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Autonomic regulation of heart rate is largely mediated by the effect of cAMP on the pacemaker

current If, driven by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. cAMP
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enhances HCN open probability by binding to the CNBD (cyclic nucleotide binding domain). The C-

linker transmits the cAMP-induced conformational change from the CNBD to the pore and is thus

considered a passive element in the opening transition. Here we report the finding of an allosteric

binding site in the C-linker of HCN4 that implies a regulatory function of this domain. By structural

and functional analysis we show that cyclic dinucleotides, an emerging class of second messengers in

mammals, bind to this C-linker pocket (CLP) and antagonize cAMP regulation of HCN4 channels.

Accordingly, cyclic dinucleotides prevent cAMP regulation of If in sinoatrial-node myocytes, reducing

heart rate by 30%. The same effect is attained by Compound 11, a molecule selected by virtual docking

to the CLP. Occupancy of the CLP hence constitutes an efficient mechanism to prevent -adrenergic

stimulation on If. Our results highlight the regulative role of the C-linker in HCN4 and identify an

isoform-specific drug target within the HCN family. Furthermore, these data extend the signaling

scope of cyclic dinucleotides in mammals, beyond their first reported role in innate immune system.

Introduction

The “funny” current (If) of cardiac pacemaker myocytes is an inward current activated by hyperpolarization

of membrane voltage and controlled by intracellular cAMP1. Being activated and inhibited by β-adrenergic 

and muscarinic M2 receptor stimulation, respectively, If represents a basic physiological mechanism

mediating autonomic regulation of heart rate and constitutes an ideal target for the pharmacological control

of cardiac activity. The molecular determinants of If are the Hyperpolarization-activated cAMP-gated (HCN)

channels2,3. In these proteins, the transmembrane pore is connected at the N terminus to a voltage sensor

domain and at the C-terminus to a cytosolic cyclic-nucleotide-binding domain (CNBD). The C-linker, an α-

helix folded domain of 90 amino acids, connects the CNBD to the pore. Structural studies showed that the

cytosolic C-terminal fragment (C-linker + CNBD) assembles as a 4-fold symmetric tetramer in which the

primary subunit interactions are provided by the linkers. The C-linkers form a ring in which the first two

helices of one subunit (A’ and B’) form a helix-turn-helix motif that rests as an “elbow” on the “shoulder”

formed by the second two helices, C’ and D’, of the neighboring subunit4. Enhancement of channel open

probability by cAMP reflects the transition from the cAMP-unbound to the bound conformation of the
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CNBD that induces a centrifugal rearrangement of the C-linkers with the shoulders twisting away from the

elbows5. This movement in turn stabilizes the open conformation of the pore. Given the critical role of the C-

linker in HCN channel modulation by ligands, it is interesting to note that this linker is missing in the

prokaryotic HCN homolog MlotiK, in which the CNBD directly modulates the pore6,7. A direct versus

indirect coupling of the CNBD to the pore in different cyclic nucleotide gated channels raises the question of

whether the C-linker plays in HCN channels a passive or an active role in the transduction of the cAMP

signal. It is reasonable to speculate that the increase in structural complexity in eukaryotic HCN channels

over the bacterial homolog allowed some additional modes of regulation, which are not present in channels

which lack C-linkers. We have now identified a novel binding site, within the C-linker of HCN4, which is

part of a mechanism that effectively prevents cAMP activation in this isoform. The C-linker hence adds an

additional layer of complexity to provide fine tuning of the activity of the HCN4 channel. Somewhat

surprisingly, the lead players of this control mechanism are cyclic dinucleotides, e.g. signaling molecules,

which were long believed to function exclusively in bacteria8. However after the recent discovery of these

molecules in eukaryotes9 it became evident that they also function as second messengers in metazoa10,11

although their known scope of their activity has so far been restricted to the immune system.

Results

The native If current is modulated by cAMP and, albeit with a lower affinity, also by cGMP
12. In order to

understand the molecular details of the interaction of cGMP with its binding site in the CNBD, we solved the

structure of the C-linker and CNBD (CL-CNBD) of HCN4, the main isoform of the cardiac pacemaker13, in

complex with cGMP. The structure unexpectedly showed two bound cGMP molecules per monomer. The

first cGMP was located in the “canonical” CNBD binding site4 while the second was found at the interface

between the C-linker and the CNBD, in what we refer to as the C-linker pocket (CLP) (Fig.1a,b). In all four

HCN4 protomers of the crystal asymmetric unit, a cGMP molecule was modeled in the electron density at the

