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4INO-CNR BEC Center and Universitá di Trento, via Sommarive 14, I-38123 Povo, Italy

5Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
6Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

(Received 8 March 2015; published 23 July 2015)

Superfluidity, which is the ability of a liquid or gas to flow with zero viscosity, is one of the most remarkable

implications of collective quantum coherence. In equilibrium systems such as liquid 4He and ultracold atomic

gases, superfluid behavior conjugates diverse yet related phenomena, such as a persistent metastable flow in

multiply connected geometries and the existence of a critical velocity for frictionless flow when hitting a static

defect. The link between these different aspects of superfluid behavior is far less clear in driven-dissipative

systems displaying collective coherence, such as microcavity polaritons, which raises important questions about

their concurrency. With a joint theoretical and experimental study, we show that the scenario is particularly rich

for polaritons driven in a three-fluid collective coherent regime, i.e., a so-called optical parametric oscillator. On

the one hand, the spontaneous macroscopic coherence following the phase locking of the signal and idler fluids

has been shown to be responsible for their simultaneous quantized flow metastability. On the other hand, we

show here that the pump, signal, and idler have distinct responses when hitting a static defect; while the signal

displays modulations that are barely perceptible, the ones appearing in the pump and idler are determined by

their mutual coupling due to nonlinear and parametric processes.

DOI: 10.1103/PhysRevB.92.035307 PACS number(s): 03.75.Kk, 71.36.+c, 42.65.Yj

I. INTRODUCTION

Microcavity polaritons, which are the quasiparticles re-

sulting from the coherent strong coupling between quantum-

well excitons and cavity photons [1], have unique mixed

matter-light properties that none of their constituents displays

on its own. Because of their energy dispersion and their

strong nonlinearity inherited from the excitonic components,

polaritons continuously injected by an external laser into a

pump state with suitable wave vector and energy can undergo

coherent stimulated scattering into two conjugate states [2–4],

namely the signal and the idler, a process known as optical

parametric oscillation (OPO). Since their first realization

[5–9], the interest in microcavity optical parametric phenom-

ena has involved several fields of fundamental and applicative

research [10–16].

Recently, considerable resources have been invested in

exploring the fundamental properties of parametric processes,

including the possibility of macroscopic phase coherence

and superfluid behavior [17]. In spite of the coherent nature

of the driving laser pump, the OPO process belongs to

the class of nonequilibrium phase transitions in which a

U(1) phase symmetry is spontaneously broken [18]. While

the phase of the pumped mode is locked to the incident

laser, the phases of the signal and idler are free to be

simultaneously rotated in opposite directions. Because of

*lorenzo.dominici@gmail.com
†Author to whom all correspondence should be addressed:

francesca.marchetti@uam.es

this phase freedom, recent experiments [19] have tested

the OPO superfluid properties by exploring the physics of

the signal-idler order parameter, demonstrating the existence

and metastability of vortex configurations. As the order

parameter involves both the signal and the idler, their phase

winding have opposite signs [19–21]. Crucially, this causes

both OPO fluids to display quantized flow metastability

simultaneously.

While in equilibrium condensates different aspects of

superfluidity are typically closely related [22], this is no longer

true in a nonequilibrium context such as for microcavity

polaritons [17]. In particular, those aspects of superfluidity

related to frictionless flow around defects are expected to be

much more involved in OPO condensates than for any other

investigated polariton condensates, such as for the case of in-

coherent pumping [23,24] and single-state resonantly pumped

microcavities [25]. Independent of the pumping scheme, the

driving and the polariton finite lifetime prompt questions

about the meaning of superfluid behavior when the spectrum

of collective excitations is complex rather than real, raising

conceptual interrogatives about the applicability of a Landau

criterion [24]. However, an additional complexity character-

izes the OPO regime, i.e., the simultaneous presence of three

oscillation frequencies and momenta for the pump, signal,

and idler correspondingly multiplies the number of collective

excitation branches [18]. Note that from an experimental

point of view, pioneering experiments [26] have observed a

ballistic nonspreading propagation of signal/idler polariton

wave packets in a triggered-OPO configuration. However,

given the complexity of the dynamics as well as the nonlinear

interactions involved in this time-dependent configuration
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[27], a theoretical understanding of these observations is not

complete yet.

