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Abstract. We study the archetypal functional equation of the form y(x) =∫∫
R2 y(a(x − b))µ(da, db) (x ∈ R), where µ is a probability measure on R

2;
equivalently, y(x) = E{y(α(x − β))}, where E is expectation with respect
to the distribution µ of random coefficients (α, β). Existence of non-trivial
(i.e. non-constant) bounded continuous solutions is governed by the value
K :=

∫∫
R2 ln |a|µ(da, db) = E{ln |α|}; namely, under mild technical condi-

tions no such solutions exist whenever K < 0, whereas if K > 0 (and α > 0)

then there is a non-trivial solution constructed as the distribution function
of a certain random series representing a self-similar measure associated with
(α, β). Further results are obtained in the supercritical case K > 0, including
existence, uniqueness and a maximum principle. The case with P(α < 0) > 0
is drastically different from that with α > 0; in particular, we prove that a
bounded solution y(·) possessing limits at ±∞ must be constant. The proofs
employ martingale techniques applied to the martingale y(Xn), where (Xn) is

an associated Markov chain with jumps of the form x α(x− β).

1. Introduction.

1.1. The archetypal equation and main results. This paper concerns the ar-
chetypal functional equation with rescaled argument [2, 8] of the form

y(x) =

∫∫

R2

y(a(x− b))µ(da, db), x ∈ R, (1)

where µ(da, db) is a probability measure on R
2. Due to the normalization of the

measure µ to unity, such an equation is balanced in that the total weighted con-
tribution of the (scaled) solution y(·) on the right-hand side of (1) is matched by
the non-scaled input on the left-hand side. The integral in (1) has the meaning
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of expectation with respect to a random vector (α, β) with distribution P{(α, β) ∈
da× db} = µ(da, db); thus, equation (1) can be represented in the compact form

y(x) = E{y(α(x− β))}, x ∈ R. (2)

The equation (1)–(2) is a rich source of various equations specified by a suitable
choice of the measure µ, which has motivated its name “archetypal” [2]. Examples
include many well-known classes of equations with rescaling, such as: equations in
convolutions, e.g. the Choquet–Deny equation y = y ⋆ σ [5]; equations for Hutchin-
son’s self-similar measures [13], e.g. y(x) = 1

2 y(a(x + 1)) + 1
2 y(a(x − 1)) (a > 1)

arising in the Bernoulli convolutions problem [21]; two-scale (refinement) equations1

of the form z(x) = a
∑ℓ

i=1 pi z(a(x − bi)) with z(x) := y′(x) [7, 9], exemplified by

Schilling’s equation z(x) = a
(
1
4 z(ax−1)+ 1

2 z(ax)+
1
4 z(ax+1)

)
describing spatially

chaotic structures in amorphous materials [11, 19]; etc. Furthermore, as was ob-
served by Derfel [8], the archetypal equation (1)–(2) also contains some important
functional-differential classes, including the (balanced) pantograph equation2 [1, 2, 8]

y′(x) + y(x) =
∑

i
pi y(aix), ai, pi > 0,

∑
i
pi = 1, (3)

and Rvachev’s equation3 z′(x) = 2
(
z(2x + 1) − z(2x − 1)

)
[18]. See an extensive

review of examples and applications of the archetypal equation (1)–(2) in Bogachev
et al. [2], together with further references therein.

Observing that any function y(x) ≡ const satisfies equations (1)–(2), it is nat-
ural to investigate if there are any non-trivial (i.e. non-constant) bounded con-
tinuous solutions. Such a question naturally arises in the context of functional
and functional-differential equations with rescaling, where the possible existence of
bounded solutions (e.g. periodic, almost periodic, compactly supported, etc.) is of
major interest in physical and other applications (see e.g. [4, 18, 19, 23]).

Investigation of the archetypal equation (1)–(2), with a focus on bounded con-
tinuous solutions (abbreviated below as b.c.-solutions), was initiated by Derfel [8]
(in the case α > 0) who showed that the problem crucially depends on the value

K :=

∫∫

R2

ln |a|µ(da, db) = E{ln |α|}. (4)

More precisely, if K < 0 (subcritical case) then, under some mild technical condi-
tions on the measure µ, there are no b.c.-solutions other than constants,4 whereas
if K > 0 (supercritical case) then a non-trivial b.c.-solution does exist.

