This is an author produced version of Adenosine Tetraphosphoadenosine Drives a Continuous ATP-Release Assay for Aminoacyl-tRNA Synthetases and Other Adenylate-Forming Enzymes.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/84095/

Article:

http://dx.doi.org/10.1021/cb400248f
Adenosine Tetraphosphoadenosine Drives a Continuous ATP-Release Assay for Aminoacyl-tRNA Synthetases and Other Adenylate-Forming Enzymes

Adrian J. Lloyd¹#, Nicola J. Potter²#, Colin W.G. Fishwick², David I. Roper¹ and Christopher G. Dowson¹∗

¹Department of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UNITED KINGDOM and ²School of Chemistry, University of Leeds, Leeds, LS2 9JT, UNITED KINGDOM.

*To whom correspondence should be addressed: Adrian J. Lloyd email: Adrian.Lloyd@warwick.ac.uk, Tel: +44 (0)2476 522568, Fax: +44(0)2476 523568 and Christopher G. Dowson email: C.G.Dowson@warwick.ac.uk, Tel: +44 (0)2476 523534, Fax: +44(0)2476 523568.

#Both authors contributed equally to the manuscript.
Abstract

Aminoacyl-tRNA synthetases are essential for the correct linkage of an amino acid to its cognate tRNA. The accuracy of this reaction is key to the fidelity of protein synthesis. Tractable, continuous assays are of value both in characterizing the functions of these enzymes and their exploitation as drug targets. Therefore, we have exploited the hitherto unexplored ability of these enzymes to consume the diadenosine nucleotide diadenosine 5',5'' P1 P4 tetraphosphate (adenosine tetraphosphoadenosine (Ap4A)) with the concomitant production of ATP in a pyrophosphate and amino acid dependent manner to develop such an assay. We have used this assay to probe the stereo-selectivity of amino acid activation by isoleucyl-tRNAIle and Valyl-tRNAVal synthetases and to identify analogues of intermediates in their catalytic pathway that might facilitate simultaneous targeting of multiple synthetases. Finally we report the utility of Ap4A based assays in the screening and subsequent identification of inhibitors of these enzymes, where the kinetics of Ap4A utilization allow the detection of inhibitors with nM to mM affinities.

Introduction

The ability of small molecules to distinguish between eukaryotic and prokaryotic protein synthesis has provided the basis of antimicrobial activity for a number of clinically valuable antibiotics1,2. This includes the antibiotic mupirocin, which is used therapeutically as a topical agent targeting the active site of Gram positive isoleucyl-tRNAIle synthetase (IleRS)3-5, preventing the formation of isoleucyl-tRNAIle. However, the lack of systemic efficacy of mupirocin and its inactivity against Gram negative and TB infections6,7 as well as the rise of mupirocin resistance in MRSA and MSSA3,8 has increased the need for new inhibitors targeting this class of enzymes.

Many aminoacyl-tRNA synthetases (AaRSs) cannot bind the correct amino acid with sufficient accuracy to ensure the fidelity of protein synthesis9. Therefore these enzymes
have developed editing strategies to remove incorrectly aminoacylated intermediates and mis-aminoacylated tRNAs in what are termed pre and post-transfer editing mechanisms. These mechanisms are partitioned between the active site (pre-transfer) and a physically distinct dedicated (post-transfer) editing domain10-14. Recent attempts to target the interaction of tRNALeu with the post-transfer editing domain of leucyl-tRNALeu synthetase (LeuRS) from Gram negative pathogens with small molecule boron inhibitors have been abandoned because of the rapid onset of resistance in clinical trials due to mutation15. The clinical efficacy of mupirocin compared to that of small molecule boron inhibitors highlights the relative essentiality and mutability of the active site versus the post-transfer editing sites of AaRSs and consequently their value as antibacterial targets particularly where synthetases utilise more than one mechanism of editing16,17. This weakness in targeting post-transfer editing in prokaryotes is further illustrated by \textit{Escherichia coli} LeuRS where mutation of the post-transfer editing site unveils a pre-transfer-editing capability18.

All AaRSs share a mechanism involving activation of the cognate amino acid by reaction with ATP to form a central aminoacyl-adenylate (Figure 1). AaRSs then catalyse the attack of this central intermediate by tRNA to form the correct aminoacyl-tRNA product14. However, in the absence of tRNA, these enzymes can catalyse the cleavage of this central aminoacyl-adenylate by pyrophosphate. Consequently, $[^{32}\text{P}]-$Pyrophosphate can be employed to study pyrophosphate exchange into ATP which can be monitored as an output (Figure 1 reaction 1)19. Alternatively, the formation of the aminoacyl-tRNA from the aminoacyl-adenylate intermediate (Figure 1, reaction 2) can be followed in the presence of radiolabelled amino acid by trichloroacetic acid precipitation of the radiolabelled aminoacylated tRNA product19.

However, the utilization of radiolabels can be problematic, it precludes continuous monitoring of AaRS activity and because of the costs of purchase and disposal, often precludes high throughput and saturating substrate experiments19. This and the success of mupirocin suggest a significant advance in inhibitor screening could be leveraged by
introduction of continuous non-radioactive assays that monitored AaRS catalysed aminoacyl adenylate turnover. Furthermore, such an assay could also be applied more generally to AaRS enzymology.

For many synthetases, the nucleophile attacking the aminoacyl-adenylate can also be the oxygen atom appended to the γ-phosphorous of a second molecule of ATP, instead of pyrophosphate or tRNA, which attacks the α-phosphorus of the adenylate moiety of the aminoacyl-adenylate. This results in the amino acid-dependent formation of Ap_4A (Figure 1, reaction 3)20-23.

Reversal of amino acid-dependent Ap_4A formation by AaRSs, in the presence of pyrophosphate would be expected to generate two molecules of ATP which could then be detected by spectrophotometric, fluorometric or bioluminescent methodologies. This would provide a viable alternative to $[^{32}\text{P}]$-pyrophosphate exchange assays. Therefore, we demonstrate here that amino acid, pyrophosphate and Ap_4A dependent ATP generation can be followed continuously by tractable spectrophotometric coupled assays that can be applied to the now straightforward characterization of AaRS enzymology and for detection of inhibitors of a number of these essential drug targets.

Results and Discussion

Requirement for the generation of novel AaRS assays. We initially identified the assay partially developed by Roy24 as a starting point. Here, the pyrophosphate nucleophile attacking the aminoacyl adenylate intermediate would exchange for the imidodiphosphate moiety of 5$'$-adenylyl-β,γ-imidodiphosphate (ADPNP) in the presence of the amino acid to generate ATP that could then be assayed spectrophotometrically (Supporting Information Figure 1 (Figure S1a)). This approach was flawed by the inability of Roy24 to show dependence of the rates detected on pyrophosphate. Nevertheless we re-developed this method to obtain a working assay that was applicable to \textit{E. coli} and \textit{Streptococcus}.
pneumoniae alanyl-tRNAAla and \textit{S. pneumoniae} seryl-tRNASer synthetases (AlaRS and SerRS) that we kinetically characterised (Table S1 and Figure S2a-i).