This article reports a joint theoretical and experimental

study of an OPO configuration in which a wide and steady-state

condensate hits a stationary localized defect in the microcavity.

Contrary to the criterion for quantized flow metastability

for which the signal and idler display simultaneous locked

responses, we find that their scattering properties when the

OPO hits a static defect are different. In particular, we

investigate the scattering properties of all three fluids, the

pump, the signal, and the idler, in both real and momentum

space. We find that the modulations generated by the defect in

each fluid are not only determined by its associated Rayleigh

scattering ring, but each component displays additional rings

because of the cross-talk with the other components imposed

by nonlinear and parametric processes. We single out three

factors determining which one of these rings has the biggest

influence on each fluid response: the coupling strength between

the three OPO states, the resonance of the ring with the

blueshifted lower polariton dispersion, and the values of each

fluid group velocity and lifetime together establishing how

far each modulation can propagate from the defect. The

concurrence of these effects implies that the idler strongly

scatters inheriting the same modulations as the pump, while

the modulations due to its own ring can propagate only very

close to the defect and cannot be appreciated. However,

the modulations in the signal are strongly suppressed and

not at all visible in experiments because the slope of the

polariton dispersion in its low momentum component brings

all Rayleigh rings coming from the pump and idler out of

resonance.

Note that the kinematic conditions for OPO are incompati-

ble with the pump and idler being in the subsonic regime. Thus

the coupling between the three components always implies

some degree of scattering in the signal. In practice, the small

value of the signal momentum strongly suppresses its actually

visible modulations, something confirmed by the experimental

observations.

II. MODEL

The dynamics of polaritons in the OPO regime, and their

hydrodynamic properties when scattering against a defect, can

be described via a classical driven-dissipative nonlinear Gross-

Pitaevskii equation (GPE) for the coupled exciton and cavity

fields ψX,C(r,t) (� = 1) [17,28]:

i∂t

(

ψX

ψC

)

= Ĥ

(

ψX

ψC

)

+
(

0

Fp(r,t)

)

. (1)

The dispersive X and C fields decay at a rate γX,C and are

coupled by the Rabi splitting �R , while the nonlinearity is

regulated by the exciton coupling strength gX:

Ĥ =

(

ωX
−i∇ − i

γX

2
+ gX|ψX|2 �R/2

�R/2 ωC
−i∇ − i

γC

2
+ Vd

)

. (2)

We describe the defect via a potential Vd (r) acting on

the photonic component; this can either be a defect in

the cavity mirror or a localized laser field [25,29,30]. In

the conservative, homogeneous, and linear regime [γX,C =

0 = Vd (r) = gX], the eigenvalues of Ĥ are given by the

lower (LP) and upper polariton (UP) energies, 2ω
LP,UP
k =

ωC
k + ωX

k ∓
√

(ωC
k − ωX

k )2 + �2
R . The cavity is driven by a

continuous-wave laser field Fp(r,t) = Fp(r)ei(kp ·r−ωp t) into

the OPO regime: Here, polaritons are continuously injected

into the pump state with frequency ωp and momentum kp, and,

above a pump strength threshold, they undergo coherent stim-

ulated scattering into the signal (ωs,ks) and idler (ωi,ki) states.

