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Abstract

Cell lineages describe the developmental history of cell populations and are produced by combining time-lapse

imaging and image processing. Biomedical researchers study cell lineages to understand fundamental processes,

such as cell differentiation and the pharmacodynamic action of anticancer agents. Yet, the interpretation of cell

lineages is hindered by their complexity and insufficient capacity for visual analysis. We present a novel approach

for interactive visualisation of cell lineages. Based on an understanding of cellular biology and live-cell imaging

methodology, we identify three requirements: multimodality (cell lineages combine spatial, temporal, and other

properties), symmetry (related to lineage branching structure), and synchrony (related to temporal alignment of

cellular events). We address these by combining visual summaries of the spatiotemporal behaviour of an arbitrary

number of lineages, including variation from average behaviour, with node-link representations that emphasise

the presence or absence of symmetry and synchrony. We illustrate the merit of our approach by presenting a

real-world case study where the cytotoxic action of the anticancer drug topotecan was determined.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications— J.3 [Com-
puter Applications]: Life and medical sciences—Biology and genetics

1. Introduction

Biology is in the midst of a paradigm shift. In contrast
to small-scale bench-top experiments, high-throughput mi-
croscopy enables biologists to design and automate large-
scale screens and collect results as digital images [Jen13].
Time-lapse microscopy captures the dynamic behaviour of
live samples by acquiring images at regular intervals and
image processing algorithms then track objects across con-
secutive images. The most sophisticated approaches produce
cell lineages by combining tracking with event detection,
where key cellular events such as cell division (mitosis) and
cell death are identified [ECKe13]. Image processing algo-
rithms also derive descriptive measures, including properties
related to location, morphology, and motility [CJLe06].

Cell lineages describe the genealogy of populations of
cells, capture information on cellular development, and rep-
resent contiguous cell cycles [Kha08, GLHR09]. A cell lin-
eage is a tree structure where vertices depict cells and
edges depict descendant relationships (see Figure 1). The
root represents the progenitor (the cell originally tracked;
Figure 1(a)) and descendent nodes represent the progeny
(generations of offspring; Figure 1(b)). A lineage captures
key events such as cell division and cell death (Figure 1(c)

and (d)) and additional data are often associated with nodes
(Figure 1(e)). This includes spatial locations of events, tem-
poral data, and derived properties. Temporal intervals be-
tween events capture cell cycle parameters. Every level cor-
responds to a generation of cells (Figure 1(f)) and non-death
leaves correspond to the end of an experiment (Figure 1(g)).

Despite the proven value and popularity of live-cell imag-
ing [Car07], it is difficult to extract insights from time-lapse
experiments [WSBe10]. To address this, we present a novel
interactive visualisation method for cell lineage data.

2. Related work

Several visualisation methods have been used to analyse data
derived from live-cell imaging. We survey these below.

2.1. Image-based approaches

A widely used method considers time-lapse images as con-
secutive frames in an animated movie. This enables the study
of cellular dynamics, such as migration and clustering dur-
ing embryo development [PM07]. Another method positions
images on a grid defined by data parameters. By mapping
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Figure 1: A cell lineage captures how (a) a progenitor cell

proliferates into (b) a progeny, or population of offspring.

It describes key cellular events such as (c) cell division and

(d) cell death. (e) Additional data are often associated with

cells. (f) Every level corresponds to a generation of cells and

(g) non-death leaves correspond to the end of an experiment.

time to the x-axis and imaging modalities to the y-axis, it
has been used to study the effect of viral infections on cell
motility [HLLK09]. A related method shows the temporal
changes of associated measures as a heatmap superimposed
on images. It has enabled scientists to analyse relationships
between cell division and protein localisation [GBBS09].

Visualisation of image data is useful for small-scale ex-
periments and for reporting. These methods, in particular
movies, illustrate the dynamic nature of the data. Still, due to
inherent scalability limits, analysis of larger experiments is
challenging. It is also difficult to make comparisons within
and across experiments to draw higher-level conclusions.

2.2. Aggregate plots

A popular way to address scalability is to derive measures
from image data and to visualise these at a cell population
level. Examples include [JKWe08]: histograms to show dis-
tributions of cells by, for example, their DNA content; scat-
terplots to consider relationships between pairs of derived
measures, for example, overall cell area versus cell nucleus
area; parallel coordinate plots to consider an arbitrary num-
ber of measures; and density plots where, for a pair of mea-
sures, the number of data points that map to a particular co-
ordinate are colour-coded.