However we found this approach was limited by the inability of the class I IleRS and valyl-tRNAVal synthetases (ValRS) from \textit{E. coli} to utilise ADPNP (Figure S1b), as was also found for the baker’s yeast enzymes by Friest \textit{et al.}25. Furthermore, the low ADPNP $K_{\text{m, App}}$ of \textit{E. coli} AlaRS (4.8 ± 0.64 µM; Table S1) reduced the sensitivity of the assay to the detection of competitive inhibitors. It is possible that this restriction of adenine nucleotide specificity is related to the differential mode of ATP binding to class I and II synthetases14,26. To enable access to the enzymology of both class I and II AaRSs, in the context of screening for small molecule inhibitors with a high degree of sensitivity to hit detection, we sought another potential adenylate based substrate to support pyrophosphate exchange activity.

Reversal of AaRS-catalysed Ap\textsubscript{4}A synthesis suggests an ATP release assay. All of the synthetases discussed above have been observed to synthesise Ap\textsubscript{4}A where the aminoacyl adenylate formed with the concomitant generation of pyrophosphate, would be cleaved by a second molecule of ATP20-22. We investigated the reverse of this process where the synthetase would catalyse the amino acid and pyrophosphate dependent pyrophosphorolysis of Ap\textsubscript{4}A to form two molecules of ATP that could be continuously monitored (Figure 2).

The assays based around the conversion of Ap\textsubscript{4}A to ATP require a detection system that could distinguish between these phosphonucleotides and provide a read out of ATP in the presence of a considerable excess of Ap\textsubscript{4}A. The ability of hexokinase to discriminate between ATP and ATP analogues such as ADPNP24 and adenosine β methylene triphosphate (Lloyd, unpublished) was therefore tested with respect to Ap\textsubscript{4}A. Here, phosphorylation of glucose with ATP by hexokinase was coupled to oxidation of the resulting glucose 6-phosphate to 6-phosphogluconate with reduction of NADP+ by glucose 6-phosphate dehydrogenase to generate NADPH and therefore a spectrophotometric readout.
at 340 nm (Figure 2). Under these circumstances, in the presence of 6.33 mM Ap₄A, no significant change in absorbance could be detected. However, on addition of 0.1 mM ATP, there was an instantaneous increase in absorbance consistent with the concentration of ATP in the assay. This suggested that the coupling system could adequately discriminate between ATP and Ap₄A and was not significantly inhibited by the dinucleotide.

We then tested the ability of *E. coli* AlaRS, *E. coli* ValRS and *E. coli* IlelRS to catalyse ATP production from Ap₄A and investigated the dependence of this process on the presence of the synthetase, the cognate amino acid and pyrophosphate. All three enzymes showed linear Ap₄A, pyrophosphate, synthetase and amino acid dependent production of ATP as an increase in absorbance at 340nm over the rate measured in the absence of any one of these components (Figure 3a-c).

To prove that the assay followed the pyrophosphorolytic cleavage of Ap₄A we followed a time course of the complete consumption of the diadenosine nucleotide by *S. pneumoniae* AlaRS in the presence of L-alanine and excess pyrophosphate. We observed that by the end point of the reaction, two equivalents of ATP were produced per equivalent of Ap₄A (Figure 3d). This was consistent with the stoichiometry of the cleavage of Ap₄A by pyrophosphate.

The reaction scheme of amino acid-dependent AaRS catalysed pyrophosphorolysis of Ap₄A indicated that the reaction would not be limited by the concentration of the amino acid which is regenerated per catalytic cycle (Figure 2). Therefore, we performed assays with IleRS at a limiting (10 μM) concentration of L-isoleucine. The absorbance of the assay at 340 nm extended beyond that expected where L-isoleucine was simply consumed (0.062 AU), to that consistent with consumption of the next limiting substrate in the assay (pyrophosphate; Figure 3c).
Characterization of AaRS Ap₄A consumption kinetics suggest an elevated sensitivity to detection of inhibitors. Having established that IleRS, ValRS and AlaRS catalysed the pyrophosphorolysis of Ap₄A to two equivalents of ATP, we characterised the kinetics of L-amino acid, pyrophosphate and Ap₄A utilization by *E. coli* IleRS, ValRS and AlaRS. For all three enzymes, dependence of activity on Ap₄A, amino acid and pyrophosphate was strictly hyperbolic (Figure S3a-i). Fitting the data to the Michaelis Menten equation generated the kinetic constants for the dependence of activity of these enzymes on their substrates in the Ap₄A assay (Table 1).

Comparison of ADPNP and Ap₄A based assays (Tables 1 and S1, Figures S2h and S3h) revealed that for the *E. coli* AlaRS, the K_{m}^{App} for Ap₄A (0.87 ± 0.17 mM) was 181-fold greater than that for ADPNP (4.8 ± 0.64 μM). Comparison of the data in Table 1 and Figure S3h, S3b and S3e with previous 32P-pyrophosphate exchange measurements with cognate amino acids suggested that the K_{m}^{App} of *E. coli* AlaRS, IleRS and ValRS for Ap₄A was 16.8-fold,27 45.2-fold28 and 19.4-fold29 greater than for ATP. This suggested that Ap₄A utilization afforded the convenience of a continuous non-radioactive assay, and also endowed synthetase assays with kinetic constants that would be more sensitive to inhibitor detection than if assays utilised ATP as the adenylate substrate.

The data in Table 1 and Figure S3f and i also demonstrate that the K_{m}^{App} values in the Ap₄A assay for the cognate amino acids for ValRS and AlaRS were in the high millimolar range (14.22 ± 1.54 mM and 12.64 ± 1.86 mM respectively) where previously, values in the ATP/pyrophosphate exchange reaction were 0.14 mM30 and 0.18 mM27. The increase in the IleRS K_{m}^{App} for L-isoleucine in the Ap₄A assay (37.04 ± 3.17 μM; Table 1, Figure S3c) relative to that previously published (4 μM31); was less marked, but nevertheless significant. The 101-fold, 70.2-fold and 9.26-fold increase in amino acid K_{m}^{App} for the ValRS, AlaRS and IleRS respectively may have resulted from a reduced affinity of the amino acid for synthetases bound to Ap₄A. Similarly as concluded from the dependence of rates on Ap₄A,
the sensitivity of assays to the detection of amino acid or aminoacyl-adenylate synthetase-targeted inhibitors would be expected to be vastly enhanced by the relatively high K_m^{App} values shown by these enzymes for their cognate amino acids.