As a first step, it is useful to get insight into the system

behavior in the simple case of a homogeneous pump of strength

Fp(r) = fp. A numerical study of the coupled equations

(1) for the more realistic case of a finite-size top-hat pump

profile Fp(r) will be presented later. To further simplify

our analysis, we assume here that the UP dispersion does

not get populated by parametric scattering processes, and

thus, by means of the Hopfield coefficients 2X2
k,2C2

k =
1 ± (ωC

k − ωX
k )/

√

(ωC
k − ωX

k )2 + �2
R , we project the GPE (1)

onto the LP component [3,31] ψk = XkψX,k + CkψC,k, where

ψ(r,t) =
∑

k eik·rψk(t):

i∂tψk =
[

ωLP
k − i

γk

2

]

ψk + Ck

∑

q

CqVd (k − q)ψq

+
∑

k1,k2

gk,k1,k2
ψ∗

k1+k2−kψk1
ψk2

+ f̃p(t)δk,kp
. (3)

Here, γk = γXX2
k + γCC2

k is the effective LP decay

rate, the interaction strength is given by gk,k1,k2
=

gXXkXk1+k2−kXk1
Xk2

, and the pumping term is given by

f̃p(t) = Ckp
fpe−iωp t . Note that the problem dependence on

the exciton-exciton interaction strength gX can be removed by

rescaling both the LP field
√

gXψk(t) �→ ψk(t) and the pump

strength
√

gxfp �→ fp, something we will do later on to all

effects working in terms of energy blueshifts and the rescaled

pump intensity.

III. LINEAR-RESPONSE THEORY

In the limit where the homogeneously pumped system is

only weakly perturbed by the external potential Vd (r), we

apply a linear-response analysis [32]: The LP field is expanded

around the mean-field terms for the three n = 1,2,3 = s,p,i

OPO states [33],

ψ
k̃

=
3

∑

n=1

e−iωnt [ψnδk̃,0 + u
n,k̃

e−iωt + v∗
n,−k̃

eiωt ], (4)

where k̃ = k − kn. Equation (3) is expanded linearly in both

the fluctuations terms, u
n,k̃

and v
n,k̃

, as well as the defect

potential. At zeroth order, the three complex uniform mean-

field equations can be solved to obtain the dependence of the

signal, pump, and idler energy blueshifts, ǫn = gXX2
kn

|ψn|2,

on the system parameters [31,34]. A typical behavior of ǫn as

a function of the rescaled pump intensity Ip = gXC2
kp

f 2
p/X2

kp

in the optical limiter regime is plotted in the left panel of Fig. 1.

At first order, one obtains six coupled equations diagonal in

momentum space [18],

ωwk̃ = Lk̃wk̃ + 1
2
�d , (5)
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FIG. 1. (Color online) OPO mean-field blueshifts and fluctuation

Rayleigh rings in the linear-response scheme for homogeneous

pumping. Left panel: signal s [(blue) upper triangles], pump p

[(red) circles], and idler i [(green) lower triangles] mean-field energy

blueshifts ǫn=s,p,i (in units of γp = γkp
) vs the rescaled pump intensity

Ip (in units of γ 3
p ) in the optical limiter regime. Parameters are

�R = 5 meV, zero cavity-exciton detuning, γX = γC = 0.12 meV,

ωp − ωX
0 = −1.25 meV, kp = 1.6 μm−1, ks ≃ 0, and ki = 3.2 μm−1.

The shaded area is the stable OPO region, while the vertical dashed

line corresponds to the pump power value chosen for plotting the right

panel. Right panel: blueshifted LP dispersion (10) with superimposed

Rayleigh curves Ŵp,i,(u,v),k̃+kp,i
evaluated within the linear-response

approximation (same symbols as the left panel). The two rings

corresponding to the signal state, Ŵs,(u,v),k̃, are shrunk to zero because

ks ≃ 0.

for the six-component vector wk̃ = (u
n,k̃

,v
n,k̃

)T and for the

potential part, �d = (ψnCkn
Ck+kn

Vd (k),−ψ∗
nCkn

Ckn−kVd

(−k))T . In (5) we have only kept the terms oscillating at

the frequencies ωn ± ω and neglected the other terms in

the expansion (i.e., 2ωn − ωm ± ω), which are oscillating at

frequencies far from the LP band, and thus with negligible

amplitudes. In the particlelike and the holelike channels, the

Bogoliubov matrix determining the spectrum of excitations

can be written as [18]