Aggregate plots are useful for scenarios such as gating:
the identification of thresholds for perturbations, such as
drug dosage, to affect cell phenotypes [JKWe08]. These
“hits” are important for drug discovery. Because the plots are
familiar to many users, they are also effective for reporting
purposes. However, it is difficult to analyse low-level data,
such as single cell behaviour. Time, which is an important
property of time-lapse data, is also not treated explicitly.

2.3. Temporal plots

Temporal plots map aggregate data to a time axis. For exam-
ple, plotting the population size of a cell simulation model

as a function of time reveals different phases of development
in the resulting line chart [GLHR09]. A similar approach,
where structural properties of cell colonies cultivated under
different conditions are mapped to time, highlights different
behavioural dynamics for each condition [SHTe12].

In such aggregate representations, it is hard to deter-
mine if similar behaviour is exhibited across the board.
This can be addressed by aligning temporal plots by signif-
icant occurrences, such as a sudden drop in a derived mea-
sure [SMCe06]. Another approach is to consider key cellu-
lar events. Cumulative event curves, where running totals of
event types are mapped to time are useful for contrasting
experimental conditions, such as drug treatment, to control
conditions [KHCe07]. Typical event sequences can also be
derived from time-lapse data. Event-order maps show these
and allow event-based behaviour corresponding to different
experimental conditions to be characterised [WHNe09].

Users relate well to time. However, temporal plots typi-
cally show aggregate behaviour and do not support analysis
of individual cells and relationships between them.

2.4. Space-time cubes

Space-time cubes, adopted from time geography [Häg70],
are a mainstay of time-lapse data analysis. Cellular trajecto-
ries are mapped to space (x- and y-axes) and time (z-axis) in
3D. This gives rise to problems like overplotting and occlu-
sion [War01], and requires data filtering and navigating to an
appropriate perspective, which is cumbersome. Despite their
popularity, it is hard to find an example of real insight ob-
tained from space-time cubes in a live-cell imaging context.

2.5. Dimension reduction

Images can be considered as vectors of features that describe
quantified properties of cells or statistical properties of the
images themselves [HWKT09]. Dimension reduction tech-
niques, such as principal component analysis and Sammon
mapping, are then used to project images to 2D so they are
near each other when their descriptive vectors are proximate
in high-dimensional space [Fod02]. This is useful for sug-
gesting correlations and similarity classes. Still, since the
semantics of the high-dimensional distances that these meth-
ods preserve are usually unclear, it is challenging for users
to relate visual patterns to data characteristics.

2.6. Cell lineage visualisation

Limited results exist for visualising individual cell lineages.
Standard directed node-link diagrams are used with the pro-
genitor (root) at the left and progeny (ancestors) toward the
right, or oriented top-to-bottom [HMM00]. Branches en-
code cell division events and vertices are usually shown as
tracks to encode inter mitotic times (the interval between cell
birth and cell division or death) associated with individual
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cells [GLHR09,KHCe07]. Although node-link diagrams are
effective for showing structural properties, implementations
are typically very basic and do not support in-depth analysis
such as comparisons between multiple lineages. Also, lin-
eages cannot be considered in the context of associated data
such as spatial location and experiment parameters.

Stream-like visualisations have been used to show the
temporal behaviour of entire cell colonies [SHTe12]. How-
ever, this approach does not enable analysis of individual
lineages in the context of larger populations of cells.

2.7. Tree visualisation and movement data

Many methods exist to visualise single [Sch11], and mul-
tiple trees [GK10]. Advanced approaches allow structural
comparisons of arbitrary numbers of trees, but unlike
cell lineages, they require trees to either have identical
leaves [BvLHe11], or to have predefined meaning associated
with structural properties [LKBe14]. These methods were
not developed to emphasise the aspects highlighted by our
requirements analysis (see next section). As we will show,
for individual lineages, domain experts have a clear prefer-
ence for directed node-link views (subject to our require-
ments). This rules out other tree visualisation methods.

We also reviewed visualisation methods for movement
data [AA13]. In contrast to cell lineages, they cater for object
trajectories that do not divide, usually in geographic space.

3. Requirements analysis

All the above methods have drawbacks that limit their suit-
ability for rigorous cell lineage analysis. To better under-
stand the requirements for cell lineage visualisation, we con-
sidered biologists’ objectives and analysis paradigm, the bi-
ological phenomena described by lineages, and their data
characteristics. For this, we consulted biomedical domain
experts (second and third author) and reviewed the litera-
ture on high-throughput microscopy. Further domain experts
were involved during a two-day workshop.

