with its high non-linear properties,
have been already demonstrated to produce parametric
scattering8–10 and bistability11. Here, the implementa-
tion of logic operations and gates comes in a natural
way: By manipulating the non-linear properties of the
system using several lasers which frequencies, angles of
incidence, and intensities can be freely varied externally.
In this paper we investigate a new realization of a two-

component polariton system coherently driven by two
lasers with independently tunable frequencies, angles of
incidence and intensities. Firstly, we study the stabil-
ity of the two polariton components when the two laser
intensities are varied. Differently from the case of a sin-
gle laser pump, where the system can only be bistable,
we disclose a rich phase diagram, where either one, two
or three stable states can coexist at given pumping con-
ditions. Then we suggest possible easily tunable multi-

stable hysteresis cycles when the two pumping lasers are
varied up and down in intensities.
Alternatively, a multicomponent polariton fluid can be

realized by considering the polarization degrees of free-
dom. Multistability of different polariton spin states has
been recently proposed theoretically12 and confirmed ex-
perimentally13 by the observation of three stable spin
states for a given excitation condition. For the case of
two polarized components, multistability in space have
also been theoretically proposed14,15 and experimentally
observed16. For the system with two pumping lasers pre-
sented here, the same kind of spatial multistability is
expected but with much more complex features. Addi-
tionally, superimposed to the spatial multistability, in-
terference fringes will appear due to the difference in fre-
quency and momentum of the two pumping lasers. The
analogy with the two-component polarized case, suggests
that, aside from the interest in investigating multistabil-
ity, two-component polariton condensates obtained with
independent lasers can also be used to realize switches3

and memories.
The paper is organized as follows: in section II, we

present the model used to describe the steady state
behavior of polaritons excited by two continuous-wave
lasers with different frequencies, wave-vectors and in-
tensities. The results obtained within a linear response
framework are shown in section III. In this section we
study the number of the possible solutions, their nature
and possible Kerr or parametric instabilities associated
to them. As a consequence of the presence of multiple
stable solutions, different cycles of hysteresis can be pro-
duced by varying, along different paths, the intensities of
the two pumping lasers. Finally, section IV contains the
conclusions drawn from our analysis.

II. MODEL

The dynamics of resonantly-driven microcavity polari-
tons8,18 can be described via a Gross-Pitaevskii equation
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for coupled cavity (ψC) and exciton (ψX) fields general-
ized to include decay and resonant pumping (~ = 1):

i∂t

(

ψX

ψC

)

=

(

0
F

)

+

[

Ĥ0 +

(

gX |ψX |2 0
0 0

)](

ψX

ψC

)

. (1)

The repulsive (gX > 0) exciton-exciton interaction in-
duces a non-linear dynamics of the eigenmodes of the
single polariton Hamiltonian (lower and upper polariton,
ωLP,UP (k)):

Ĥ0 =

(

ωX(−i∇)− iκX ΩR/2
ΩR/2 ωC(−i∇)− iκC

)

. (2)

Here, we assume the cavity dispersion to be quadratic,
ωC(k) = ωC(0)+k

2/(2mC), with mC = 2×10−5m0 (m0

is the bare electron mass), we will neglect the exciton dis-
persion and consider the case of zero detuning at normal
incidence, ωX(k) = ωX(0) = ωC(0). The Rabi frequency
ΩR = 5.0 [meV] and the excitonic and photonic decay
rates, κX = κC = 0.05 [meV] are chosen in the range of
experimental values.
Because of the continuous decay, a stationary state re-

quires a continuous injection of photons. Here, we con-
sider two continuous-wave laser fields,

F (r, t) = F1e
i(k1·r−ω1t) + F2e

i(k2·r−ω2t) , (3)

with independently tunable frequencies ω1,2 and mo-
menta k1,2, which can be experimentally changed by
changing the laser angle of incidence with respect to the
growth direction.
We study the mean-field solutions of Eq. (1)