Lk =

(

Mk Qk

−Q∗
−k −M∗

−k

)

, (6)

where the three OPO state components are

(Mk)mn =
[

ωLP
km+k − ωm − i

γkm+k

2

]

δm,n

+ 2

3
∑

q,t=1

gkm+k,kn+k,kt
ψ∗

q ψtδm+q,n+t , (7)

(Qk)mn =
3

∑

q,t=1

gkm+k,kq ,kt
ψqψtδm+n,q+t . (8)

In absence of a defect potential (�d = 0), Eq. (5) is

the eigenvalue equation for the spectrum of excitations of a

homogeneous OPO, i.e., det(Lk̃ − ω) = 0. The spectrum has

six branches, ωn,(u,v),k̃, labeled by n = s,p,i and (u,v). Even

though these degrees of freedom are mixed together, at large

momenta, one recovers the LP dispersions shifted by the three

states’ energies and momenta, i.e.,

lim
k̃≫

√
2mC�R

ωn,(u,v),k̃ = ±
(

ωLP
k−kn

− ωn

)

, (9)

where + (−) corresponds to the u (v) particlelike (holelike)

branch. The OPO solution is stable (shaded area in Fig. 1) as

far as Imωn,(u,v),k̃ < 0.

The shape of the patterns, or Cherenkov-like waves,

resulting from the elastic scattering of the OPO 3-fluids against

the static (ω = 0) defect can be determined starting from

the spectrum, and in particular evaluating the closed curves

Ŵn,(u,v),k̃ in k space, or “Rayleigh rings” [35] defined by

the condition Reωn,(u,v),k̃ = 0.1 The modulations propagate

with a direction η̂n,(u,v),k̃ orthogonal to each curve Ŵn,(u,v),k̃,

a pattern wavelength given by the corresponding |k̃|, and a

group velocity v
(g)

n,(u,v),k̃
= ∇k̃Reωn,(u,v),k̃, where ξn,(u,v),k̃ =

|v(g)

n,(u,v),k̃
/Imωn,(u,v),k̃| determines the distance, at any given

direction η̂n,(u,v),k̃, over which the perturbation extends away

from the defect. For a single fluid under a coherent pump,

the qualitative shape of the modulation pattern generated in

the fluid by the defect is mostly determined by the excitation

spectrum [36,37].

For OPO, the spectrum of excitation on top of each of

the three, n = 1,2,3, states (see [34]) generates six identical

Rayleigh rings Ŵn,(u,v),k̃ for the three states. The Rayleigh

rings for the OPO conditions specified in Fig. 1 are clearly

visible in the right panels of Fig. 2, where we plot the k-

space photoluminescence filtered at each state energy, i.e.,

|ψk̃(ωn)|2 = |ψnδk̃,0 + u
n,k̃

+ v∗
n,−k̃

|2. We have chosen here a

δ-like defect potential, Vd (k) = gd , but we have checked that

our results do not depend on its exact shape [34]. For the OPO

conditions considered here, the signal momentum is at ks ≃ 0,

and thus only four of the six rings are present. The same rings

are also plotted in the right panel of Fig. 1, shifted at each of the

three OPO states’ momentum kn, Ŵn,(u,v),k̃+kn
, and energies ωn.

It is important to note that, even though the three OPO states

have locked responses because they display the same spectrum

of excitations, only one of the rings Ŵn,(u,v),k̃+kn
is the most

resonant at ωn with the interaction blueshifted lower polariton

dispersion,

ω̄LP
k = ωLP

k + 2X2
k

3
∑

n=1

ǫn, (10)

where ǫn = gXX2
kn

|ψn|2 are the mean-field energy blueshifts

(measured in Fig. 1 in units of γp = γkp
). This implies that

the most visible modulation for each fluid should be the most

resonant one, with superimposed weaker modulations coming

from the other two state rings.