However, the critical case K = 0 was left open in [8]. Some recent progress was
due to Bogachev et al. [1] who settled the problem for the balanced pantograph
equation (3) by showing that if K =

∑
i pi ln ai = 0 then there are no non-trivial

b.c.-solutions of (3). Recently (see [2]) we proved the same result for a general
equation (1)–(2) in the critical case subject to an a priori condition of uniform
continuity of y(·), which is satisfied for a large class of examples including (3).

1Compactly supported continuous solutions of such equations play a crucial role in wavelet

theory [6, 23], and also in subdivision schemes and curve design [4, 9].
2Pantograph equation y′(x) = c0y(x) + c1y(αx) dating back to Ockendon and Tayler [16]

arises in diverse areas, e.g. number theory, astrophysics, radioactive decay, queues and risk theory,
population dynamics, medicine, quantum theory, stochastic games, etc.; for general results and
further bibliography on the pantograph equation, see [1, 2, 3, 10, 14, 15].

3Its compactly supported solutions are instrumental in approximation theory [18].
4A similar result was obtained earlier (via a different method) by Steinmetz and Volkmann [22]

for a special case of equation (2), y(x) = py(px− 1) + q y(qx+ 1) (p, q > 0, p+ q = 1).
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The focus of the present work is on the non-critical case K 6= 0, especially when
K > 0 with α possibly taking negative values, aiming to obtain further results
including existence, uniqueness and a maximum principle. Under a slightly weaker
moment condition on β as compared to [8] we establish the dichotomy of non-
existence vs. existence of non-trivial b.c.-solutions in the subcritical (K < 0) and
supercritical (K > 0) regimes, respectively.

Let us stress though that in contrast to the subcritical case which is insensitive to
the sign of α, for K > 0 we are only able to produce a non-trivial solution under the
assumption that α > 0 almost surely (a.s.). Such a solution is constructed, with the
help of results by Grintsevichyus [12], as the distribution function FΥ(x) = P(Υ ≤ x)

of the random series Υ =
∑∞

n=1 βn

∏n−1
i=1 α−1

i representing a self-similar measure

associated with (α, β), where {(αn, βn)}n≥1 are independent identically distributed
(i.i.d.) random pairs with distribution µ each. This solution is unique (up to linear
transformations) in the class of functions with finite limits at ±∞ (Theorem 4.3(a)),
but the uniqueness in the class of b.c.-solutions may fail to be true: we will present
an example of such a solution y(·) oscillating at +∞ (see Remark 4.2).

In the case K > 0 with P(α < 0) > 0, the function FΥ(·) (which is still well
defined) is no longer a solution to the equation (1)–(2); e.g. if α < 0 a.s. then
y = FΥ(x) satisfies another functional equation, y(x) = 1−E{y(α(x−β))} (cf. [12,
Eq. (5)]). Thus, the problem of existence remains largely open here. More to the
point, this case is completely different from the purely positive case, α > 0 (a.s.); for
instance, a b.c.-solution y(·) with limits at ±∞ must be constant (Theorem 4.3(b)).
This follows from Theorem 4.2 stating that the limits superior at ±∞ coincide (the
same is true for the limits inferior). Heuristically, this is a manifestation of “mixing”
in (2) for (large) positive and negative arguments of y(·) due to possible negative
values of α. Note that Theorem 4.2 is proved with the help of the maximum principle
of Theorem 4.1, which is of interest in its own right.

This analysis is complemented by uniqueness results in the class of absolutely
continuous (a.c.) solutions (using the Fourier transform methods); here, bounded-
ness is not assumed a priori. Again, we demonstrate a striking difference between
the cases α > 0 (a.s.) and P(α < 0) > 0 (see Theorems 4.4 and 4.5, respectively).

Throughout the paper, it is assumed that

(i) P(α 6= 0) = 1; (ii) P(|α| 6= 1) > 0; (iii) ∀c ∈ R, P(α(c− β) = c) < 1. (5)

Note that the remaining degenerate cases are treated in full detail in [2].
The rest of the paper is organized as follows. We start in §2 by introducing

an associated Markov chain (Xn) with jumps of the form x  α(x − β), and also
extend the iterated equation y(x) = Ex{y(Xn)} to its “optional stopping” analog
y(x) = Ex{y(Xτ )}, where τ is a (random) stopping time and Ex stands for the
expectation subject to the initial condition X0 = x. Suitable iterations of such
a kind will be instrumental. In §3 we prove a stronger version of the dichotomy
between the cases K < 0 and K > 0 (the latter subject to α > 0). Finally, §4
contains further discussion of the supercritical case, as briefly indicated above.