ψX,C(r, t) = ψss
1X,C

ei(k1·r−ω1t) + ψss
2X,C

ei(k2·r−ω2t) , (4)

and their stability with respect to small fluctuations
within a linear response analysis. Substituting the ex-
pression (4) into (1) we obtain 4 contributions, two of
which oscillate at the main frequencies ω1 and ω2 and
the additional two at the replica (or satellite state) fre-
quencies ω1 − ∆ω and ω2 + ∆ω, where ∆ω = ω2 − ω1.
Similarly to what is done in the OPO regime19,20 where
replica states in addition to the pump signal and idler
states are neglected, here, we consider only the terms os-
cillating at the main frequencies ω1 and ω2. Later, see
Eq. (6), we analyse the dynamical stability of the two-
pump-frequency solution against the weak population of
satellite states ωi±ω via parametric scattering processes.
Through the paper, we will consider only dynamically
stable two-pump-frequency solutions. In this approxi-
mation, we obtain the following mean-field equations for
ψss
1,2X,C

:



















[ωX − ω1 − iκX +G12]ψ
ss
1X + ΩR

2 ψ
ss
1C = 0

[ωC(k1)− ω1 − iκC ]ψ
ss
1C + ΩR

2 ψ
ss
1X + F1 = 0

[ωX − ω2 − iκX +G21]ψ
ss
2X + ΩR

2 ψ
ss
2C = 0

[ωC(k2)− ω2 − iκC ]ψ
ss
2C + ΩR

2 ψ
ss
2X + F2 = 0 ,

(5)

where Gij = gX(|ψss
iX
|2 + 2|ψss

jX
|2) with i 6= j = 1, 2.

Note that the repulsive interaction term between exci-
tons in different states is two times larger the interaction
term between excitons in the same mode, resulting in a
non-uniform blue-shift. The mean-field system of equa-
tions (5) can have up to 9 solutions, i.e. 6 solutions more
than in the case of one pumping laser, but, as discussed
below, only a maximum of 3 solutions are stable.

The dynamical stability of the two-pump-frequency
mean-field solution can be established by adding small
fluctuations,

ψX,C(r, t) = e−iω1t
[

eik1·rψss
1X,C

+ θ1X,C
(r, t)

]

+

e−iω2t
[

eik2·rψss
2X,C

+ θ2X,C
(r, t)

]

, (6)

where the fluctuation fields can be divided into
particle-like and hole-like excitations θiX,C

(r, t) =
∑

k
[e−iωt+ik·ruiX,Ck + eiωt+i(2ki−k)·rv∗iX,Ck

]. Expanding

Eq. (1) up to linear terms in θ1,2X,C
, we obtain 4 terms

oscillating at frequencies ω1 −∆ω± ω and ω2 +∆ω± ω,
which we neglect, and 4 terms oscillating at ωi ± ω. In
other words, we are checking the stability of our solution,
where only the two states with frequencies ω1,2 are occu-
pied, against the weak population of the satellite states
ωi ± ω which can be populated by parametric scattering
processes. The fact that we consider only linear terms
in uiX,Ck and v∗iX,Ck

implies that we can obtain only

the threshold conditions for such parametric processes,
as well as the nature of the instability, whether of Kerr-
type or parametric-type — see later. The equations for
uiX,Ck and v∗iX,Ck

can be written as an eigenvalue equa-

tion rearranging the excitations into an 8-component vec-
tor UT = (u1X , u1C , v1X , v1C , u2X , u2C , v2X , v2C ):

[

ωI−
(

L11k L12k

L21k L22k

)]

Uk = 0 . (7)

Here matrices Lijk with i 6= j are given by

2gXe
i(ki−kj)·r









ψss
iX
ψss⋆
jX

0 ψss
iX
ψss
jX

0
0 0 0 0

−ψss⋆
iX
ψss⋆
jX

0 −ψss⋆
iX
ψss
jX

0
0 0 0 0









and Ljjk are given by
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ωX − ωj − iκX + gX |ψss
X |2 ΩR