The Ap$_4$A assay applied to analysis of AaRS chemical and stereochemical amino acid specificity. ValRS32, IleRS32 and AlaRS33 form adenylates and aminoacyl-tRNA species with non-cognate amino acids. We therefore tested the ability of these enzymes to utilise Ap$_4$A as a substrate with L-threonine, L-serine and L-valine, the respective non-cognate editing substrates of these enzymes32,33.

The Ap$_4$A-activation of L-valine by IleRS and L-serine by *S. pneumoniae* AlaRS was easily detectable (Figure 4 and Figure S4). Here, the efficiencies reported by relative $k_{\text{cat}}^{\text{App}}/K_m^{\text{App}}$ values of L-valine and L-isoleucine activation by *E. coli* IleRS (Table 1) were 1:206.3 which is in excellent agreement with previous measurement of 1:200 for this parameter using 32P-pyrophosphate exchange34 and consistent with the requirement of editing mechanisms by IleRS. However, consumption of Ap$_4$A by ValRS was barely detectable in the presence of 15 mM of its non-cognate L-threonine substrate. It is probable that the impact of a reduced affinity for both non-cognate amino acid and the substitution of ATP by Ap$_4$A on catalysis was sufficient to severely reduce observable ValRS activity.

The utilization of Ap$_4$A by IleRS and ValRS allowed us to extend our studies to the utilization of D-isoleucine and D-valine by these enzymes. In this assay, D-valine did not support ValRS activity, consistent with the previously noted stereo-specificity of this enzyme35,36. Similarly, D-valine was not subject to non-cognate activation by IleRS, again, consistent with previous observations37.

In contrast, D-isoleucine was activated by IleRS in the presence of Ap$_4$A (Figure 4). Comparison of relative efficiencies of activation suggested that IleRS was only 185.4-fold more efficient with L-isoleucine as opposed to D-isoleucine, caused principally by a 110.5-
fold increase in K_m^{App} (Table 1). This level of discrimination is similar to that between L-isoleucine and L-valine which has required the evolution of both post and pre-transfer editing domains to eliminate erroneous incorporation of L-valine at L-isoleucine codons9-14,32,34. Previous attempts37 to demonstrate D-isoleucine utilization by IleRS were not successful, however, these assays were performed with a limit of detection of $\geq 1\%$ the rate with cognate L-isoleucine37, and as we have demonstrated here, although significant, the efficiency of the enzyme with D-isoleucine is less than $\sim 0.5\%$ of that with L-isoleucine.

How mis-activation of D-isoleucine by IleRS is subsequently dealt with is of current interest, as this D-amino acid and others are found naturally in the peptidoglycan of stationary phase bacterial cultures38. This raises the possibility that formation of D-isoleucyl-tRNAIle may challenge the stereochemical fidelity of protein synthesis, a possibility made more likely by our inability to demonstrate any editing activity with respect to D-isoleucine utilization by \textit{E. coli} IleRS (Lloyd unpublished data).

\textbf{Aminoacyl-adenylate mimetics suggest a possible multi-targeted approach to inhibition of AaRSs.} To further validate the Ap\textsubscript{4}A assay, we used a series of standard synthetase inhibitors that mimic the aminoacyl-adenylate intermediates of AaRS activity (Figure 5). Mupirocin acts as a tight binding analogue of isoleucyl-adenylate3-5. In the Ap\textsubscript{4}A assay, mupirocin was a potent IleRS inhibitor (Figure 3c) with an IC\textsubscript{50} of 0.35 ± 0.06 µM (Figure 5a) approximating to half the concentration of IleRS (1.13 µM) confirming the tight-binding nature of this inhibitor. Conversely, mupirocin was a weak ValRS inhibitor (37% at 0.5 mM), consistent with the specificity of the drug towards prokaryotic IleRS.

The aminoacyl-5'-sulphamoyl adenosines are potent AaRS inhibitors39 and \textit{E. coli} AlaRS was inhibited by alanyl-5'-sulphamoyl adenosine (Figure 3a) with an IC\textsubscript{50} of 0.403 ± 0.005 µM (Figure 5b). The impact of cognate adenylate analogues on their cognate AaRSs as shown here with AlaRS and IleRS confirmed the utility of the Ap\textsubscript{4}A assay. It is known that ten of the AaRSs mis-activate non-cognate amino acids to their corresponding adenylates
and require editing mechanisms to preserve the genetic code9,11,13. This suggested that if the same amino acid was mis-activated by multiple synthetases, then a non-hydrolysable mimic of its aminoacyl-adenylate may target these AaRSs as well as its cognate synthetase.

L-Threonine is mis-activated by ValRS which has editing mechanisms preventing the mis-threonylation of tRNAVal32. We therefore surmised that ValRS might be inhibited by the non-cognate adenylate analogue threonyl-5'-sulphamoyl adenosine. This indeed was the case (Figure 3b) and we further found in the Ap\textsubscript{4}A assay that ValRS was inhibited by this compound with an IC\textsubscript{50} of 6.82 ± 0.77 µM (Figure 5c). This suggested threonyl-5'-sulphamoyl adenosine could multiply target noncognate ValRS and cognate ThrRS. This was confirmed with the ADPNP/pyrophosphate exchange assay which showed that threonyl-5'-sulphamoyl adenosine inhibited \textit{S. pneumoniae} ThrRS with an IC\textsubscript{50} of 0.175 ± 0.019 µM (Figure 5c). The 38-fold greater potency of threonyl-5'-sulphamoyl adenosine towards ThrRS relative to ValRS is likely to mirror at least in part the substrate specificities of these two synthetases.

To further investigate the multi-targeting of AaRSs, we explored the inhibitory properties of the seryl-adenylate analogue seryl-5'-sulphamoyl adenosine. Seryl-adenylate is formed by the adenylation of L-serine by SerRS, and mis-adenylation by AlaRS and ThrRS14,33,40. Using the \textit{S. pneumoniae} enzymes we showed that (a) SerRS was inhibited by seryl-5'-sulphamoyl adenosine with an IC\textsubscript{50} of 0.44 ± 0.076 µM (Figure 5d); (b) AlaRS was inhibited with an IC\textsubscript{50} of 0.133 ± 0.046 µM (Figure 5d) and (c) ThrRS was inhibited with an IC\textsubscript{50} of between 5 and 50 µM (Figure S5a). Interestingly, alanyl-5'-sulphamoyl adenosine was not an inhibitor of SerRS (Figure S5b), consistent with the requirement by this enzyme for the \(\beta\)-hydroxyl of L-serine for amino acid recognition23. None of these inhibitors affected the activity of the hexokinase/glucose 6 phosphate dehydrogenase coupling system.