2. Preliminaries.

2.1. Associated Markov chain and harmonic functions. The archetypal
equation (2) admits an important interpretation via an associated Markov chain
(Xn) on R determined by the recursion

Xn = αn(Xn−1 − βn) (n ∈ N), X0 = x ∈ R, (6)
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where {(αn, βn)}n≥1 are i.i.d. random pairs with the same distribution as a generic
copy (α, β). Transition operator T of the Markov chain (6) is given by

Tf(x) := Ex{f(X1)} ≡ E{f(α(x− β))}, (7)

where the index x indicates the initial condition X0 = x. A function f(·) is called
T -harmonic (or simply harmonic) if Tf = f (cf. [17, p. 40]); hence, according to
(7) solutions of equation (2) are equivalently described as harmonic functions.

2.2. Iterations and stopping times. Equation (2) can be expressed as y(x) =
Ex{y(X1)}, and by iteration y(x) = Ex{y(Xn)} (n ∈ N). Explicitly,

Xn = Anx−Dn, n ≥ 0, (8)

An :=

n∏

i=1

αi (A0 := 1), Dn :=

n∑

i=1

βi

n∏

j=i

αj (D0 := 0). (9)

For n ∈ N0 := {0} ∪ N, let Fn := σ{Xi, i ≤ n} be the σ-algebra generated by
events {Xi ∈ B} (with Borel sets B ∈ B(R)); the increasing sequence (Fn)n≥0 is
referred to as the (natural) filtration of (Xn). A random variable τ with values in
N ∪ {+∞} is called a stopping time with respect to filtration (Fn) if it is adapted
to (Fn) (i.e. {τ = n} ∈ Fn, n ∈ N0) and τ < ∞ a.s. We shall systematically use
the following simple fact. (Note that the continuity of y(·) is not required.)

Lemma 2.1. Let τ be a stopping time with respect to filtration Fα
n := σ{α1, . . . , αn}

⊂ Fn, n ∈ N0. If y(·) is a bounded T -harmonic function then

y(x) = Ex{y(Xτ )}, x ∈ R. (10)

Proof. Clearly, τ is adapted to the filtration Fα,β
n := σ{(αi, βi), i ≤ n} ≡ Fn.

Using (6) it is easy to check that E{y(Xn) |Fn−1} = y(Xn−1) (a.s.), and hence
(y(Xn)) is a martingale [17, p. 43, Proposition 1.8]. Since y(·) is bounded, formula
(10) now readily follows by Doob’s Optional Stopping Theorem [20, pp. 485–486,
Theorem 1 and Corollary].

3. The subcritical (K < 0) and supercritical (K > 0) cases. In the case
α 6= 0 a.s., formula (8) can be rewritten in the form (cf. (8), (9))

Xn = An(x−Bn), n ≥ 0, (11)

An :=
n∏

i=1

αi (A0 := 1), Bn := DnA
−1
n =

n∑

i=1

βiA
−1
i−1 (B0 := 0). (12)

The following important result is due to Grintsevichyus [12, pp. 164–165].

Lemma 3.1. Let assumption (5) be in force, and also assume that

0 < E{ln |α|} < ∞, E{lnmax(|β|, 1)} < ∞. (13)

Then the random series

Υ := β1 + β2α
−1
1 + β3α

−1
1 α−1

2 + · · · =

∞∑

n=1

βnA
−1
n−1 (14)

converges a.s., and its distribution function FΥ(x) := P(Υ ≤ x) is continuous on R.

Remark 3.1. The results in [12] entail that FΥ(·) is either a.c. or singularly con-
tinuous; a purely discrete case (with a single atom!) arises if α(c− β) = c (a.s.).
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Recall that the parameter K is defined in (4). The next two results (for K < 0
and K > 0, respectively) were obtained by Derfel [8] in the case α > 0 (a.s.) under
a more stringent condition E{|β|} < ∞; but his proofs essentially remain valid in a
more general situation as described below.