In the specific case of Fig. 1, the signal is at ks ≃ 0 and thus

produces no rings in momentum space. The other four rings are

very far from being resonant with the blueshifted LP dispersion

(10) at ωs , and thus the signal displays only an extremely weak

modulation coming from the next closer ring, which is the one

associated with the pump state, Ŵp,u,k̃+ks
. We estimate that the

signal modulation amplitudes are roughly 1% of the average

1Even if they do not appear to be relevant here, note that the

presence of a nonvanishing imaginary part of the excitation spectrum

Imωn,(u,v),k̃ 
= 0 introduces some complications: Even in the absence

of any Rayleigh ring, the drag force can be nonvanishing and the

standard Landau criterion may fail to identify a critical velocity [24].
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FIG. 2. Linear responses to a static defect of the three OPO

states in real and momentum space. Rescaled filtered OPO emissions

[signal (top panels), pump (middle), and idler (bottom)] in real

space |ψ(r,ωn)|2/|ψn|2 (left panels in linear scale) and momentum

space |ψk̃(ωn)|2 (right panel in logarithmic scale) obtained within the

linear-response approximation. The OPO parameters are the same

as those in Fig. 1, and the strength of the δ-like defect potential,

Vd (k) = gd , is fixed to gd = 0.5γp μm2. For the top left panel of

the signal emission in real space, Gaussian filtering is applied to

enhance the short-wavelength modulations, the amplitudes of which

are otherwise roughly 1% of the average signal intensity and about

a factor of 10 times weaker than the modulation amplitudes in the

pump fluid.

signal intensity and about a factor of 10 times weaker than

the modulation amplitudes in the pump fluid. To show that the

signal has weak modulations coming from the pump, we apply

a Gaussian filter to the real-space images (see the inset of the

top-left panel of Fig. 2). As explained in more detail in [34],

Gaussian filtering consists of subtracting from the original

data a copy that has been convoluted with a Gaussian kernel,

thus getting rid of the long-wavelength modulations. This

procedure reveals that indeed the pump imprints its modulation

also into the signal, even though these are extremely weak, thus

leaving the signal basically insensitive to the presence of the

defect.

Pump and idler states are each mostly resonant with their

own rings, i.e., Ŵp,u,k̃+kp
at ωp and Ŵi,u,k̃+ki

at ωi , respectively.

Thus one should then observe two superimposed modulations

in both pump and idler filtered emissions, the stronger one for

each being the most resonant one. However, the modulations

associated with the idler only propagate very close to the

defect, at an average distance ξi,u,k̃ ∼ 1.7 μm before getting

damped, and thus they are not clearly visible. For the OPO

conditions considered, this is due to the small idler group

velocity v
(g)

i,u,k̃
, as the dispersion is almost excitonic at the idler

energy.

We can conclude that, for the typical OPO condition with

a signal at ks ≃ 0, considered in Figs. 1 and 2, the signal fluid

does not show modulations, and the extremely weak scattering

inherited from the pump state can be appreciated only after a

Gaussian filtering procedure of the image. In contrast, the idler

has a locked response to that of the pump state. Note that, for

the conditions shown in Fig. 1, as well as the other cases

considered in Ref. [34], the subsonic to supersonic crossover

of the pump-only state [25] happens well above the region

of stability of OPO. Thus it is not possible to study a case

in which the pump is already subsonic and at the same time

promotes stimulated scattering.

IV. EXPERIMENTS

We now turn to the experimental analysis. We use a

continuous-wave laser to drive a high-quality (Q = 14 000)

GaAs microcavity sample into the OPO regime—details on

the sample can be found in a previous publication [38,39].