3.1. Multimodality

Cell lineages combine relational, spatial, and temporal data.
Further, a key characteristic of high-throughput analysis is
the processing of image data to generate additional derived
properties for individual cells. This produces multivariate
data that are associated with cell lineages, including cell
cycle phases and event types [GLHR09]. Finally, metadata
describe different experimental conditions, such as adminis-
tered drugs and their concentrations. Downstream process-
ing may generate more metadata, for example, to classify
collections of lineages. There is an unmet requirement to
support visual analysis of the multimodal data associated
with cell lineages at different levels of detail, from different
perspectives, and across multiple data sets.

3.2. Symmetry

Biological studies have shown that cells and their descen-
dants often escape from perturbation effects. There is evi-
dence that drug delivery to progenitor cells is heterogenous
due to underlying drug-resistance properties [CECe08], and
that the consequences of drugs are distributed asymmetri-
cally in the progeny of tumour cells [SMKM10]. This sug-
gests that, when viewed with respect to branching points,
subtrees in a cell lineage structure will differ. The prolifera-
tion of cells represented by some subtrees will be adversely
effected while other subtrees will appear to remain unper-
turbed. Users must be supported in studying the presence
or absence of lineage symmetry in terms of cellular events
(cell division and cell death), but also in terms of additional
derived properties. This requirement is not met by the visu-
alisation techniques available to biomedical researchers.

3.3. Synchrony

The cell cycles of healthy and unperturbed cells are expected
to exhibit conserved and regular temporal behaviour across
generations [KLCe11]. For example, apart from stochastic
variation, healthy cells generally have approximately equal
inter mitotic times as a population of cells proliferates. In
contrast, perturbed cells such as those in tumours or those
treated with drugs, are expected to exhibit more heteroge-
neous temporal behaviour. This implies that an emphasis
on temporal responses and timing of events, especially their
degree of synchronisation across generations, is important.
There is an unmet requirement for interactive visualisation
techniques that support users in analysing cell lineages to
identify and investigate the causes of temporal asynchrony
and how it relates to cellular events and the cell cycle.

4. Design

Section 3 shows that a critical gap remains: there is currently
very limited visualisation support to fully exploit cell lineage
data for hypothesis-driven or explorative analysis. To bridge
this gap, we developed a novel approach for cell lineage vi-
sualisation. Over a period of 18 months we combined the
expertise of a visualisation designer (first author), a bioin-
formatician (second author), and a cell biologist (third au-
thor). We followed an iterative design process by meeting
bi-weekly [PvW09]. The designer demonstrated progress on
a software prototype, while the biologists provided feedback
grounded in domain knowledge. Other domain experts pro-
vided input during a workshop.

We next describe our design and alternatives that were
considered. Our data multimodality requirement is ad-
dressed by combining spatial and temporal summaries of
user-specified groups of lineages (see Section 4.1), through
selection (Section 4.2), with the ability to view structural de-
tails of individual lineages. For individual lineages, our sym-
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Figure 2: (a) Grouping by metadata values. Lineages A, B,

and C are grouped according to the different values they take

for metadata fields M1, M2, and M3. (b) Spatial summaries

of groups of lineages. The field of view is divided into dis-

crete regions (3 × 3 in this example), and the average num-

ber of events per region is visualised as a heat map. (c) Tem-

poral summaries of groups of lineages. The average number

of events per generation is visualised as a bar chart.

metry and synchrony requirements are addressed by a repre-
sentation that emphasises these properties (Section 4.3).

4.1. Spatiotemporal overview

We designed an overview to show the dynamics of poten-
tially large numbers of lineages. In this section, we describe
how we enable users to aggregate lineages into groups and
how the spatial and temporal behaviour of groups of lineages
are visualised.

Grouping. For every lineage, metadata fields describe ex-
perimental parameters such as drug treatment and drug
dosage. Metadata are usually categorical, take a small num-
ber of values (≤ 20), and users understand their meaning. We
therefore apply the principle of faceting to show lineages in
terms of metadata [Tun09]. As Figure 2(a) shows, for ev-
ery user-selected metadata field, lineages are grouped by the
value they take for that field. Every group is shown as a rect-
angular icon that combines a summary visualisation of the
spatial and temporal behaviour of its member lineages.