3.1. The subcritical case.

Theorem 3.2 (K < 0). Assume that the second integrability condition in (13) is
fulfilled, but the first one is replaced by −∞ < E{ln |α|} < 0. Then any b.c.-solution
of the archetypal equation (2) is constant.

Proof. Applying Lemma 2.1 with τ ≡ n ∈ N, we obtain (see (8), (9))

y(x) = E{y(Anx−Dn)}, x ∈ R. (15)

Setting D◦
n :=

∑n

i=1 βiAi = α1(β1 + β2α2 + · · · + βnα2 · · ·αn) (cf. (9)), observe
that the pair (An, Dn) has the same distribution as (An, D

◦
n), which is evident

by reversing the numbering (αi, βi) 7→ (αn−i+1, βn−i+1) (i = 1, . . . , n). Hence,
equation (15) can be rewritten as

y(x) = E{y(Anx−D◦
n)}, x ∈ R. (16)

Due to Lemma 3.1 (with α−1
i in place of αi), D

◦
n converges a.s. as n → ∞, say

D◦
n → Υ◦ (cf. (14)). On the other hand, An → 0 a.s., since E{ln |α|} < 0 and, by

the strong low of large numbers, ln |An| =
∑n

i=1 ln |αi| → −∞ (a.s.). As a result, for
each x ∈ R we have Anx−D◦

n → −Υ◦ (a.s.). Since y(·) is bounded and continuous,
one can apply Lebesgue’s dominated convergence theorem [20, p. 187, Theorem 3]
and pass to the limit in (16), yielding y(x) = E{y(−Υ◦)}; since the right-hand side
does not depend on x, it follows that y(x) ≡ const.

3.2. Canonical solution in the supercritical case with α > 0. The next
theorem provides a non-trivial b.c.-solution to the archetypal equation (2) in the case
of positive α. Recall that Υ is the random series (14) and FΥ(x) is its distribution
function (see Lemma 3.1).

Theorem 3.3 (K > 0). Suppose that assumption (5) is satisfied, along with con-
ditions (13), and also assume that α > 0 a.s. Then y = FΥ(x) is a b.c.-solution of
the archetypal equation (2).

Proof. Thanks to Lemma 3.1 we only have to verify that FΥ(x) satisfies (2). Observe

from (14) that Υ = β1 + α−1
1 Υ̃, where Υ̃ is independent of (α1, β1) and has the

same distribution as Υ. Hence, we obtain (using that α1 > 0 a.s.)

FΥ(x) = P(β1 + α−1
1 Υ̃ ≤ x) = P(Υ̃ ≤ α1(x− β1))

= E
{
P
(
Υ̃ ≤ α1(x− β1)|α1, β1

)}
= E{FΥ(α1(x− β1))},

that is, the function y = FΥ(x) satisfies equation (2).

We will refer to y = FΥ(x) as the canonical solution of equation (2).

Remark 3.2. For some concrete equations with α ≡ const > 1, b.c.-solutions
different from the canonical one may be constructed (see Remark 4.2).

Remark 3.3. To the best of our knowledge, no non-trivial b.c.-solutions of equation
(2) are known if P(α < 0) > 0 except in the special case |α| ≡ 1 (see [2, Theorem
2.2(b-ii)]).
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4. Further results in the supercritical case.

4.1. Bounds coming from infinity. The next result is akin to the maximum
principle for the usual harmonic functions. The continuity of y(·) is not presumed.

Theorem 4.1 (Maximum Principle). Suppose that assumption (5) is satisfied,
along with conditions (13). Let y(·) be a bounded solution of (2), and denote

m± := lim inf
x→±∞

y(x), M± := lim sup
x→±∞

y(x), (17)

where the same + or − sign should be chosen on both sides of each equality. Then

m ≤ y(x) ≤ M, x ∈ R, (18)

where m := min{m+,m−}, M := max{M+,M−}.