The polariton dispersion is characterized by a Rabi splitting

�R = 5.4 meV, the exciton energy ωX
0 = 1485.26 meV, and

we choose a sample region where the cavity-exciton detuning

is slightly negative, −1 meV. We pump at kp = 0.89 μm−1

and ωp − ωX
0 = −2.43 meV, and, at pump powers 1.5 times

above threshold, we obtain an OPO with the signal at small

wave vector ks = 0.21 μm−1 and ωs − ωX
0 = −2.95 meV, and

the idler at ki = 1.57 μm−1 and ωi − ωX
0 = −1.91 meV. The

defect we use in the sample is a localized inhomogeneity

naturally present in the cavity mirror. Note that the exact

location of the defect can be extracted from the emission

spectrum, and it is indicated with a dot (orange) symbol in

the profiles of Fig. 3.

To filter the emission at the three states energies, Is,p,i (r =
x,y), and to obtain 2D spatial maps for the OPO three states,

we use a spectrometer and, at a fixed position x0, obtain

the intensity emission as a function of energy and position,

I (ǫ,x0,y). By changing x0, we build the full emission spectrum

as a function of energy and 2D position, I (ǫ,r). The filtered

emission for each OPO state is obtained from the integrals

In=s,p,i(r) =
∫ ωn+σ

ωn−σ
dǫI (ǫ,r), with σ = 0.08 meV. The results

are shown in Fig. 3 for, respectively, the signal (top panel),

pump (middle), and idler (bottom) profiles. The signal profile

shows no appreciable modulations around the defect locations,

nor could any be observed after applying a Gaussian filtering

procedure of the image. In contrast, in agreement with the

theoretical results, both filtered profiles of the pump and idler

show the same Cherenkov-like pattern. We extract the wave

crests from the idler profile [(yellow) contours in the bottom

panel] and superimpose them to the pump profile (middle

035307-4



MULTICOMPONENT POLARITON SUPERFLUIDITY IN THE . . . PHYSICAL REVIEW B 92, 035307 (2015)

FIG. 3. (Color online) Experimental OPO spectrum and filtered

emissions of the signal, pump, and idler in the presence of a structural

defect. The six panels show the filtered emission profiles in real space

of the signal (top), the pump (middle), and the idler (bottom) Is,p,i(r).

A Gaussian filtering to enhance the short-wavelength modulations

is applied in the right column panels. Here, the extracted wave

crests from the idler emission (yellow contours in the bottom panel)

are also superimposed to the pump profile (middle) by applying

a π -phase shift. The (orange) dot indicates the position of the

defect. The lower panel shows the experimental OPO spectrum.

Energy and momentum of the three OPO states are labeled with a

(blue) upper triangle (signal), a (red) circle (pump), and a (green)

lower triangle (idler), while the localized state, clearly visible just

below the bottom of the LP dispersion, is indicated with the symbol

d . The bare LP dispersion is extracted from an off-resonant low

pump power measurement, as well as the emission of the exciton

reservoir (X) and that of the UP dispersion (each in a different

scale).

panel) with an added π -phase-shift, revealing that the only

modulations visible in the idler state are the ones coming from

the pump state.

V. NUMERICAL ANALYSIS

The agreement between the results obtained experimentally

and within the linear-response approximation is additionally

confirmed by an exact full numerical analysis of the coupled

equations (1) for a finite-size pump via a fifth-order adaptive-

step Runge-Kutta algorithm. Details are given in [34]. The

pumping conditions are very similar to those previously

considered in the linear-response approximation of Figs. 1

and 2, while the pump profile Fp(r) is now a finite-size top

FIG. 4. (Color online) Full numerical responses to a static defect

of the three OPO states in real and momentum space. Filtered OPO

emissions [signal (top panels), pump (middle), and idler (bottom)]

in real space |ψC(r,ωn)|2 (left panels in linear scale) and momentum

space |ψC(k̃,ωn)|2 (right panel in logarithmic scale) obtained by a

full numerical evaluation of (1). For the top left panel of the signal

space emission, Gaussian filtering is applied to enhance the short-

wavelength modulations of this state, revealing that the modulations

corresponding to the pump state are also imprinted (though weakly)

into the signal. The symbols indicate the pump ring diameter extracted

from fitting the upstream modulations and resulting in a density-wave

wave vector coinciding with that of the pump, kp = 1.6 μm−1.
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hat. In particular, we consider the case of zero cavity-exciton

detuning, kp = 1.6 μm−1, ωp − ω0
X = −0.44 meV, and the

pump power strength is fixed just above threshold, so that

to produce a stable steady state OPO. This, in absence of

the defect, is characterized by a signal at small wavevector

ks = −0.2 μm−1 and idler at ki = 3.4 μm−1.