Spatial summaries. The locations of cellular events are an
important analytical grounding for users and the top of ev-
ery icon summarises the positions of events in the field of
observation. Figure 2(b) illustrates our approach. We divide
the field into rectangular regions and, for all lineages in a
group, show the average (mean) number of events that oc-
cur in every region with a heatmap. Averages are binned and
colour-coded using an ordinal colour map [Bre]. The number
of regions is parameterised, but we find a small number, cur-
rently 5×5, sufficient for aggregate behaviour (Figure 3(a)).

We considered several design alternatives. Initially, we
showed the smallest convex polygon that contains all lin-
eage events in a group (see Figure 3(a.1)). Because domain
experts want to see concentrations of activity, which poly-
gons do not show, we developed the approach outlined above
(Figure 3(a.2)). However, we further refined our approach to
deal with additional challenges (Figure 3(a.3)).

First, some lineages may be very active in a region, lead-
ing to a high average that does not reflect that other lineages
may exhibit very little activity in that region (see lower right
region in Figure 2(b)). Second, heat maps work well for gen-
eral patterns, but not for accurate comparisons of activity
between regions. We address these shortcomings by redun-
dantly showing the average number of events in a region
with the height of a vertical bar and the standard deviation
with an error bar. Third, because there is often interest in cell
deaths, we show the average number of deaths in red.

Temporal summaries. The notion of a generation of cells
is fundamental in cell lineage analysis and closely related to
elapsed time (see Figure 1(f)). Cell lineages usually capture
a small number of generations (< 10). We leverage this by
summarising the temporal behaviour of the lineages in every
group, per generation. Figure 2(c) summarises this approach
where a bar chart visualises the average number of cellular
events in every generation. As with spatial summaries, varia-
tion from this average is important and we show the standard
deviation with error bars (Figure 3(b.1)). The average num-
ber of cell deaths is shown in red.

Domain experts found this representation very useful for
high-level insight into temporal behaviour but raised a con-
cern. In an ideal situation, every cell will divide into two
daughter cells, but our visualisation did not let them con-
sider this as contextual reference. To address this, we add
feint bars in the background that show the theoretical max-
imum number of events per generation and scale the height
of the foreground bars accordingly (Figure 3(b.2)). This en-
ables users to intuitively assess how aggregate behaviour de-
viates from the best-case scenario.

Overview and comparison. Groups of lineages represent
behaviour corresponding to different metadata values. To
support visual comparison of groups, we considered their
properties. There are typically fewer than 20 groups per
metadata field, but each can contain a large number of lin-
eages. Gleicher et al. note that juxtaposition, or small multi-
ples [Tuf90], is suitable for comparing a small number of
alternatives and, hence, we use this principle to visualise
groups of lineages. For every selected metadata field, the
groups are shown as rectangular icons laid out from left-to-
right and top-to-bottom. They are labeled with correspond-
ing metadata values and gauges show the number of lin-
eages in each group. Within each icon, the spatio-temporal
behaviour of the group is visualised as described above. Fig-
ure 4(a) and (b) show how this is implemented in our system.
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Figure 3: (a) Design alternatives for spatial summaries of grouped lineages. (a.1) The smallest convex polygon containing

all key events gives no indication of different levels of activity. (a.2) Division into rectangular sub-regions with the average

number of events shown as a heatmap. (a.3) For more precise analysis, the average number of events is redundantly encoded

with the height of a bar in each region and standard deviation is shown with vertical error bars. The average number of cell

deaths, an event type of great interest, is shown with the height of red bars. (b) Alternatives for temporal summaries of grouped

lineages. (b.1) A bar chart where for every generation, the average number of key events and the standard deviation is shown.

Cell deaths are in red. (b.2) To allow comparison of per-generation behaviour to an ideal scenario, the number of cell divisions

for a lineage where every cell divides into two daughter cells, is shown in the background. (c) An alternative for visualising

selected lineages as a scrolling list (compare to Figure 4(d)). The area of intersection of their “footprints” with a user-specified

lineage is computed and they are sorted in descending order of this area (dark grey). (d) Alternatives for visualising cell lineage

detail. (d.1) Lineage laid out by elapsed time. (d.2) To emphasise the presence or absence of symmetry, a lineage can be laid

out as it would be for a complete binary tree, but screen space is used very inefficiently. A more suitable approach is (d.3.1) to

position the subtree with the smallest total inter mitotic time over all its descendants nearer the top at every branching point,

and (d.3.2) centre parent nodes between direct child nodes and not between all descendants. (d.4) To highlight synchrony, the

layout can be interactively changed to align nodes per generation. Average inter mitotic time ± standard deviation is shown as

vertical lines behind every generation. When multiple lineages are displayed, they share a temporal timescale on the x-axis.