2 gXψ
ss
jX
ψss
jX

0
ΩR

2 ωC(k)− ωj − iκC 0 0
−gXψss⋆

jX
ψss⋆
jX

0 −ωX(2kj − k) + ωj − iκX − gX |ψss
X |2 −ΩR

2

0 0 −ΩR

2 −ωC(2kj − k) + ωj − iκC









,

with |ψss
X |2 = 2(|ψss

1X |2 + |ψss
2X |2) being the total exci-

tonic density. At given values of the pumping strength
F1 and F2, the solutions of the mean-field equations (5)
are stable if all the eight eigenvalues (LP±

j (k), UP±

j (k))

of Eq. (7) have negative imaginary part for every value
of the momentum k.

III. RESULTS

For some choices of the system parameters, we find
that the number of stable solutions can be larger than
one. In the case of one pumping laser, the typical S-
like shape dependence of the polariton field intensity on
the pump strength, also referred to as optical bistability,
can be explained in terms of the non-linear blue-shift in-
duced by the polariton-polariton interaction19,21. When
the laser frequency is well above the bare lower polari-
ton dispersion, ωp > ωLP (kp), and the pump intensity
increases from low values, the polariton population re-
mains small because it is hard for the laser to inject po-
lartions with a different energy. However, increasing the
pump power, the blue-shift pulls the polariton energy to-
wards resonance with the pump causing the population
to grow superlinearly and eventually to abruptly jump to
a high value when the pump intensity reaches a critical
value I1. In the opposite situation, when the laser inten-
sity is decreased from high values, the polariton energy is
blue-detuned close to the pumping laser frequency and,
therefore, the cavity is efficiently filled by the laser even
at low pumping intensities. In this case the polariton
population jumps down back at low polariton densities
for a value I2 of the pump strength lower than I1. The
two jumps at different values of the pump intensity cause
therefore a hysteresis cycle. As explained below, in the
case of two-component fluids, the situation becomes even
richer.
We fix both laser frequencies to be blue detuned

with respect to the bare polariton dispersion: ω1,2 =
ωLP (k1,2) + 0.3 [meV], with k1 = 0.25 µm−1 and k2 =
0.7 µm−1. We plot in panel I of Fig. 1 the phase di-
agram showing the regions with a different number of
stable solutions (either one, two or three) as a function
of the two rescaled pumping intensities F ′

1,2 =
√
gxF1,2

[meV3/2]. In order to understand better the structure
of this phase diagram, we show in Fig. 2 the total ex-
citon density gX |ψss

X |2 when the pump intensities F ′
2 is

kept constant at different values and F ′
1 is varied. When

the constant pump F ′
2 has a small value (Fig. 2 top left

panel), the dependence of the population on the varying
pump intensity F ′

1 is similar to the one-fluid case showing
bistability with an S-like shape. For higher values of the
constant pump F ′

2 (Fig. 2 lower left panel), the number
of possible solutions increases but just two are found to
be stable. Finally when F ′

2 is further increased the set of
possible solutions further goes up but only a maximum
of 3 are found to be stable.

The coexistence of three solutions, corresponding to
the black regions of Fig. 1, can be understood as follows:
when the two pump intensities increase from low values,
the polariton population is small because it’s energy is
far below the laser frequencies, resulting in one stable so-
lution. In the opposite situation, when the intensity of
one of the lasers decreases from high values, the polariton
population is high and its dispersion is significantly blue
detuned with respect to the bare one. Such blue-shift
can be sustained by any of the two lasers, thus giving
two additional stable solutions for the same values of the
pump intensities. Therefore a maximum of three sta-
ble solutions can be expected. This is also evident while
considering the partial densities for particular values of
the pump strength at which three stable solutions are
present (black region of Fig. 1), e.g. F ′

1 ≡ √
gXF1 = 0.05

[meV3/2] and F ′
2 ≡ √

gXF1 = 0.08 [meV3/2]. Here,
the solution with lower total polariton density corre-
sponds to partial densities gX |ψss