Interestingly, the overlapping potency of the above aminoacyl adenylate mimetics are consistent with the overlapping amino acid substrate specificity of these three
synthetases9,11,13,33,40 and may explain the extremely high potency of sideromycins such as albomycin, a natural pro-drug antibiotic that releases a cleavable warhead comprising a seryl adenylate analogue41 on entry into the target bacterial cell. Our data suggest that this warhead could simultaneously deprive protein synthesis of seryl-tRNASer, alanyl-tRNAAla and threonyl-tRNAThr.

Our data suggest that multiple AaRSs that share the formation of a cognate or non-cognate aminoacyl adenylates could be targeted by a single inhibitor. Indeed, alanyl-5’ sulphamoyl adenosine is a nanomolar inhibitor of not only AlaRS but also of \textit{E. coli} prolyl-tRNAPro synthetase42. Multi-targeting of a molecule to multiple essential gene products is attractive for antimicrobial development because of the additional hurdles it presents to the development of resistance43. Therefore, development of multi-targeted AaRS inhibitors using for example seryl-adenylate analogues as a starting point may allow development of novel antimicrobials which are robust with respect to the evolution of resistance.

\textbf{Assessment of the Ap\textsubscript{4}A assay in the screening for AaRS inhibitors.} The original motivation for the development of the Ap\textsubscript{4}A assay was to assess the inhibitory properties of molecules selected or designed as a result of \textit{in silico} drug design. This required an assay whose sensitivity to competitive inhibitors was enhanced by virtue of utilization of substrates that possessed a low affinity for the enzyme.

We employed \textit{in silico} drug design by SPROUT44 to identify small molecules that could bind to the aminoacyl-adenylate binding pockets of both \textit{E. coli} IleRS and ValRS. Cognisant of our Ap\textsubscript{4}A kinetic data regarding the substrate dependences of these synthetases, we configured assays at sub-saturating amino acid and Ap\textsubscript{4}A concentrations to optimise the sensitivity of the assay to inhibitors competitive with respect to the amino acid, ATP and aminoacyl-adenylate binding sites. For IleRS these were (Concentration/Concentration relative to $K_{\text{m,App}}$) Ap\textsubscript{4}A: 0.7 mM/0.11.$K_{\text{m,App}}$, L-isoleucine: 10 μM/0.27.$K_{\text{m,App}}$ and pyrophosphate: 20 μM/6.43.$K_{\text{m,App}}$. Similarly, for ValRS these were Ap\textsubscript{4}A: 0.388
mM/0.20.\(K_m^{\text{App}}\), L-valine: 4 mM/0.32.\(K_m^{\text{App}}\) and pyrophosphate: 20 \(\mu\text{M}/8.23.\(K_m^{\text{App}}\). Typical rates measured under these circumstances for both enzymes are shown in Figure 3b,c.

Under these conditions, the standard deviation of the assays for both enzymes expressed as a percentage of the mean value for a triplicate determination of initial rate was 7.0 % (range, 2.4% - 9.2% \(n = 7\)) for IleRS and 4.8 % (range, 1.7% - 8.1% \(n = 10\)) for ValRS. Assuming a positive identification of an inhibitor was a drop in measured activity of at least three standard deviations and competitive kinetics, these assays would detect IleRS inhibitors competitive with L-isoleucine, Ap4A and pyrophosphate with \(K_i\) values \(\leq 3.0\) mM, \(\leq 3.4\) mM and \(\leq 0.51\) mM respectively at a set inhibitor concentration of 1 mM. Similarly, ValRS inhibitors competitive with L-valine, Ap4A and pyrophosphate with \(K_i\) values \(\leq 4.5\) mM, \(\leq 5.0\) mM and \(\leq 0.43\) mM respectively would be expected to be detected.

We assessed the signal:noise ratio of the assay (the ratio of rates with and without pyrophosphate). For IleRS and ValRS, the signal to noise ratios of the assays at the concentration of the enzyme used in screening (2.25 \(\mu\text{M}\) and 2.21 \(\mu\text{M}\) respectively) were 3.86 \(\pm 1.15\) (\(n=35\) positive controls) and 7.79 \(\pm 2.14\) (\(n = 30\) positive controls) respectively.

We further characterised the ability of the assay to discriminate between the presence and absence of standard inhibitors. The \(Z'\) values\(^45\) for the IleRS assay with respect to inhibition by 5 \(\mu\text{M}\) mupirocin and the ValRS assay with respect to inhibition by 50 \(\mu\text{M}\) threonyl-5'-sulphamoyl adenosine were 0.84 and 0.792, suggesting excellent discrimination between positive and negative control assays.

With the assay thus configured, we screened a library of 73 compounds against both enzymes. Although we were unable to identify novel dual targeted inhibitors in this manner, we identified two IleRS inhibitors: N-tert-Butyl-2-(3-\{(3-(tert-butylcarbamoyl-methyl)benzylamino]-methyl]-phenyl]-acetamide (195) and N-Isopropyl-2-(3-\{(3-(isopropyl-carbamoyl-methyl]-benzylamino]-methyl]-phenyl]-acetamide (202) exerting 82.2 and 75.3% inhibition at
1 mM with Z-factors of 0.73 and 0.55 and IC\textsubscript{50} values on re-screening of 0.22 ± 0.035 mM and 0.895 ±0.057 mM respectively (Figure 6a and b). These molecules exerted no effect on the hexokinase/6-phospho-gluconate dehydrogenase coupling system, nor were they inhibitors of ValRS.

Both 195 and 202 were competitive inhibitors against L-isoleucine and Ap\textsubscript{4}A with K\textsubscript{i} values for 195 vs Ap\textsubscript{4}A and L-isoleucine of 0.14 and 0.184 mM respectively and for 202 vs Ap\textsubscript{4}A and L-isoleucine of 0.792 and 0.398 mM respectively (Figures 6c-f). This suggested that they bound to IleRS at the site they were targeted to (Figures 6c-f). The K\textsubscript{i} values suggested weak binding for these inhibitors to IleRS, compared to the inhibitors already discussed, but are consistent with the starting point for fragment based drug design46.