4.2. Selections

Grouping and faceted navigation lets users identify and se-
lect subsets of lineages corresponding to particular scenar-
ios, for example, a particular drug and concentration. Users
can also interact with collections of lineages independently
of the number of individual lineages (assuming adequate
hardware support). Moving the cursor over an icon brings it
in focus by highlighting (see Figure 4(b)). All other groups
that contain lineages in the focus group are also highlighted
so users can inspect the distribution of lineages in terms of
metadata. All highlighted icons are selected when users click
or tap their input device. Selections are refined using stan-
dard interaction techniques to add or remove groups of lin-
eages. A coloured gauge below each icon shows the number
of lineages selected as a ratio of group size. Unselected lin-
eages can be filtered out (Figure 4(c)).

Initially, all selected lineages were shown in full detail
(see Section 4.3 below), but domain experts found this over-
whelming. They indicated that they prefer concise descrip-
tions of the individual selected lineages to then pick lineages
to view in detail. To achieve this, we reuse the spatiotem-
poral icons described in Section 4.1. A user selection can
contain large numbers of lineages and we considered alter-
natives to display their icons.

Our first approach was to show lineages as a scrolling
list, where they are sorted according to the area size of the
intersection of every lineage’s “footprint” (smallest convex
polygon containing all event positions) and that of a user-
selected reference lineage (see Figure 3(c)). Domain experts
found scrolling lists frustrating to use and specifying ref-
erence lineages complicated interaction. Instead, we now
use pagination, where a maximum number of lineages are
shown per page (Figure 4(d)). Lineages are sorted accord-
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6 A. J. Pretorius, I. A. Khan, & R. J. Errington / Cell lineage visualisation

ing to how similar their spatial summaries are to a uniformly
dense heatmap, or how similar their generation sizes are to
those of a perfect lineage (a complete binary tree). Users
navigate between pages of icons in terms of an understood
sorting metric to select individual lineages to view in detail.

4.3. Structural detail

When users select individual lineages from the paginated
icons, they are shown in detail (see Figure 4(e)). For this, do-
main experts had an outspoken preference for directed node-
link diagrams, a de-facto standard due their use for depicting
cell lineages in print publications (for example, [KHCe07]).

We use a left-to-right orientation to conform to our col-
laborators’ preferred convention when including lineage di-
agrams in reports and articles, and to be consistent with our
generation-based temporal summaries (see Section 4.1). We
started by visualising a cell lineage by elapsed time, using
the conventions described in Section 2.6 (see Figure 3(d.1)).
Every cell is represented by a horizontal track of which the
length depicts its inter mitotic time. A cell birth event re-
sults in two daughter cell tracks branching from the mother
cell’s track. We use vertical connectors between mother
and daughter cells to align their temporal intervals. Cellu-
lar events are indicated by colour-coded text labels. When
multiple lineages are selected, they are vertically juxtaposed
on the same timescale to facilitate comparison.

A cell can be in one of several phases, for example, our
current data distinguishes between the I-phase (interphase),
when a cell grows and DNA is duplicated, and M-phase (mi-
tosis), when it divides. We colour-code these phases on every
track in light and dark blue, respectively (see Figure 3(d)).
As higher fidelity data becomes available, this approach can
be extended to show more detailed cell-phase data, for ex-
ample, interphase can be further subdivided into G1-, S-, and
G2-phases. Users can also select any derived attribute to map
onto the cell tracks. Our software determines the type of data
(nominal, ordinal, or numerical) and chooses an appropriate
colour-map accordingly.

Symmetry. To let users analyse symmetry, we considered
different approaches. We first positioned nodes as they
would be for a complete binary tree of the same height (cor-
responding to a scenario where every cell division leads to
two daughter cells). This highlights the presence or absence
of symmetry, but at the cost of significant display space (see
Figure 3(d.2)). Because domain experts routinely wish to
analyse several lineages simultaneously, this is not desirable.