1X |2 = 0.009 [meV] and

gX |ψss
2X |2 = 0.023 [meV]. The other two solutions cor-

respond to a high value of just one of the two partial
populations: gX |ψss

1X |2 = 0.008 [meV] and gX |ψss
2X |2 =

0.609 [meV] in one case and gX |ψss
1X |2 = 0.646 [meV]

and gX |ψss
2X |2 = 0.010 [meV] in the other. Note that this

situation is similar to the case of two-component con-
densates obtained with two spins. However, while in the
spin-dependent case the two lasers pump the two spin
populations with different intensities but at the same an-
gle and energy, here the two pumps are independent also
in angle and in energy. This analogy is also visible in
Eq. (5). However, the difference between our system of
equations and the spin-dependent case is that here the
interaction between different components is twice the in-
teraction between particles in the same component.

In panel II of Fig. 1 we plot the phase diagram for the
same parameters as in panel I but with the two pumping
lasers 0.4 [meV] blue detuned with respect to the bare LP
branch. We see that the effect of the increased detuning
is simply to stretch the phase diagram. Since the two
pumps are further apart from the LP branch, it is more
difficult to inject polaritons into the cavity, and thus the
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FIG. 1: (Color online) 2D panels: phase diagram showing the
number of stable solutions as a function of the rescaled pump
intensities F ′

1,2 =
√
gxF1,2 [meV3/2]. White, green, yellow

and black regions correspond to respectively zero, one, two
or three stable solutions. In panels I and II k1 = 0.25 µm−1

and k2 = 0.7 µm−1 while in panels III and IV k1 = 0.0 µm−1

and k2 = 0.7 µm−1. In the left panels (I and III) ω1,2 =
ωLP (k1,2) + 0.3 [meV], while in the right panels (II and IV)
ω1,2 = ωLP (k1,2) + 0.4 [meV]. The horizontal black lines lies
at the three fixed values of F ′

2 corresponding to the three pan-
els of Fig. 2, while the blue diagonal line is the path used to
plot Fig. 5. 3D panels: plots of gX |ψss

X |2 [meV] as a func-
tion of F ′

1,2 with parameters equal to panel I. Stable solutions
with higher populations are shown in green, stable solution
with the second higher population in yellow and third stable
solution with lower population in black. All the solutions are
shown in the left panel. Since the upper green branches hide
a yellow upper branch, the right panel shows only the yellow
and black solutions.

need for higher pump intensities. In panel IV of Fig. 1
we show that a similar phase diagram can be obtained
by changing k vector of pump 1 from 0.25 to 0.0 µm−1.
We observe that the multistability is quite robust with
respect to the choice of the parameters and, therefore, it
should be within an experimental reach. An interesting
configuration is plotted in panel III of the same figure.
Here a region with no stable solutions appears in the cen-
tral part of the plot (white region). The instability of this
region can be understood by noting that with a pump at

FIG. 2: (Color online) Stability curves of the total exciton
density gX |ψss

X |2 [meV] (red dotted curves unstable solutions,
black lines stable solutions) for fixed pump intensities as a

function of F ′
1, for F ′

2 = 0.00001 [meV3/2] (top left), F ′
2 =

0.025 [meV 3/2] (bottom left), and F ′
2 = 0.08 [meV3/2] (right).

Points Ai (Bi), i = 1, 2, 3 correspond to the cases when the
lower (upper) branch of the stability curve becomes unstable
(see Fig. 3 and 4). Point C does not have a counterpart
in the one-fluid case and correspond to the cases when the
second high branch of the stability curve becomes unstable
(see Fig. 4).

k = 0.0 and just slightly blue detuned from the LP and
a pump at k = 0.7, close to the inflection point of the
LP, it is easy to satisfy phase matching conditions for
parametric scattering processes. For this set of param-
eters the system is in a configuration unstable towards
the population of satellite states by scattering processes.
For the other three sets of parameters, shown in the re-
maining three panels of Fig. 1, it is also possible to find
regions of the phase diagram where no solutions are sta-
ble. These are the regions where the proposed solution,
given by Eq. 4, where only the two frequency states, ω1

and ω2, are populated, is not a stable solution because
satellite states start also to be populated — our analysis
giving the threshold for this to happen.