Screening of this library with ValRS identified HTS026477 (4-Amino-2-[2-oxo-2-(3-phenyl-isoxazol-5-yl)ethylsulfanyl]-pyrimidine-5-carboxylic acid)) that was not an IleRS inhibitor. This molecule exerted 62.8% inhibition (Z' factor = 0.74) and on re-screening displayed a sigmoid dependence of inhibition on concentration (IC\textsubscript{50} = 1.51 ± 0.32 mM, Hill coefficient of 3.65 ± 0.68; Figure 7d)). Although we did not characterise the interaction of HTS026477 with ValRS further, to gain additional insight into molecules that might bring about inhibition of this enzyme, we identified a series of triazinyl dyes that inhibited the enzyme, based on our and previous observations regarding ValRS purification with immobilised dyes47. These dyes were Procion Red HE-3B, Procion Green HE4BD and Trypan Blue. IC\textsubscript{50} values for these compounds were 2.14 ± 0.29 μM, 6.98 ± 1.23 μM and 19.2 ± 8.6 μM respectively (Figures 7a-c).

Interestingly, Procion Green HE4BD inhibits \textit{Bacillus stearothermophilus} methionyl-tRNAMet synthetase48 suggesting that this dye could provide a starting point for the development of multi-targeted AaRS inhibitors. Trypan blue has anti-trypanosomal activity, targeting the glycolytic pathway49 and is used in the treatment of trypanosomiasis. Our data
suggest that this molecule may also interfere with protein synthesis by targeting ValRS, which itself may be a viable strategy in treatment of this disease.

These data highlight the capability of Ap₄A based assays to analyse binding events to synthetases from nM to mM affinities and exemplify the utility of this assay in fundamental and translational AaRS research.

Finally, the potential utility of this assay is greater than that reported here. Many drug targets turnover Ap₄A, and we are currently pursuing assay development for these enzymes⁵⁰. Furthermore, NADPH utilization as a reporter of enzyme activity suggests an additional fluorescence format for these assays, whilst the exploitation of Ap₄A to generate ATP indicates the potential for linking Ap₄A consumption to a fire-fly luciferase based luminescence readout.

Methods

E. coli AlaRS, IleRS, and ValRS and _S. pneumoniae_ AlaRS, SerRS, and ThrRS were expressed as C-terminal hexahistidine fusion proteins and were purified as described⁵¹. Purification of ValRS was completed by chromatography on Sepharose-4B coupled to Procion Green HE4BD to eliminate contamination with inorganic pyrophosphatase. _Leuconostoc mesenteroides_ glucose 6 phosphate dehydrogenase and yeast hexokinase were obtained from Roche. Alanyl-, threonyl and seryl-5'-sulphamoyl adenosines were from IDT, Ap₄A was from Sigma. All other reagents were from Sigma or Melford.

AaRS assays were performed at 37°C in a Cary 100 UV/Vis double beam spectrophotometer with a thermostatted 6X6 cell changer. The final assay volume was 0.2 ml, containing 50 mM HEPES adjusted to pH 7.6, 10 mM MgCl₂, 50 mM KCl, 1 mM dithiothreitol, 10% (v/v) dimethylsulphoxide, 10 mM D-glucose, 0.5 mM NADP⁺, 1.7 mM.min⁻¹ _L. mesenteroides_ hexokinase and 0.85 mM.min⁻¹ _L. mesenteroides_ glucose 6-phosphate dehydrogenase. Concentrations of AaRS, amino acid, adenylate (Ap₄A or ADPNP) and
pyrophosphate were as stated in the text. Unless otherwise stated, background rates were acquired in the absence of pyrophosphate, which was then added to initiate the full reaction. Assays were continuously monitored at 340 nm, to detect reduction of NADP⁺ to NADPH, where ε\text{NADPH; }340\text{nm} = 6220 \text{ M}^{-1} \text{cm}^{-1}.

Kinetic constants relating to substrate dependencies and IC\text{50} values for inhibitors were extracted by non-linear regression using GraphPad Prizm. Modes of inhibition and K\text{i} values were evaluated by linear regression of dependencies of reciprocal velocity on reciprocal substrate concentration at varying inhibitor concentration.

Acknowledgments

We would like to thank the MRC for financial support. A.J. Lloyd is a Science City Interdisciplinary Research Alliance Research Fellow, supported by the Birmingham-Warwick Science City Translational Medicine Initiative.

References

Table Legends

Table 1: Characterization of the kinetics of substrate dependence of *E. coli* AlaRS, IleRS and ValRS on the rate of pyrophosphorolysis of Ap₄A

Figure Legends

Figure 1. Catalytic activities of AaRSs. Formation of the central aminoacyl-adenylate intermediate and inorganic pyrophosphate from ATP and an amino acid¹⁴, and reactions of this intermediate with the C-2 or C-3 hydroxyl of the 3’ ribose of the cognate tRNA (reaction 2) forms an aminoacyl-tRNA. In the absence of tRNA the adenylate intermediate can be cleaved by an alternative nucleophile which can be pyrophosphate (reaction 1) which attacks the α-phosphorus atom of the aminoacyl adenylate displacing the amino acid and regenerating ATP, or the oxygen atom appended to the γ-phosphorus of a second molecule of ATP which attacks the α-phosphorus of the adenylate moiety of the aminoacyl adenylate (reaction 3). This results in the amino acid-dependent formation of diadenosine 5’,5”′ P¹ P⁴ tetraphosphate (adenosine tetraphospho-adenosine (Ap₄A)).

Figure 2. Reversal of Ap₄A synthesis by AaRS. Cleavage of Ap₄A by an amino acid substrate and pyrophosphate yielding two molecules of ATP which can be continuously monitored by coupling to NADP⁺ reduction to NADPH.

Figure 3: Time courses of AaRS-catalysed amino acid dependent pyrophosphorolysis of Ap₄A to ATP. PPi denotes pyrophosphate. Background rates were followed before addition of the missing component of the assay at arrow. **Panel (a):** *E. coli* AlaRS activity, in the presence of 0.41 mM Ap₄A, 2 mM L-alanine, 20 μM
pyrophosphate and 0.92 μM AlaRS; **Panel (b)** *E. coli* ValRS activity, in the presence of 0.388 mM Ap₄A, 4 mM L-valine, 20 μM pyrophosphate and 2.41 μM ValRS; **Panel (c)** *E. coli* IleRS activity, in the presence of 0.7 mM Ap₄A, 10 μM L-isoleucine, 20 μM pyrophosphate and 2.4 μM ValRS. For panels (a) - (c) assays were run without (maroon trace, DMSO control) or with 5 μM alanyl-5'-sulphamoyl adenosine (ASA), 50 μM threonyl-5'-sulphamoyl adenosine (TSA) or 5 μM mupirocin (blue trace). **Panel (d):** Stoichiometry of conversion of Ap₄A to ATP in the presence of L-alanine and *S. pneumoniae* AlaRS. Reaction was allowed to approach equilibrium in the presence of 1.8 μM AlaRS, 0.471 mM pyrophosphate and 27.2 μM Ap₄A. Final [ATP] inferred from the ΔA₃₄₀ on completion of the reaction was 59.2 μM, implying conversion of Ap₄A to 2.16 equivalents of ATP.