Proof. Applying Lemma 2.1 with τ ≡ n ∈ N, for any x ∈ R we obtain

y(x) = E{y(An(x−Bn))}, (19)

where An =
∏n

i=1 αi and Bn =
∑n

i=1 βiA
−1
i−1 (see (11), (12)). By Lemma 3.1, the

limiting random variable Υ = limn→∞ Bn is continuous, hence limn→∞(x−Bn) =
x − Υ 6= 0 (a.s.). Combined with |An| → ∞ a.s. (which follows by the strong
law of large numbers due to the first moment condition in (13), cf. the proof of
Theorem 3.2), this implies that |An(x − Bn)| → ∞ (a.s.). Hence, Fatou’s lemma
[20, p. 187, Theorem 2] applied to equation (19) yields

y(x) ≤ E

{
lim sup
n→∞

y(An(x−Bn))

}
≤ max{M+,M−} = M,

which proves the upper bound in (18). The lower bound follows similarly.

The case where α may take on negative values has an interesting general property
as follows (note that conditions (13) are not needed here).

Theorem 4.2. Suppose that q := P(α < 0) > 0, and let y(x) be a bounded solution
of (2). Then, in the notation (17), we have

m−= m+, M−= M+. (20)

Proof. By Fatou’s lemma applied to equation (2) we get

M+ = lim sup
x→+∞

y(x) ≤ E

{
lim sup
x→+∞

y(α(x− β))

}
≤ M+(1− q) +M−q. (21)

Since q > 0, (21) implies that M+≤ M−. By symmetry, the opposite inequality is
also true, hence M−= M+. The first equality in (20) is proved similarly.

4.2. Uniqueness for solutions with limits at infinity. We can now prove the
following uniqueness result (again, the continuity of solutions is not presumed).
Note that the cases α > 0 (a.s.) and P(α < 0) > 0 are drastically different.

Theorem 4.3. Let assumption (5) be in force, along with conditions (13). Let y(·)
be a bounded solution of (2) such that the limits L± := limx→±∞ y(x) exist.

(a) Suppose that P(α > 0) = 1. Then y(·) coincides, up to an affine transforma-
tion, with the canonical solution FΥ(·) (see Theorem 3.3); specifically,

y(x) = (L+ − L−)FΥ(x) + L−, x ∈ R. (22)

In particular, y(·) must be everywhere continuous.

(b) If P(α < 0) > 0 then y(x) ≡ const.
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Proof. (a) Denote the right-hand side of (22) by y∗(x). By linearity of (2) and
according to Theorem 3.3, y∗(x) satisfies equation (2), and it has the same limits
L± at ±∞ as the solution y(x). Hence, y(x) − y∗(x) is also a solution, with zero
limits at ±∞. But Theorem 4.1 then implies that y(x)− y∗(x) ≡ 0.

(b) Theorem 4.2 implies that L− = L+ =: L, hence by the bound (18) of Theorem
4.1 we have L ≤ y(x) ≤ L, i.e. y(x) ≡ L = const.

Remark 4.1. In the case P(α < 0) > 0, Theorem 4.3(b) holds true if just one of
the limits L± is assumed (due to (20), the other limit exists automatically).

Remark 4.2. Kato and McLeod [15, p. 923, Theorem 9(iii)] showed inter alia that
the pantograph equation y′(x) + y(x) = y(αx) with α = const > 1 has a family of
C∞-solutions on the half-line x ∈ [0,∞) such that y(x) = g(lnx/ lnα) +O(x−θ) as
x → +∞, where g(·) is any 1-periodic function, Hölder continuous with exponent
0 < θ ≤ 1. Noting from the equation that y′(0) = 0, such solutions can be extended
to the entire line R by defining y(x) := y(0) for all x < 0. It is known (see [2, 8]) that
y(·) automatically satisfies the archetypal equation (2) (with the same α > 1 and
exponentially distributed β), thus furnishing an example of (a family of) bounded
continuous (even smooth) solutions that do not have limit at +∞.

4.3. Uniqueness via Fourier transform. Here, we obtain uniqueness results in
the class of a.c. solutions with integrable derivative. In what follows, abbreviation
“a.e.” stands for “almost everywhere” (with respect to Lebesgue measure on R).
Note that boundedness of solutions is not presumed. It is convenient to state and
prove these results separately for positive and negative α (see Theorems 4.4 and
4.5, respectively). Recall that Υ is the random series (14).

Theorem 4.4. Let assumption (5) be satisfied, together with conditions (13).