To further discuss the stability of the system with re-
spect to small perturbations, we plot the dispersion of the
imaginary part of the excitation eigenfrequency ω = LP±

j

for several points of the stability curves shown in Fig. 2.
We start with the cases where the lower branch of the
stability curve became unstable at points Ai. For very
small values of F ′

2 the imaginary part of the dispersion
(top panel of Fig. 3) shows two peaks for given values
of k. One peak lies at higher value k+ = 0.83 µm−1

and one peak at lower value k− = −0.33 µm−1 with
k+ + k− = 2k1. This two-peaks structure is a precur-
sor of a parametric instability due to the scattering be-
tween two particles in the component of the condensate
with momentum k1. This situation corresponds exactly
to the case of one component fluids. When the pump
intensity F ′

2 is slightly increased (middle panel) we ob-
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FIG. 3: (Color online) Dispersion of the imaginary part of
the excitation eigenfrequency ω = LP±

j . The three panels
correspond to points Ai with i = 1, 2, 3 of Fig. 2, where the
lower part of the stability curves become unstable. In blue
(red) the parts corresponding to the scattering of two particles
with k = k1 (k = k2).

serve 6 other peaks appearing in the imaginary part of
the dispersion. Two of these new peaks are such that
k+ + k− = 2k1 (blue lines) while the other four can be
combined to identify two different scattering processes
with k+ + k− = 2k2 (red curves). This more compli-
cated structure of the imaginary parts of the eigenvalues
is consistent with the fact that with two components a
richer mechanisms of scattering might occur. When the
intensity of F ′

2 is further increased (lower panel), still 4
different scattering may occur but, in this case, it is the
scattering between two particles with k2 that induce the
instability of the system.
For the transition from stable to unstable regions of the

higher branch of the stability curve we plot the dispersion
of the imaginary part of the excitation eigenfrequency
ω = LP±

j for points Bi in Fig. 4. In analogy with the case
of fluids with one component, for low intensities of pump
2, the imaginary part of the dispersion shows a peak at
the wavevector of pump 1, a clear precursor of a Kerr

FIG. 4: Dispersion of the imaginary part of the excitation
eigenfrequency ω = LP±

j . The three panels correspond to
points Bi with i = 1, 2, 3 and C of Fig. 2, where the higher
part of the stability curve becomes unstable.

instability. When the intensity of pump 2 is increased
new peaks appear in the imaginary part. In the case of
point B2 two new peaks are precursors of a parametric
instability for the state with k = 0.25 [µm−1] even if the
mechanism responsible for the instability of the solution
is still of Kerr type. It is only when the pump intensity
F ′
2 is further increased (point B3) that the two peaks at
k− = 0.15 and k+ = 0.35 [µm−1] became more important
and the mechanism of instability is of the parametric
type. Finally in the lower right panel (corresponding to
point C) of Fig. 4 a single peak at k = k1 is the precursor
of a Kerr-type instability that ends the region with three
stable solutions in the right panel of Fig. 2.

Multistability also manifests itself in a hysteresis loop
for the populations and emission intensities obtained
with a cycle of first increasing and later decreasing the
pumping intensities. Here, the presence of three stable
solutions gives more complicated loops than the ones ob-
tained for a bistable system in a single-component po-
lariton fluid. In order to study this aspect, we calcu-
late the exciton emission intensity at a given frequency
ωi normalized to the total exciton emission intensity,
αi = |ψss

iX
|2/(|ψss

1X |2 + |ψss
2X |2), along a closed path of

varying pumping intensities. The panels A) and B) of
Fig. 5 respectively show the hysteresis cycles of α1 when
the two pump intensities change along either the blue or
the higher horizontal black line of Fig. 1. In panel A), one
starts from a low value of F ′