Figure 4: Impact of chemical and stereochemical identity on the dependence of initial rate of IleRS on amino acid substrate. Assays were performed at co-substrate and enzyme concentrations recorded in Table 1. Data were fitted to the Michaelis Menten equation using GraphPad Prizm yielding the kinetic constants shown in Table 1.

Figure 5: Validation of the Ap₄A AaRS assay and identification of single and multiply targeted aminoacyl adenylate analogue inhibitors. **Panel (a):** Dependence of inhibition of IleRS on mupirocin in the presence of 1.13 μM IleRS, 2 mM Ap₄A, 14.4 mM L-isoleucine and 0.471 mM pyrophosphate; **Panel (b):** Dependence of inhibition of *E. coli* AlaRS on alanyl-5’-sulphamoyl adenosine, conditions as described in the Figure 3a; **Panel (c):** Dependence of inhibition of *E. coli* ValRS and *S. pneumoniae* threonyl-tRNA⁷⁰RNA synthetase (ThrRS) on threonyl-5'-sulfamoyl adenosine where 1.14 μM ValRS was assayed in the presence of 2 mM Ap₄A, 14.4 mM L-valine and 0.471 mM pyrophosphate (rust) and 0.132 μM ThrRS was assayed as described for assays containing Ap₄A except 0.5 mM ADPNP was substituted for Ap₄A and L-
threonine and pyrophosphate were 10 mM and 0.118 mM respectively (dark blue);

Panel (d): Dependence of inhibition of *S. pneumoniae* AlaRS and SerRS on seryl-5'-sulfamoyl adenosine, where for both enzymes ADPNP and pyrophosphate were 0.25 mM and 0.471 mM respectively, and assays contained either 2.08 μM SerRS and 0.2 mM L-serine (blue) or 0.21 μM AlaRS, and 0.2 mM L-alanine (rust). Inhibitor structures are in pale yellow boxes.

Figure 6: Evaluation of the inhibitory properties of compounds 195 and 202, IleRS inhibitors identified by screening with the Ap₄A assay. All data were collected at 3.14 μM IleRS. **Panels (a) and (b)** show dependence of inhibition of IleRS on either compound 195 or 202 respectively. [Ap₄A], [L-isoleucine] and [pyrophosphate] were 0.7 mM, 10 μM, and 20 μM respectively. **Panels (c) and (d)** are reciprocal plots of IleRS activity at increasing concentrations of L-isoleucine in the presence of 0-3 mM 195 (c) or 0-3.6 mM 202 (d). **Panels (e) and (f)** are reciprocal plots of IleRS activity at increasing concentrations of Ap₄A in the presence of the same range of 195 (e) or 202 concentrations (f). [Pyrophosphate] in assays contributing to data in **Panels (c) to (f)** was 20 μM. Inserts in panels (c) to (f) are secondary plots of slopes of reciprocal plots vs. [inhibitor]. Kᵢ values were determined from the abscissa intercept of secondary plots.

Figure 7: Characterization of ValRS inhibitors identified by the Ap₄A assay: [ValRS], [Ap₄A], [pyrophosphate] and [L-valine] were 2.21 μM, 0.388 mM, 32 μM and: 4 mM respectively. Inhibition of ValRS by: **Panel (a)** Procion Red HE3B; **Panel (b)** Procion Green HE4BD; **Panel (c)** Trypan Blue and; **Panel (d)** HTS 02677. None of these compounds significantly inhibited IleRS, nor exerted significant inhibition of the hexokinase/6-phosphogluconate dehydrogenase coupling system.
Table 1

<table>
<thead>
<tr>
<th>AaRS</th>
<th>[AaRS]_{Assay}</th>
<th>Nonvaried substrate</th>
<th>[Nonvaried substrate] (mM)</th>
<th>Varied Substrate</th>
<th>(K_m)_{App} (µM)</th>
<th>(k_{cat})_{App} (min(^{-1}))</th>
<th>(k_{cat}){App}/(K_m){App} (min(^{-1}).µM(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlaRS</td>
<td>0.92 µM</td>
<td>L-Alanine</td>
<td>10.00</td>
<td>L-Alanine</td>
<td>14220 ± 1540</td>
<td>39.3 ± 1.93</td>
<td>0.0028</td>
</tr>
<tr>
<td></td>
<td>0.92 µM</td>
<td>Ap₄A</td>
<td>3.99</td>
<td>Ap₄A</td>
<td>871 ± 171</td>
<td>21.85 ± 1.16</td>
<td>0.0251</td>
</tr>
<tr>
<td></td>
<td>0.92 µM</td>
<td>PPI</td>
<td>0.471</td>
<td>PPI</td>
<td>12.81 ± 1.62</td>
<td>19.62 ± 0.79</td>
<td>1.531</td>
</tr>
<tr>
<td></td>
<td>1.13 µM</td>
<td>L-Isoleucine</td>
<td>14.4</td>
<td>L-Isoleucine</td>
<td>37.04 ± 3.17</td>
<td>6.99 ± 0.18</td>
<td>0.1887</td>
</tr>
<tr>
<td></td>
<td>1.13 µM</td>
<td>Ap₄A</td>
<td>5.00</td>
<td>Ap₄A</td>
<td>6330 ± 930</td>
<td>16.51 ± 1.29</td>
<td>0.00261</td>
</tr>
<tr>
<td></td>
<td>1.13 µM</td>
<td>PPI</td>
<td>0.471</td>
<td>PPI</td>
<td>3.11 ± 0.52</td>
<td>7.70 ± 0.36</td>
<td>2.476</td>
</tr>
<tr>
<td></td>
<td>0.74 µM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.74 µM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.74 µM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ValRS</td>
<td>1.10 µM</td>
<td>L-Valine</td>
<td>14.4</td>
<td>L-Valine</td>
<td>12640 ± 1860</td>
<td>10.06 ± 0.87</td>
<td>0.00080</td>
</tr>
<tr>
<td></td>
<td>1.10 µM</td>
<td>Ap₄A</td>
<td>1.53</td>
<td>Ap₄A</td>
<td>1940 ± 194</td>
<td>9.96 ± 0.426</td>
<td>0.00513</td>
</tr>
<tr>
<td></td>
<td>1.10 µM</td>
<td>PPI</td>
<td>0.471</td>
<td>PPI</td>
<td>2.43 ± 2.13</td>
<td>4.71 ± 0.086</td>
<td>1.938</td>
</tr>
</tbody>
</table>
Figure 1
Figure 2