As an alternative, we make two simple adaptations to
Reingold and Tilford’s “tidy” algorithm, a standard tree lay-
out for directed node-link diagrams [RT81]. First, we sort
the subtrees at each branching point so that the subtree with
the shortest total inter mitotic length (the sum for all its de-
scendants) is positioned nearer the top (see Figure 3(d.3.1)).
This already improves the ability to identify the presence

or absence of symmetry in a consistent way. Second, the
tidy algorithm attempts to ensure that the layout and its mir-
ror image are similar by positioning nodes vertically at the
geometric centre of all of their descendants (when laid out
left-to-right). To prevent asymmetric trees from being drawn
symmetrically, we position every node vertically at the cen-
tre of its direct child nodes (Figure 3(d.3.2)). Our collabora-
tors were enthusiastic about these subtle changes. We argue
that they offer an effective compromise for addressing sym-
metry without the wasted space of our initial approach.

Synchrony. To address our synchrony requirement, we de-
veloped a technique where, with a lineage from left-to-right,
tracks corresponding to every generation are aligned at the
left and visualised on vertical bands of equal width (see Fig-
ure 3(d.4)). For a single lineage, the width of the bands is de-
termined by the longest track in the lineage. When multiple
lineages are selected, the width is determined by the longest
track in all the lineages and used in all visualisations. Dashed
lines connect nodes where the track length is less than this
maximum. This approach enables users to compare the de-
gree of synchrony within individual generations and, when
several lineages are selected, across lineages.

To further support comparison, the average (mean) inter
mitotic time and standard deviation are computed for each
lineage and drawn as vertical lines behind every generation
(average: solid; average ± standard deviation: dashed). This
provides further context for analysis which, by comparing
horizontal distances to references, is less arduous and quanti-
tatively more precise, while providing information on the de-
gree of variation (an important capability noted previously).

Spatial field. Biologists occasionally want to see if there are
similar spatial patterns or interaction between cells that share
the same field of observation. To allow for this, we include
a view where the branching structures of selected lineages
are shown in a representation of the spatial field (see Fig-
ure 4(f)). It is linked to all other views so users can investi-
gate spatial movement in relation to other data properties.

4.4. Implementation

We implemented our approach in a system called Cell-o-
pane [Cel], using Javascript and the D3.js visualisation li-
brary [BOH11]. It runs in any modern web browser and
reads cell lineages in JSON data format, where every cell
is described by the properties outlined by Khan [Kha08].

5. Case study - cytotoxicity of an anticancer agent

To illustrate the merit of our approach, we now present a case
study performed in a typical cell biology and microscopy
laboratory. More specifically, it has been shown that the an-
ticancer drug topotecan imparts an acute cytotoxic effect on
tumour cells [Pom06], defined as the elimination of cells
by cell death. It is also known that some cells escape drug
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Figure 4: Cell lineage visualisation. (a) For every selected metadata field, a group is created for each unique value it can take.

Every lineage is allocated to one group for each field, corresponding to the value that it takes for that field (see Figure 2(a)).

(b) Groups are shown in a faceted display where every group is visualised as an icon that summarises the spatial and temporal

behaviour of its member lineages. Users specify scenarios of interest by selecting groups that correspond to different metadata

values. (c) Deselected groups can be filtered out. (d) Individual lineages contained in selected groups are sorted by a similarity

measure and displayed in a pagination fashion, using the same spatiotemporal icons. (e) Users pick individual lineages to

view their detailed structure with the option of mapping associated data onto the visualisation. (f) A more detailed spatial

representation is also provided. (g) Spatiotemporal summary of osteocarcoma cell lineages under control conditions (untreated)

versus treatment with the anticancer drug topotecan (10µM). Untreated lineages exhibit more activity (darker green, taller bars)

while cell death (red) is more prominent in treated lineages (compared to other behaviour). (h)–(i) Detail of osteocarcoma

cell lineages (cellular events are colour-coded). (h) Under the control condition, there is a great degree of cell proliferation

with few cell deaths (red). However, (h.1) polyploid events (light blue) and (h.2) refusion events (green) do occur. (i) Under

treatment, cell death is prominent and three behaviour patterns occur: (i.1) primary cytotoxicity, (i.2) symmetric cytotoxicity,

and (i.3) asymmetric cytotoxicity. Importantly, the latter is a “strategy” for subsets of tumour cells to escape drug action.
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action. The objectives of this study were to understand the
dynamics of cell death and to identify and characterise cell
survival strategies.