When adding a localized defect potential, the steady-state

OPO develops Rayleigh rings in momentum space, yet, as

shown in [34], the spectrum continues to be δ-like in energy,

allowing us to easily filter in energy the emission of the three

OPO states. The results are shown in Fig. 4, where real-space

emissions |ψC(r,ωn)|2 are plotted in the left panels, while

the ones in momentum space |ψC(k̃,ωn)|2 are plotted in the

right panels. We observe a very similar phenomenology to

that obtained in the linear approximation shown in Fig. 2.

The signal now is at slightly negative values of momenta

ks = −0.2 μm−1, thus implying a very small Rayleigh ring

associated with this state. Thus we observe that only the

modulations associated with the pump are the ones that are

weakly imprinted in the signal state and that can be observed

by means of a Gaussian filtering (inset of the top-left panel).

We have fitted the upstream wave crests and obtained the

same modulation wave vector as the pump one [(blue) upper

triangles]. Similar to the linear-response case, we also find

here that the most visible perturbation in the emission filtered

at the idler energy is the one due to the pump Rayleigh ring.

As before, the modulations due to the idler Rayleigh ring

cannot propagate far from the defect because of the small

group velocity associated with this state.

VI. CONCLUSIONS

To conclude, we have reported a joint theoretical and exper-

imental study of the superfluid properties of a nonequilibrium

condensate of polaritons in the so-called optical parametric

oscillator configuration by studying the scattering against a

static defect. We have found that while the signal is basically

free from modulations, the pump and idler lock to the same

response. We have highlighted the role of the coupling between

the OPO components because of nonlinear and parametric

processes. These are responsible for the transfer of the spatial

modulations from one component to the other. This process

is most visible in the clear spatial modulation pattern that

is induced by the nonsuperfluid pump onto the idler, while

the same modulations are only extremely weakly transferred

into the signal, because of its low characteristic wave vector,

so much that experimentally cannot be resolved. The main

features of the real- and momentum-space emission patterns

are understood in terms of Rayleigh scattering rings for each

component and a characteristic propagation length from the

defect; the rings are then transferred to the other components

by nonlinear and parametric processes.

Much interest has been recently devoted to aspects related

to algebraic order [40,41] and superfluid response [42]

in driven-dissipative polariton condensates. Our theoretical

and experimental results further stress the complexities and

richness involved when looking for superfluid behaviors in

nonequilibrium multicomponent condensates such as the ones

obtained in the optical parametric oscillation regime.
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L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni,

J. L. Staehli, and B. Deveaud, Nature (London) 414, 731

(2001).

[10] K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, Nature

(London) 431, 167 (2004).

[11] S. Savasta, O. DiStefano, V. Savona, and W. Langbein, Phys.

Rev. Lett. 94, 246401 (2005).

[12] L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van

Houwelingen, H. Zbinden, G. Leo, and V. Berger, Phys. Rev.

Lett. 97, 173901 (2006).

[13] M. Abbarchi, V. Ardizzone, T. Lecomte, A. Lemaitre, I. Sagnes,

P. Senellart, J. Bloch, P. Roussignol, and J. Tignon, Phys. Rev.

B 83, 201310 (2011).