Amino acid + Ap₃A → Amino acid

Amino acid + ATP → Amino acid

2 Glucose → 2 Glucose-6-Phosphate

Hexokinase

2 Glucose-6-Phosphate → 2 6-Phosphogluconate

Glucose 6-phosphate Dehydrogenase

2 6-Phosphogluconate → 2 NADPH + 2 H⁺

2 NADPH + 2 H⁺ → 2 NADP⁺

ΔA_{340}
Figure 3

(a) *E. coli* AlaRS

(b) *E. coli* ValRS

(c) *E. coli* IleRS

(d) *S. pneumoniae* AlaRS

Net: \[\text{AP}_2 \text{A} + \text{PP}_i \rightarrow 2 \text{ATP}\]

Initial [\(\text{Ap}_2\text{A}\)] = 27.2 \(\mu\)M
Final [ATP] = 59.2 \(\mu\)M
Expected [ATP]/[\(\text{Ap}_2\text{A}\)] = 2.00
Observed [ATP]/[\(\text{Ap}_2\text{A}\)] = 2.18
Figure 4

- [L-Isoleucine] (mM) vs. V_0 (min$^{-1}$)
- [L-Valine] (mM) vs. V_0 (min$^{-1}$)
- [D-Isoleucine] (mM) vs. V_0 (min$^{-1}$)
Figure 5

(a) Isoleucyl-tRNA\(^{\text{Ile}}\) synthetase

(b) \textit{E. coli} Alanyl-tRNA\(^{\text{Ala}}\) synthetase

(c) \textit{S. Pneumoniae} Threonyl-tRNA\(^{\text{Thr}}\) and \textit{E. coli} Valyl-tRNA\(^{\text{Val}}\) synthetase

(d) \textit{S. Pneumoniae} Alanyl-tRNA\(^{\text{Ala}}\) and Seryl-tRNA\(^{\text{Ser}}\) synthetase
Figure 6

Inhibition with respect to isoleucine

- \(K_i = 0.184 \text{ mM} \)

Inhibition with respect to Ap4A

- \(K_i = 0.351 \text{ mM} \)

Inhibition with respect to Ap4A

- \(K_i = 0.730 \text{ mM} \)

Inhibition with respect to isoleucine

- \(K_i = 0.140 \text{ mM} \)
Figure 7

(a) % Inhibition vs. [Red HE3B] (µM)

![Graph of Red HE3B](image)

IC$_{50}$ = 2.14 ± 0.32 µM

(b) % Inhibition vs. [Green HE4BD] (µM)

![Graph of Green HE4BD](image)

IC$_{50}$ = 6.98 ± 0.32 µM

(c) % Inhibition vs. [Trypan Blue] (µM)

![Graph of Trypan Blue](image)

IC$_{50}$ = 19.19 ± 0.32 µM

(d) % Inhibition vs. [HTS 02677] (mM)

![Graph of HTS 02677](image)

IC$_{50}$ = 1.51 ± 0.32 mM
Supporting Information

Adenosine Tetraphosphoadenosine Consumption Drives a Continuous ATP-Release Assay for Aminoacyl-tRNA Synthetase Catalysis

Adrian J. Lloyd1**, Nicola J. Potter2*, Colin W.G. Fishwick2, David I. Roper1 and Christopher G. Dowson1*

*Both authors contributed equally to the manuscript.

1Department of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UNITED KINGDOM and 2School of Chemistry, University of Leeds, Leeds, LS2 9JT, UNITED KINGDOM.

*Correspondence: Adrian J. Lloyd email: Adrian.Lloyd@warwick.ac.uk and Christopher G. Dowson email: C.G.Dowson@warwick.ac.uk

Supporting Table Legend

Table S1: Characterization of the kinetics of substrate dependence of E. coli AlaRS, S. pneumoniae AlaRS and S. pneumoniae SerRS on the rate of pyrophosphorolysis of ADPNP

Supporting Figure Legends

Figure S1 Assay of AaRS activity by coupling pyrophosphate exchange in the presence of ADPNP: (a) Reaction scheme of the ADPNP assay where the AaRS catalyses the attack of the amino acid α-carboxyl on the α-phosphorus atom of ADPNP, forming an aminoacyl adenylate and liberating imidodiphosphoate as the first product. Addition of pyrophosphate to the assay displaces the amino acid and forms ATP as a second product which can then be detected spectrophotometrically at 340 nm by coupling to
hexokinase and glucose 6 phosphate dehydrogenase.

(b) Limited utility of ADPNP in the assay of AaRS pyrophosphate exchange. Time courses of the assay of ValRS, IleRS and SerRS in the ADPNP assay, where at time zero, all assays were constituted as described in Methods such that in the SerRS, IleRS and ValRS assays [ADPNP] was 0.1 mM, 1 mM and 1 mM respectively; [L-serine], [L-isoleucine] and [L-valine] were 0.4 mM, 2.4 mM and 2.5 mM respectively and [SerRS], [IleRS] and [ValRS] were 1.21 μM, 2.29 μM and 0.54 μM respectively. Background rates were monitored at 340 nm and assays were initiated by the addition of either 0.1 mM, 0.0834 mM or 0.0834 mM pyrophosphate to the SerRS, IleRS and ValRS assays respectively at, a, b or c respectively.

Figure S2 Dependence of E. coli AlaRS, S. pneumoniae AlaRS and SerRS on ADPNP, pyrophosphate and cognate amino acid. All assays were executed as described in Methods, where assays were initiated with pyrophosphate and initial velocity (v_0) was obtained from the difference of rates obtained post and pre-addition of pyrophosphate. When held constant, the concentrations of pyrophosphate, ADPNP and L-amino acid were as reported in Table S1. For all determinations of dependence of v_0 on [substrate], the [enzyme] is recorded in Table S1. **Panel a–c:** Dependence of S. pneumoniae SerRS on [pyrophosphate], [ADPNP] and [L-serine]; **Panel d–f:** Dependence of S. pneumoniae AlaRS on [pyrophosphate], [ADPNP] and [L-alanine]; **Panel g–i:** Dependence of E. coli AlaRS on [pyrophosphate], [ADPNP] and [L-alanine]. Kinetic constants were determined by non-linear regression and are recorded in Table S1.