1 taking F ′
2 = 0.13 [meV3/2]

so that the population of state 2 is much higher than
the population of state 1, i.e. α1 ≪ 1. Increasing F ′

1

the two populations smoothly evolve until F ′
1 ≈ 0.05

[meV3/2] and F ′
2 ≈ 0.09 [meV3/2]. At this point F ′

2 is
too weak to sustain high population densities in state 2
and, therefore, the system jumps to a new stable con-
figuration, in which the populations of both states are
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FIG. 5: (Color online) Hysteresis cycles of α1 =
|ψss

1X |2/(|ψss
1X |2+|ψss

2X |2) [dimensionless] as a function of F ′
1 for

different values of F ′
2 — stable solutions are in black, while the

hysteresis cycle performed by the system is in brown. Panel
A: F ′

2 = 0.14 − F ′
1 as in the blue line of Fig. 1. Panel B:

F ′
2 = 0.08 [meV3/2] as in the horizontal black line of Fig. 1.

low, i.e. α1 ≈ 0.5. A further increase of F ′
1 produces a

smooth evolution of the two populations until F ′
1 ≈ 0.11

[meV3/2] when the system jumps to a third configuration
with a population in state 1 much higher than in state 2,
i.e. α1 ≈ 1. When we revert the variation of the pump-
ing intensities along the same path, the jumps to states
corresponding to intermediate and low values of α1 are
shifted to the left of the ones just described for increasing
F ′
1. The multistable hysteresis loop shown in Fig. 5A) is

related to the fact that the two pumping lasers are at
different pumping angles, ki, and pumping frequencies,
ωi. Therefore the jumps from low to high population for
each component appear at different values of the pump-
ing intensities, producing the multistable behavior of α1.
A similar situation occurs when the system evolves

along a path on which one of the pumping intensities
remains constant, while the other varies (black horizon-
tal line at F ′

2 = 0.08 of panel 1 in Fig 1), as shown in
Fig. 5B). Starting the with F1 = 0, α1 increases smoothly
from zero following the lower branch up to F ′

1 = 0.06
[meV3/2]. At this point α1 jumps from values of the or-

der of 0.01 to 0.3, corresponding to a population of state
1 being smaller but non-negligible compared to state 2.
As F ′

1 further increases up to 0.08 [meV3/2], α1 again
jumps abruptly to values of the order of 0.95. In the re-
verse process, F ′

1 is decreased completing the loop. Also
in this case, the jumps from high to low values of α1

are shifted to the left because of the different angles and
energies at which the lasers are pumping the two com-
ponent of the fluid. It is worth noting that the length
and the height of the different plateaus of the hysteresis
loops can be efficiently tuned by carefully choosing the
path followed by the intensities, angles and frequencies
of the pumping lasers.

IV. CONCLUSION

To summarize, we have studied the stability of a two-
component exciton-polariton fluid under resonant exci-
tation of two pumping lasers with independently tunable
frequencies, angles of incidence and intensities. We have
studied the effect of the detuning between the laser pump
and the bare LP branch, and discussed the different kinds
of instability that might occur for different values of the
parameters. We have shown that, even though the kind
of instabilities are the same as in the one component case
(Kerr or parametric), here the interplay between different
instabilities in the two components of the fluid, can pro-
duce a much richer picture. Moreover, we have shown
that since each component of the fluid jumps between
stable states of its population at a different values of the
pumping intensity, the system sustain multistable hys-
teresis loops that can be easily modulated by changing
the parameters of the pumping lasers. Finally, we believe
that, due to the wide range of parameters for which the
system is multistable, and due to the increased number
of degrees of freedom with respect to the spin-dependent
case, multiatability and hysteresis loops should be within
an experimental reach. Therefore, the novel system of
two-component fluid is a promising candidate for the re-
alization of optical switches and memories.
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