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by PP. Using this method, they demon-
strated that the posterior medial frontal cor-
tex (pMFC) increased parametrically with 
increasing PP. Next, Scheibe et al. (2010) 
employed an EEG-informed fMRI analysis, 
which utilizes the variability in EEG data 
to predict changes in BOLD response (e.g., 
Goldman et al., 2009). In order to identify 
voxels whose activity covaried with the 
CNV, Scheibe et al. (2010) added a regres-
sor using the CNV amplitude for each trial. 
This identified a network of regions includ-
ing the middle frontal gyrus (MFG), dor-
solateral prefrontal cortex (DLPFC), and 
putamen (Scheibe et al., 2010; Figure 4A). 
The authors then regressed out the variance 
attributable to PP, and used the residuals 
in a follow up regression model. Finally, 
by comparing the model derived from 
the EEG-informed fMRI analysis and the 
follow up regression model, regions that 
were only activated in the former and not 
the latter model were identified as being 
attributable only to PP processing. Here, 
the authors showed that the DLPFC, right 
inferior frontal gyrus (IFG), and right infe-
rior parietal lobule (IPL; Scheibe et al., 2010; 
Figure 4B) were modulated exclusively by 
the processing and integration of PP into 
response preparation.

These results provide novel insights 
into trial-specific information processing 
of PP during decision making. Scheibe 
et al. (2010) show that the neural integra-
tion of PP has at least three levels. Firstly, 
increasing PP indexes the need for behav-
ioral adjustment, which is reflected by 
increases in pMFC and the CNV in order 
to successfully prepare motor responses 
and guide future decisions. Previously, 
the pMFC has been shown to be involved 
in performance monitoring and cogni-
tive control induced behavioral adjust-
ments (Ridderinkhof et al., 2004). Next, 
Scheibe et al. (2010) were able to iden-
tify regions that covaried with the CNV, 
which they suggest might index  unspecific 
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Event-related potentials (ERP) observed 
in the electroencephalogram (EEG) have 
traditionally provided neural markers for 
an array of cognitive phenomena through 
averaging time-locked amplitudes over 
many trials. However, it is becoming clear 
that understanding trial-to-trial vari-
ability in neural activity and its behavio-
ral consequences is an important venture 
in cognitive and systems neuroscience. 
Recent studies have begun to focus on how 
fluctuations in functional magnetic reso-
nance imaging (fMRI) and electrophysi-
ological (EEG/MEG) signals are correlated 
with moment-to-moment fluctuations in 
behavior (e.g., Fox et al., 2005; Pessoa and 
Padmala, 2005; Mars et al., 2008). Indeed, 
neural responses can vary in theoretically 
important ways which may reflect a signa-
ture of task-relevant brain-state changes 
such as a subject’s cognitive “context” (Lutz 
et al., 2002). As such, focusing on single-trial 
data can provide a more direct link between 
neural activity and cognitive processes, such 
as executive function and decision making 
(Debener et al., 2006).

Examining trial-to-trial variability may 
provide a unique window for exploring 
dynamic modulations in the decision-
making process, which frequently requires 
computing many variables that inform 
and optimize the decision (e.g., Mulert 
et al., 2005; Weissman et al., 2006; Esposito 
et al., 2009). One such variable is prior 
probability (PP), the prior knowledge of 
the probability concerning the decision 

alternatives. This PP must be integrated 
into the decision-making process to form 
expectations about which event is the 
most probable to occur. Behavioral studies 
have previously shown that PP modulates 
behavior, with increasing PP predicting 
faster reaction times (e.g., Carpenter, 
2004). Neural correlates of this behav-
ioral effect have been linked to changes 
in the contingent negative variation 
(CNV), whose mean amplitude increases 
with increasing PP (Scheibe et al., 2009). 
Nevertheless, while mean amplitude ERPs 
such as the CNV can provide insight into 
PP processing, it neglects to consider trial-
specific neural processes and their associ-
ated brain regions.

Scheibe et al. (2010) tackled this prob-
lem in a recent issue of The Journal of 
Neuroscience by simultaneously recording 
EEG and fMRI as participants performed 
a simple number comparison task (Scheibe 
et al., 2010; Figure 1A). On each trial, par-
ticipants saw a fixation cross, followed by 
a number (S1; 1, 3, 5, 7, 9) presented at 
either side. After 2000 ms, a second num-
ber (S2; any number not used in S1) was 
then displayed at the opposite side of the 
fixation and remained until the participant 
responded by indicating the numerically 
larger number. Essentially, S1 served as a 
cue with information about the probabil-
ity of the side with the largest value with 
a predictive value of 1.0 (1 or 9), 0.75 (3 
or 5), or 0.5 (5). As expected, this design 
produced a robust parametric behavioral 
effect of PP, with increasing PP predicting 
faster RTs (Scheibe et al., 2010; Figure 1B).

When examining the neural basis of 
these behavioral effects, Scheibe et al. (2010) 
observed substantial trial-to-trial variability 
in the CNV response (Scheibe et al., 2010; 
Figure 2A). To identify the neural cor-
relates of trial-to-trial fluctuations of PP 
processing, Scheibe et al. (2010) conducted 
three distinct analyses. First, the authors 
 identified  voxels parametrically modulated 
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hierarchical Bayesian modeling (Wu et al., 
2011), linear dynamical system response and 
independent response modeling (Limpiti 
et al., 2009). Nevertheless, estimating trial-
to-trial variability still represents an impor-
tant venture in future research in order to 
adequately utilize this in EEG-informed 
fMRI analysis. Particularly important to 
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Despite these challenges, Scheibe 
et al. (2010) provide novel insights into 
the neural mechanisms of PP processing 
– thus highlighting the power of multi-
modal studies. However, it could also be 
important probe the dynamic interplay 
between intrinsic and task-evoked brain 
activity (Northoff et al., 2010). Indeed, 
neuroscience has only begun to fully 
exploit the dynamic changes in resting-
state networks and link those to changes 
in mental function. The brain can be 
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play an important role (Fox et al., 2007). 
Elucidating the relationship between 
these two forms of brain activity could 
provide a unique window for examining 
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brain and behavior.

 preparatory processes. Finally, regions 
including the DLPFC were exclusively 
related to PP-induced CNV fluctuations. 
Given the role of the DLPFC in establish-
ing, regulating, and actively maintain-
ing attention (MacDonald et al., 2000; 
Weissman et al., 2006), the authors suggest 
that this reflects trial-specific attentional 
effort, depending on the probability infor-
mation. However, it is worth noting that 
the exact cognitive mechanisms would 
need to be elucidated with future studies 
that manipulate attentional control.

In addition, the results of Scheibe 
et al. (2010) are accompanied by at least 
two caveats. First, methods that alter the 
relationship between correlated factors 
in a general linear model (e.g., orthogo-
nalization) can sometimes impose inter-
pretational challenges on the resulting 
estimates, depending on the degree of cor-
relation between the factors (Hunt, 2008). 
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to partial out variance that is attribut-
able to PP, the results and interpretations 
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window for their mean amplitude CNV 
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window of 1000 ms in their single-trial 
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