Figure S3 Dependence of E. coli AlaRS, IleRS and ValRS on Ap4A, pyrophosphate and cognate amino acid. All assays were executed as described in Methods, where assays were initiated with pyrophosphate and v_0 was obtained from the difference of rates obtained post and pre-addition of pyrophosphate. When held constant, the concentrations of pyrophosphate, Ap4A and L-amino acid were as reported in Table 1. For all determinations of dependence of v_0 on [substrate], the [enzyme] is recorded in Table 1. **Panel a–c:**...
Dependence of IleRS on [pyrophosphate], [Ap₄A] and [L-isoleucine]; **Panel** – : Dependence of ValRS on [pyrophosphate], [Ap₄A] and [L-valine]; **Panel** – : Dependence of *E. coli* AlaRS on [pyrophosphate], [Ap₄A] and [L-alanine]. Kinetic constants were determined by non-linear regression and are recorded in Table 1.

Figure S4 Time course of *S. pneumoniae* AlaRS catalysed pyrophosphorolysis of Ap₄A with non-cognate L-serine. Assay was as outlined in Methods, where the final concentrations of AlaRS, L-serine, Ap4A and pyrophosphate were 0.70 μM, 10 mM, 2 mM and 0.471 mM respectively. All components except AlaRS and L-serine were present at time zero. *S. pneumoniae* AlaRS and L-serine were added as indicated. Progress of the reaction was followed at 340 nm.

Figure S5 Inhibition of AaRSs by aminoacyl-sulphamoyl adenylates: (a) Inhibition of *S. pneumoniae* ThrRS by seryl sulphamoyl adenosine. Figure shows ThrRS rates in the presence of increasing [seryl-5'-sulphamoyl adenosine] (abbreviated to SSA in figure). Assays were carried out as described in Methods, where [pyrophosphate], [ADPNP], [L-threonine] were 0.471 mM, 0.254 mM and 10 mM respectively. [ThrRS] was at 0.55 μM. Background data were collected until 2.4 min, when the assays were initiated by the addition of L-threonine (arrow). Assays were performed in the presence of 0, 5 μM, 50 μM and 500 μM seryl-5'-sulphamoyl adenosine. The % inhibition caused by increasing seryl-5'-sulphamoyl adenosine is recorded adjacent to the traces as % I. (b) Specificity of inhibition displayed by SerRS for seryl-5'-sulphamoyl adenosine compared to alanyl-5'-sulphamoyl adenosine. Figure shows aminoacyl-specificity of inhibition of *S. pneumoniae* SerRS by cognate seryl-5'-sulphamoyl adenosine and non-cognate alanyl-5'-sulphamoyl adenosine. Assays were performed as described in Methods where [pyrophosphate], [ADPNP] and [L-serine] were 1 mM, 0.250 mM and 0.2 mM respectively. [SerRS] was at 2.08 μM. Assays were initiated by the addition of L-serine and performed at
concentrations of alanyl-5’-sulphamoyl adenosine (red) and seryl-5’-sulphamoyl adenosine (blue).
Table S1

<table>
<thead>
<tr>
<th>AaRS</th>
<th>Species</th>
<th>[AaRS]<sub>Assay</sub></th>
<th>Nonvaried substrate</th>
<th>[Nonvaried substrate] (mM)</th>
<th>Varied Substrate</th>
<th>K<sub>m App</sub> (µM)</th>
<th>k<sub>cat App</sub> (min<sup>-1</sup>)</th>
<th>K<sub>cat App/k<sub>m App</sub></sub> (min<sup>-1</sup>, µM<sup>-1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlaRS</td>
<td>E. coli</td>
<td>0.37 µM</td>
<td>L-Alanine</td>
<td>0.200</td>
<td>L-Alanine</td>
<td>1418 ± 68</td>
<td>78.24 ± 1.14</td>
<td>0.0552</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.92 µM</td>
<td>ADPNP</td>
<td>0.243</td>
<td>ADPNP</td>
<td>4.8 ± 0.64</td>
<td>9.384 ± 0.24</td>
<td>1.955</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.92 µM</td>
<td>PPI</td>
<td>0.471</td>
<td>PPI</td>
<td>24.89 ± 2.66</td>
<td>7.038 ± 0.24</td>
<td>0.283</td>
</tr>
<tr>
<td></td>
<td>S. pneumoniae</td>
<td>0.21 µM</td>
<td>L-Alanine</td>
<td>0.200</td>
<td>L-Alanine</td>
<td>1770 ± 220</td>
<td>118.2 ± 3.0</td>
<td>0.0667</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.21 µM</td>
<td>ADPNP</td>
<td>0.254</td>
<td>ADPNP</td>
<td>12.82 ± 1.77</td>
<td>13.26 ± 0.48</td>
<td>1.030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.17 µM</td>
<td>PPI</td>
<td>0.471</td>
<td>PPI</td>
<td>22.68 ± 2.78</td>
<td>13.20 ± 0.72</td>
<td>0.582</td>
</tr>
<tr>
<td>SerRS</td>
<td>S. pneumoniae</td>
<td>2.08 µM</td>
<td>L-Serine</td>
<td>0.200</td>
<td>L-Serine</td>
<td>527 ± 64</td>
<td>1.86 ± 0.06</td>
<td>0.0035</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.14 µM</td>
<td>ADPNP</td>
<td>0.254</td>
<td>ADPNP</td>
<td>107.2 ± 12.7</td>
<td>0.467 ± 0.0074</td>
<td>0.0044</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.14 µM</td>
<td>PPI</td>
<td>0.471</td>
<td>PPI</td>
<td>56.35 ± 6.96</td>
<td>0.420 ± 0.018</td>
<td>0.0075</td>
</tr>
</tbody>
</table>
Substrate Dependence on:

<table>
<thead>
<tr>
<th>AaRS</th>
<th>[Pyrophosphate]</th>
<th>[ADPNP]</th>
<th>[Cognate amino acid]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.p. SerRS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.p. AlaRS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.c. AlaRS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S3

Substrate Dependence on:

<table>
<thead>
<tr>
<th>AaRS</th>
<th>[Pyrophosphate]</th>
<th>[Ap₄A]</th>
<th>[Cognate amino acid]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IleRS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ValRS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AlaRS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S4

A$_{340}$

Time (min)

0.0 0.4 0.8 1.2 1.6 2.0 2.4

0.0 0.7 µM AlaRS 10 mM L-Serine
Figure S5a

![Graph showing the absorbance (A_{340}) over time (min) with different concentrations of SSA (0 μM, 5 μM, 50 μM, 500 μM) on the y-axis and time (0-15 min) on the x-axis. The graph also includes a table showing the % I at different concentrations: 0 μM with 0.0 % I, 5 μM with 3.2 % I, 50 μM with 61.4 % I, and 500 μM with 100 % I.]

Figure S5b

![Graph showing the % Remaining Activity on the y-axis against [Aminoacyl-5-sulfamoyl adenosine] (μM) on the x-axis. The graph includes data points for Alanyl-5'-sulfamoyl adenosine and Seryl-5'-sulfamoyl adenosine.]