CLP and the structure was successfully refined at 2.7Å resolution, with full atomic occupancy and average B

factors comparable to those of adjacent protein residues (Supplementary Table 1). Notably, no electron

density was present in the CLP for crystals grown in the presence of cAMP14. The CLP-bound cGMP
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molecule is in a syn conformation and, by interacting with residues of helix B’, B’-C’ linker and helix C’,

bridges the “elbow” and the “shoulder” domain of each subunit4. In addition, it interacts with strand β8 of the

CNBD (Fig.1c, Supplementary Table 2a). Moreover, several items of structural evidence of cGMP selectivity

were found: the hydrogen bond between F564 amide (main chain) nitrogen and oxygen O6 of c-GMP would

not be possible because in cAMP oxygen O6 is replaced by an amino group (N6); the polar contact between

the residue Y559 and the N2 nitrogen atom, can only occur with cGMP since the cAMP molecule lacks that

atom. CyclicGMP was not observed in the CLP of HCN1 (our unpublished results) and HCN2 4 despite

conservation of the residues that directly interact with the molecule. Alignment of the three sequences

(Supplementary Fig.1) highlights the occurrence of several amino acid substitutions in the CLP region that

can result in a different local structure of the CLP. Superposition of the C chains among HCN isoforms

indeed reveals a marked mismatch in the Cα backbone of the C’- and D’-helices in HCN4 relative to 

HCN1/HCN2, both in the cGMP and in the cAMP bound forms (Supplementary Fig. 2a and 2b).

In spite of structural evidence for binding, application of cGMP to HCN4 channels expressed in HEK293T

cells did not exhibit any effect on channel function that could be related to occupancy of the CLP. Addition

of cGMP to inside-out patches increased HCN4 currents and shifted the voltage for half maximal activation

(V1/2) towards positive values (Supplementary Fig. 3a), an effect that can be attributed to cGMP binding to

the canonical CNBD site. In fact the cGMP binding mode to this pocket matches that of other HCN isoforms

(Supplementary Fig. 2c and Supplementary Table 2b). Hill-plot fitting of the dose-response curve yields

values of 13.2 μM for half maximal concentration (k1/2), and 0.72 for the Hill coefficient (n) (Supplementary

Fig. 3b), which are quite similar to previously reported values for If
12. Furthermore, application of cGMP at >

2.5 mM, e.g. concentrations used for crystallization, did not reveal a second component in Hill plots that

could be attributed to a secondary binding site (Supplementary Fig. 3c,d).

After excluding a functional relevance of cGMP binding to the CLP, further analysis revealed that the pocket

is sufficiently wide and accessible to bind a molecule about twice the size of cGMP (Fig.1d). Since recent

studies identified cyclic di-(3’,5’)-guanosine monophosphate (c-di-GMP, Supplementary Fig. 4) as a second

messenger in eukarya 9,11, we tested c-di-GMP binding to the CLP of HCN4 via molecular docking

simulation. One of the best docking poses in terms of estimated free energy of binding showed one sugar
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ring/nucleotide moiety of the c-di-GMP occupying a similar position (although with a slightly different

orientation) as the CLP-bound cGMP in the crystal structure, with the second half of the docked molecule

being docked in the charged surface cleft (Fig. 1e,f). Functional tests on HCN4 currents showed a striking

result. While addition of c-di-GMP (100 μM) in the pipette did not affect the voltage-dependence of HCN4 

currents measured in whole cell, the activation curve in the presence of c-di-GMP being indistinguishable

from the control (Fig. 2a), completely opposite results were obtained in the presence of cAMP (15 μM). In 

this case, c-di-GMP completely reversed (i.e. back-shifted) the positive shift of 18 mV induced by saturating

cAMP on the activation curve (Fig. 2b, Supplementary Fig. 5a,b). Figure 2c shows the back shift (in mV) as

a function of c-di-GMP concentrations. Hill-plot fitting yielded values of 1.8 µM for k1/2 and 1.2 for n. To

confirm the direct action of c-di-GMP, we tested the molecule in the inside-out configuration (Fig. 2d).

Addition of c-di-GMP (100 μM) instantaneously and efficiently inhibited the increase in current induced by 

cAMP, fully reversing the shift of 17 mV induced by cAMP on V1/2 (inset). Raising the cAMP concentration

to 1 mM did not change the effect of c-di-GMP on current and activation curve (Supplementary Fig. 5c,d).