(a) Let α > 0 a.s., and assume that a solution y(·) of equation (2) is a.e. differ-
entiable, with z(x) := y′(x) ∈ L1(R). Then z(·) is determined uniquely (a.e.)
up to a multiplicative factor, with Fourier transform given by

ẑ(s) = c1 E{e
isΥ} (s ∈ R), c1 := ẑ(0) ∈ R. (23)

(b) If y(·) is also a.c. then it coincides, up to an affine transformation, with the
canonical solution FΥ(·) (see Theorem 3.3), i.e. there are c0, c1 ∈ R such that

y(x) = c0 + c1FΥ(x), x ∈ R. (24)

Proof. (a) Differentiation of (2) shows that z(x) := y′(x) satisfies a.e. the equation

z(x) = E{αz(α(x− β))}. (25)

Let ẑ(s) :=
∫
R
eisxz(x) dx be the Fourier transform of the function z ∈ L1(R), hence

ẑ(·) is bounded and continuous on R, with the sup-norm ‖ẑ‖ ≤
∫
R
|z(x)| dx < ∞.

Multiplying (25) by eisx and integrating over x ∈ R, we see, using Fubini’s theorem
and the substitution t = α(x− β), that ẑ(·) satisfies the equation

ẑ(s) = E{eisβ ẑ(α−1s)}, s ∈ R. (26)

Iterating (26) n ≥ 1 times we get (see the notation (12))

ẑ(s) = E
{
eisBn ẑ(A−1

n s)
}
, s ∈ R. (27)

Note that E{ln |α−1|} ∈ (−∞, 0), hence A−1
n → 0 a.s. (see the proof of Theorem

3.2); besides, Bn → Υ a.s. by Lemma 3.1. Thus, passing to the limit in (27) (by
dominated convergence) and recalling that ẑ(·) is continuous, we obtain (23).
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(b) To identify z(·) from its Fourier transform (23), it is convenient to integrate
both parts of equation (23) against a suitable class of test functions. Consider
the Schwartz space S(R) of smooth functions ϕ(x) with finite support and such
that their Fourier transform ϕ̂(s) =

∫
R
eisxϕ(x) dx is integrable; by the inversion

formula, ϕ(x) = (2π)−1
∫
R
e−isx ϕ̂(s) ds. With this at hand, we can write

∫

R

ẑ(s) ϕ̂(s) ds =

∫

R

(∫

R

eisx ϕ̂(s) ds

)
z(x) dx = 2π

∫

R

ϕ(−x) z(x) dx. (28)

Similarly,
∫

R

E{eisΥ} ϕ̂(s) ds =

∫

R

(∫

R

eisx dFΥ(x)

)
ϕ̂(s) ds

=

∫

R

(∫

R

eisx ϕ̂(s) ds

)
dF (x) = 2π

∫

R

ϕ(−x) dFΥ(x). (29)

Thus, thanks to equation (23), from (28) and (29) we obtain
∫

R

ϕ(−x) z(x) dx = c1

∫

R

ϕ(−x) dFΥ(x), ϕ ∈ S(R). (30)

Since S(R) is dense in both L1(R; z(x) dx) and L1(R; dFΥ(x)), equation (30) ex-
tends to indicator functions of any intervals, yielding (by the continuity of FΥ(·))

y(x)− y(0) =

∫ x

0

z(u) du = c1{FΥ(x)− FΥ(0)}, x ∈ R,

which is reduced to (24) by setting c0 := y(0)− c1FΥ(0).

Remark 4.3. The result of Theorem 4.4 was obtained by Daubechies and Lagarias
[7, p. 1392, Theorem 2.1(b)] in a particular case with α ≡ const > 1 and discrete β.

Remark 4.4. Uniqueness (up to a multiplicative factor) of b.c.-solutions of equa-
tion (26) was proved by Grintsevichyus [12, p. 165, Proposition l].

Example 4.1. De Rham’s function (see [7, pp. 1403–1405] is a continuous (but
nowhere differentiable) even solution of the difference equation

φ(x) = φ(3x) + 1
3

(
φ(3x+ 1) + φ(3x− 1)

)
+ 2

3

(
φ(3x+ 2) + φ(3x− 2)

)
.