Data were obtained as follows. The parental cell line U-2
OS cells (osteocarcoma, a type of bone cancer) were derived
from a 15 year old Caucasian female U-2 OS (ATCC HTB-
96). Cells were seeded and plated onto a 6-well plate, left
for 24h at 37◦C and 5% CO2 using standard tissue culture
techniques. Cells were then exposed to a bolus treatment of
topotecan (a discrete exposure for 1 hour at a concentration
of 10µM) or left untreated (control). Plates were placed onto
a wide-field time-lapse instrument designed to capture trans-
mission phase image sequences. Images were captured every
15min for 144h at 512× 512 pixels. Cell lineages were de-
rived by image processing, including cell tracking and semi-
automated event detection [KHCe07]. The description below
was derived from a diary kept during analysis.

5.1. Overview

Two analysts considered 85 control and 85 topotecan-treated
lineages (10µM). Figure 4(g) summarises their behaviour us-
ing our prototype’s spatiotemporal icons, obtained by select-
ing and grouping on the “drug” metadata field.

The spatial summaries reveal much more activity under
control conditions (a high average of cellular events per re-
gion maps to a darker colour and taller bar compared to a
low average; see Section 4.1). There is also a much larger
degree of variation of number of events for the control (tall
error bars). These observations are confirmed by the tem-
poral summaries at the bottom of each icon. Significantly,
the ratio of cell death events (in red) compared to regular
events is higher for the treatment condition. These observa-
tions enabled the analysts to confirm that topotecan reduces
the number of regular cellular events (cell division) and that
under treatment, cell death is a much more prominent event.

5.2. Control condition

Next, using our prototype’s selection mechanism, the an-
alysts picked 12 lineages for closer analysis. Figure 4(h)
and (i) show the lineages’ structural detail using the visu-
alisation described in Section 4.3 (event types are colour-
coded). Aligning tracks by generation, it is clear that for the
control, early generations are synchronised in terms of cell
cycle time (branch lengths), while at later generations they
become asynchronous as inter mitotic time varies stochasti-
cally. This behavioural heterogeneity accounts for the high
degree of variation in the summary views noted above.

Another important observation regarding the control re-
lates to unusual events. This includes polyploid events,
where a cell commits to mitosis but does not separate into
two daughter cells (see Figure 4(h.1)) and refusion, where a
cell refuses to divide (Figure 4(h.2)). It was recently shown

that osteocarcoma cells have a tendency to carry an innate
burden of polyploid cells [DdL11]. Based on this, polyploid
mitosis and refusion were expected in the control data. Our
visualisation provided the capacity for detecting the lineage
location of a polyploid event and, importantly, the ability to
determine the lead-up and consequences of such events.

5.3. Treatment condition

Treatment with a high dose of topotecan (10µM) not only
contrasts with the control condition by removing polyploid
events, but also leads to cytotoxicity. The location and pat-
terns of cell death, including its relation to symmetry and
synchrony, provided a means for determining three patterns
of cytotoxicity. First is primary cytotoxicity, where the pri-
mary event of the progenitor cell is cell death in generation 0
(see Figure 4(i.1)). From this, the analysts inferred that the
cells have a high cytotoxicity index and that they were prob-
ably in S-phase upon treatment (when DNA duplicates). Pri-
mary cytotoxicity is an ideal situation where tumour cells are
terminated effectively without any potential for cell survival.

A second pattern, symmetrical cytotoxicity, involves both
siblings dying some time after cell division. Figure 4(i.2)
shows how a lineage initially expands, but all progeny die
in generation 2, after considerable cell cycle delay in gen-
eration 1. This is interesting because there is a capacity and
opportunity for cell survival. An understanding of why cell
death occurs symmetrically across all progeny, but only at
generation 2 is an open question and requires more research.

Third, with asymmetrical cytotoxicity, one sibling dies
while the other survives (see Figure 4(i.3)). The analysts
identified the emergence of drug-resistant progeny, where
despite the death of one sibling, a resistant track survives.
By generation 4, the surviving progeny become apparent and
the visualisations show their contiguous events. Accrual of
drug resistance in tumour cells as a survival strategy under
cancer treatment is a recurring theme in drug discovery and
cancer research. This case study clearly shows the temporal
escape patterns of subpopulations of cells that emerge from
cytotoxic burden and highlights that their origin and growth
patterns are unknown, requiring more research.

6. Discussion and conclusion

The data presented above had been previously analysed us-
ing conventional methods. Viewing individual images of
control versus treatment conditions only revealed the pres-
ence of cell colonies at a given point in time. The analysts
saw an effect of topotecan (fewer cells survived), but learned
nothing about the developmental history of surviving cells.
Significantly, no understanding about cells that had not sur-
vived could be reached, leaving unanswered questions such
as: When did they die? And, how did they die? The ana-
lysts had also viewed animated sequences of images (see
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Section 2.1). Although they had found isolated cases of cyto-
toxicity, it was impossible to maintain an overview and keep
track of the behaviour or multiple cells and their progeny. In
particular, symmetrical and synchronous patterns were not
revealed, nor could they be compared across lineages. These
shortcomings, and those noted in Section 2, are exacerbated
as the number of cells in experiments increases.