035307-6

http://dx.doi.org/10.1103/PhysRevB.62.R4825
http://dx.doi.org/10.1103/PhysRevB.62.R4825
http://dx.doi.org/10.1103/PhysRevB.62.R4825
http://dx.doi.org/10.1103/PhysRevB.62.R4825
http://dx.doi.org/10.1103/PhysRevB.63.041303
http://dx.doi.org/10.1103/PhysRevB.63.041303
http://dx.doi.org/10.1103/PhysRevB.63.041303
http://dx.doi.org/10.1103/PhysRevB.63.041303
http://dx.doi.org/10.1088/0268-1242/18/10/301
http://dx.doi.org/10.1088/0268-1242/18/10/301
http://dx.doi.org/10.1088/0268-1242/18/10/301
http://dx.doi.org/10.1088/0268-1242/18/10/301
http://dx.doi.org/10.1103/PhysRevLett.85.3680
http://dx.doi.org/10.1103/PhysRevLett.85.3680
http://dx.doi.org/10.1103/PhysRevLett.85.3680
http://dx.doi.org/10.1103/PhysRevLett.85.3680
http://dx.doi.org/10.1103/PhysRevLett.84.1547
http://dx.doi.org/10.1103/PhysRevLett.84.1547
http://dx.doi.org/10.1103/PhysRevLett.84.1547
http://dx.doi.org/10.1103/PhysRevLett.84.1547
http://dx.doi.org/10.1103/PhysRevB.62.R13278
http://dx.doi.org/10.1103/PhysRevB.62.R13278
http://dx.doi.org/10.1103/PhysRevB.62.R13278
http://dx.doi.org/10.1103/PhysRevB.62.R13278
http://dx.doi.org/10.1103/PhysRevB.62.R16247
http://dx.doi.org/10.1103/PhysRevB.62.R16247
http://dx.doi.org/10.1103/PhysRevB.62.R16247
http://dx.doi.org/10.1103/PhysRevB.62.R16247
http://dx.doi.org/10.1038/414731a
http://dx.doi.org/10.1038/414731a
http://dx.doi.org/10.1038/414731a
http://dx.doi.org/10.1038/414731a
http://dx.doi.org/10.1038/nature02838
http://dx.doi.org/10.1038/nature02838
http://dx.doi.org/10.1038/nature02838
http://dx.doi.org/10.1038/nature02838
http://dx.doi.org/10.1103/PhysRevLett.94.246401
http://dx.doi.org/10.1103/PhysRevLett.94.246401
http://dx.doi.org/10.1103/PhysRevLett.94.246401
http://dx.doi.org/10.1103/PhysRevLett.94.246401
http://dx.doi.org/10.1103/PhysRevLett.97.173901
http://dx.doi.org/10.1103/PhysRevLett.97.173901
http://dx.doi.org/10.1103/PhysRevLett.97.173901
http://dx.doi.org/10.1103/PhysRevLett.97.173901
http://dx.doi.org/10.1103/PhysRevB.83.201310
http://dx.doi.org/10.1103/PhysRevB.83.201310
http://dx.doi.org/10.1103/PhysRevB.83.201310
http://dx.doi.org/10.1103/PhysRevB.83.201310


MULTICOMPONENT POLARITON SUPERFLUIDITY IN THE . . . PHYSICAL REVIEW B 92, 035307 (2015)

[14] V. Ardizzone, M. Abbarchi, A. Lemaitre, I. Sagnes, P. Senellart,

J. Bloch, C. Delalande, J. Tignon, and P. Roussignol, Phys. Rev.

B 86, 041301 (2012).

[15] W. Xie, H. Dong, S. Zhang, L. Sun, W. Zhou, Y. Ling, J. Lu, X.

Shen, and Z. Chen, Phys. Rev. Lett. 108, 166401 (2012).

[16] T. Lecomte, V. Ardizzone, M. Abbarchi, C. Diederichs, A.

Miard, A. Lemaitre, I. Sagnes, P. Senellart, J. Bloch, C.

Delalande, J. Tignon, and P. Roussignol, Phys. Rev. B 87,

155302 (2013).

[17] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).

[18] M. Wouters and I. Carusotto, Phys. Rev. A 76, 043807 (2007).

[19] D. Sanvitto, F. Marchetti, M. Szymańska, G. Tosi, M. Baudisch,
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