Then y(x) :=
∫ x

0
φ(u) du is an odd function of class C1(R) satisfying

y(x) = 1
3 y(3x) +

1
9

(
y(3x+ 1) + y(3x− 1)

)
+ 2

9

(
y(3x+ 2) + y(3x− 2)

)
,

which is an archetypal equation with α ≡ 3 and β taking values 0,− 1
3 ,

1
3 ,−

2
3 ,

2
3

with probabilities 1
3 ,

1
9 ,

1
9 ,

2
9 ,

2
9 , respectively. Now, according to Theorem 4.4 the

solution y(·) is an affine version of the distribution function FΥ(·), the latter thus
being automatically a.c. and, moreover, in C1(R); in turn, it follows that de Rham’s
function φ(·) is proportional to the probability density of Υ (see (14)).

A counterpart of Theorem 4.4 for α with possible negative values is strikingly
different (cf. Theorem 4.3).

Theorem 4.5. Let q := P(α < 0) > 0, and let a solution y(·) be a.e. differentiable,
with y′ ∈ L1(R). Then y′ = 0 a.e. If in addition y(·) is a.c. then y ≡ const.
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Proof. The random time τ− := inf{n ≥ 1: An < 0} is adapted to the filtration Fα
n

and has geometric distribution, P(τ−= n) = (1 − q)n−1q (n ≥ 1). Hence, τ−< ∞
a.s. and E{τ−} = q−1 < ∞. Applying Lemma 2.1, we obtain the equation

y(x) = E{y(α̃(x− β̃)}, x ∈ R, (31)

where α̃ := Aτ
−

< 0, β̃ := Bτ
−

(cf. (11), (12)).

Let us first verify that α̃, β̃ satisfy the moment conditions (13). Indeed, noting
that ln |α̃| =

∑τ
−

i=1 ln |αi| and E{τ−} = q−1 < ∞, by Wald’s identity [20, p. 488,
Theorem 3] we obtain, using the first condition in (13),

E{ln |α̃|} = E{τ−} · E{ln |α|} ∈ (0,∞). (32)

Recalling (12) and denoting a ∨ b := max{a, b}, a ∧ b := min{a, b}, we have

|β̃| ≤

τ
−∑

i=1

|βi|

|Ai−1|
≤

τ
−∏

i=1

(|βi| ∨ 1) ·

τ
−∑

i=1

1

|Ai−1|

τ
−∏

i=1

(|βi| ∨ 1) · τ−

τ
−∏

i=1

1

|αi| ∧ 1
.

The right-hand side is not less than 1, hence the same bound holds for |β̃| ∨ 1 and

ln(|β̃| ∨ 1) ≤

τ
−∑

i=1

ln(|βi| ∨ 1) + ln(τ−)−

τ
−∑

i=1

ln(|αi| ∧ 1). (33)

Again applying Wald’s identity and using conditions (13), we get from (33)

E{ln(|β̃| ∨ 1)} ≤ E{τ−} ·
(
E{ln(|β| ∨ 1)}+ 1− E{ln(|α| ∧ 1)}

)
< ∞.

Now we can apply to (31) the method used in the proof of Theorem 4.4. More
specifically, a differentiated version of (31), for z(x) := y′(x), reads (cf. (25))

z(x) = E{α̃z(α̃(x− β̃))} (a.e.).

However, here α̃ < 0 (a.s.), so the Fourier transform ẑ(s) now satisfies (cf. (26))

ẑ(s) = −E{eisβ̃ ẑ(α̃−1s)}, s ∈ R.

Iterating as before, we obtain for each n ∈ N

ẑ(s) = (−1)n E{eisΥ̃n ẑ(Ã−1
n s)}, s ∈ R, (34)

where due to (32) we have a.s. Ã−1
n =

∏n

i=1 α̃
−1
i → 0, Υ̃n =

∑n

i=1 β̃iÃ
−1
i−1 → Υ̃.

Hence, the expectation in (34) converges to ẑ(0)E{eisΥ̃}; however, due to the sign
alternation the limit of (34) does not exist unless ẑ(0) = 0, in which case ẑ(s) = 0
for all s ∈ R. By the uniqueness theorem for the Fourier transform, this implies that
z(x) = y′(x) ≡ 0 a.e. Finally, if y(·) is a.c. then it follows that y(x) ≡ const.