In contrast, our approach enabled comprehensive analy-
sis. First, analysts could take account of the multimodal-
ity of cell lineages (see Section 3.1). They could consider
metadata, spatiatemporal data, and cellular event locations
(polyploidy, refusion, and cell death) to analyse cytotoxic-
ity in the developmental context of whole lineages. Second,
they could observe the presence or absence of symmetry and
synchrony (Sections 3.2 and 3.3), and analyse the biological
implications of these phenomena across multiple lineages.
For example, classes of behaviour resulting from drug treat-
ment were identified and characterised. This illustrates how
our approach addresses the requirements identified in Sec-
tion 3. In addition, the analysts found it valuable for present-
ing results, noting that it is hard to match the effectiveness of
graphically illustrating findings such as the asymmetric es-
cape strategy from cytotoxicity in Figure 4(i.3). At the time
of writing, we are preparing a manuscript that focuses on the
implications of our work on biomedicine that makes promi-
nent use of visualisations generated by our prototype.

There are other scenarios where lineage visualisation can
play a role. Quality control (QC) is a critical but challeng-
ing part of the high-throughput paradigm [BFHea12]. In-
spection of behavioural summaries of cell lineages that show
variation and error, and the ability to compare multiple lin-
eages offer a way to identify problems and ensure reliabil-
ity. Visualisation can also reduce the significant effort re-
quired to test and validate mathematical models of cellu-
lar behaviour [GLHR09]. Further, despite the exponential
growth of biocuration infrastructure and databases, reuse of
data beyond the originator remains rare due to idiosyncratic
methodologies. Our prototype has enabled analysts to un-
derstand similarities and differences in experiment design
by grouping on metadata and considering results. There is
currently no other support for this kind of analysis.

We now reflect on more general lessons learned. First,
the requirement of showing variation in our spatial, tempo-
ral, and structural visualisations highlights the importance
of visualising variation and uncertainty (see Figure 3(a), (b),
(d.4)). This is an often overlooked challenge [SLSR10]. Sec-
ond, our users requested that the generation sizes of idealised
lineages also be shown as contextual information in our tem-
poral summaries (Figure 3(b.2)). Like others, we found sub-
tle changes to show “prior knowledge” to be advantageous
for ensuring correct interpretations [Che05]. Third, our users
preferred spatio-temporal icons to be presented in a pagi-
nated fashion and not as scrolling lists, which conforms to
research results [SW09]. A recurring theme, based on expert

feedback, was to sort icons according to an understood cri-
terion so users understand what lineages near the start, mid-
dle, and end have in common. Fourth, although a previous
study found users to prefer a top-to-bottom orientation for
node-link diagrams [BKHe11], our users had a definite pref-
erence for a left-to-right layout. This stresses the importance
of context-of-use in designing visualisations.

We have successfully analysed up to two thousand lin-
eages with our method. This is an important improvement on
previous methods that support analysis of either high-level
aggregates or a handful of individual lineages. In particular,
our aggregate visualisations are scale-free to enable users to
drill down from high- to detail-level in a flexible fashion. Al-
though our focus has been on front-end visualisation design,
substantial scalability improvements can be realised by im-
plementing a back-end that serves aggregate data and subsets
of lineage data based on user interaction.

There are also other opportunities for improving our ap-
proach. Analysts have found the sorted presentation of in-
termediate selections useful (see Section 4.2). However, a
solution that allows more flexible sorting based on multi-
ple criteria could make better use of multiple measures that
are routinely derived. Linking visual analysis to the underly-
ing image data would also be an advantage. As cell tracking
algorithms improve, we expect that multivariate time-series
that describe individual cell cycles will become available (as
opposed to the monolithic tracks we currently have). Map-
ping such data onto cell lineages will yield high fidelity de-
scriptions of the development of cells. Based on our experi-
ence, we argue that visualisation can play a significant role in
unlocking the value of such data. However, more work is re-
quired to develop methods that integrate rich spatial, tempo-
ral, multivariate, and hierarchical data. The work presented
here is an important first step in addressing this challenge.
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