Remark 4.5. The last statement (i.e. under the a.c.-condition) of each of Theorems
4.4 and 4.5 can be easily deduced by Theorem 4.3. Indeed, since the derivative y′(·)
is a.c. and in L1(R), by the Newton–Leibniz formula we have

y(x) = y(0) +

∫ x

0

y′(u) du → y(0) +

∫ ±∞

0

y′(u) du (x → ±∞).

Thus, the limits of y(x) at ±∞ exist, and the rest immediately follows from Theo-
rem 4.3. However, the uniqueness results for the derivative y′, contained in Theo-
rems 4.4 and 4.5, cannot be obtained along these lines.

Acknowledgments. The authors are grateful to John Ockendon and Anatoly Ver-
shik for stimulating discussions.



10 L. V. BOGACHEV, G. DERFEL AND S. A. MOLCHANOV

REFERENCES

[1] L. Bogachev, G. Derfel, S. Molchanov and J. Ockendon, On bounded solutions of the bal-
anced generalized pantograph equation, in Topics in Stochastic Analysis and Nonparametric

Estimation (eds. P.-L. Chow et al.), Springer-Verlag, New York, 2008, pp. 29–49.
[2] L. V. Bogachev, G. Derfel and S. A. Molchanov, On bounded continuous solutions of the

archetypal equation with rescaling, preprint (2014), arXiv:1409.5648
[3] B. van Brunt and G. C. Wake, A Mellin transform solution to a second-order pantograph

equation with linear dispersion arising in a cell growth model, European J. Appl. Math., 22
(2011), 151–168.

[4] A. S. Cavaretta, W. Dahmen and C. A. Micchelli, Stationary subdivision, Mem. Amer. Math.

Soc., 93 (1991), no. 453.
[5] G. Choquet and J. Deny, Sur l’équation de convolution µ = µ⋆σ, (French) [On the convolution

equation µ = µ ⋆ σ], C. R. Acad. Sci. Paris, 250 (1960), 799–801.

[6] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.
[7] I. Daubechies and J. C. Lagarias, Two-scale difference equations. I. Existence and global

regularity of solutions, SIAM J. Math. Anal., 22 (1991), 1388–1410.
[8] G. A. Derfel, Probabilistic method for a class of functional-differential equations, Ukrainian

Math. J., 41 (1989), 1137–1141 (1990).
[9] G. Derfel, N. Dyn and D. Levin, Generalized refinement equations and subdivision processes,

J. Approx. Theory, 80 (1995), 272–297.

[10] G. Derfel and A. Iserles, The pantograph equation in the complex plane, J. Math. Anal.

Appl., 213 (1997), 117–132.
[11] G. Derfel and R. Schilling, Spatially chaotic configurations and functional equations with

rescaling, J. Phys. A Math. Gen., 29 (1996), 4537–4547.
[12] A. K. Grintsevichyus, On the continuity of the distribution of a sum of dependent variables

connected with independent walks on lines, Theor. Probab. Appl., 19 (1974), 163–168.

[13] J. E. Hutchinson, Fractals and self similarlity, Indiana Univ. Math. J., 30 (1981), 713–747.
[14] A. Iserles, On the generalized pantograph functional-differential equation, European J. Appl.

Math., 4 (1993), 1–38.

[15] T. Kato and J. B. McLeod, The functional-differential equation y′(x) = ay(λx)+ by(x), Bull.

Amer. Math. Soc., 77 (1971), 891–937.
[16] J. R. Ockendon and A. B. Tayler, The dynamics of a current collection system for an electric

locomotive, Proc. Royal Soc. London A, 322 (1971), 447–468.
[17] D. Revuz, Markov Chains, 2nd edition, North-Holland, Amsterdam, 1984.

[18] V. A. Rvachev, Compactly supported solutions of functional-differential equations and their

applications, Russian Math. Surveys, 45 (1) (1990), 87–120.
[19] R. Schilling, Spatially chaotic structures, in Nonlinear Dynamics in Solids (ed. H. Thomas),

Springer-Verlag, Berlin, 1992, pp. 213–241.
[20] A. N. Shiryaev, Probability, 2nd edition, Springer-Verlag, New York, 1996.
[21] B. Solomyak, Notes on Bernoulli convolutions, in Fractal Geometry and Applications: A
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