This excludes competition of the two molecules for the same binding pocket. Indeed, attempts to dock c-di-

GMP into the cAMP-free “canonical” pocket in the CNBD of HCN4 indicated no binding, probably because

of the excessive size c-di-GMP. In order to exclude the possibility that the effect of c-di-GMP is mediated by

the interaction with its known receptor STING11, we confirmed by western blot that our heterologous

expression system, HEK293T cells, does not express STING protein at detectable levels, neither in basal

conditions nor when transfected with HCN4 channels (Supplementary Figure 6a). Moreover, as an additional

control, we checked whether the effect of c-di-GMP on HCN4 currents was cAMP-specific. To this end, we

tested the effect of c-di-GMP in the presence of saturating cGMP (1 mM). Data reported in panel b of

Supplementary Figure 6 indicates full recovery by c-di-GMP from the cGMP-induced shift in the activation

curve of HCN4.

To confirm specific binding of c-di-GMP to the CLP, we searched for site-directed mutations that would

abolish or alter the c-di-GMP effect. We selected four key residues (Y559, F564, E566, R680), which line the

pocket occupied by the sugar ring/nucleotide moiety of both the cGMP in the crystal structure and of the

docked c-di-GMP (Fig. 1c,e). Mutation of any one of these four residues altered the channel response to c-di-
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GMP, as shown by the values of V1/2 measured in control, cAMP and cAMP + c-di-GMP (Figure 2e). In

particular the HCN4 R680E single site mutant proved totally insensitive to c-di-GMP, while its other

properties (basal position of V1/2 and cAMP-induced shift) remained undistinguishable from wt. This

phenotype strongly supports the specific interaction of c-di-GMP with the CLP, ruling out the possibility that

c-di-GMP binds to the canonical cyclic nucleotide binding site in the CNBD. In addition, we tested on the wt

channel the effect of two control substances, Guanosine-5'-triphosphate (GTP, 1 mM) and G5'-

Phosphoguanylyl- (3' − 5')-guanosine (pGpG) (100 μM), respectively the precursor and the first metabolic

degradation product of c-di-GMP. No effect on the cAMP-induced shift was observed in both cases (data not

shown), confirming that the HCN4 pocket is rather specific for c-di-GMP.

Docking experiments showed that c-di-GMP would not bind to other isoforms e.g. HCN1 and HCN2.

Although the predicted binding pocket has a high sequence homology, the difference in orientation of E566

(HCN4 numbering) may be a key factor in preventing binding of c-di-GMP to HCN1 and 2 because of a

potential steric clash between this residue making and of the phosphate groups of c-di-GMP (Supplementary

Figure YY). When c-di-GMP was tested at saturating concentration on human HCN1 and HCN2 channels

expressed in HEK293T cells (Fig. 2f), neither of the two channels were affected, confirming that the CLP is

specific for the HCN4 isoform.

We next tested other cyclic dinucleotides on HCN4: the bacterial c-di-AMP8 (cyclic di-(3’,5’)-adenosine

monophosphate), and two linkage isomers of cyclic GMP-AMP (cGAMP), the bacterial 3’3’-cGAMP

(c[G(3’,5’)pA(3’,5’)p])15 and the mammalian 2’3’-cGAMP (c[G(2’,5’)pA(3’,5’)p])16-18 (Supplementary

Fig.4). All tested cyclic dinucleotides behaved as c-di-GMP, back-shifting V1/2 to the control values, in the

presence of cAMP (Fig. 2f and Supplementary Fig. 7).

We have extended the analysis on 2’3’-cGAMP, since this is, so far, the only cyclic dinucleotide known to be

synthesized by mammals. Molecular docking simulation of 2’3’-cGAMP to HCN4 predicted the dinucleotide

would bind in the same pocket as c-di-GMP but in a slightly different orientation. However it would still

make interactions with the same key residues as identified for c-di-GMP (Supplementary Figure 8a). When

we determined the dose-response curve of the effect of 2’3’-cGAMP on HCN4 currents (Supplementary

Figure 8b), we found a k1/2 value of 114 nM, which is about 16 times lower than that for c-di-GMP.
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Interestingly, the same difference in affinity, nanomolar for the mammalian 2’3’-cGAMP vs. micromolar for

the bacterial c-di-GMP has also been reported for STING.

In conclusion, our findings point to a general mechanism whereby cyclic dinucleotides, either endogenous or

exogenous, would act as allosteric regulators of the human HCN4 pacemaker channel. Since HCN4 is the

main HCN isoform expressed in the cardiac pacemaker13, we next tested the effect of cyclic dinucleotides on

the native If current recorded in myocytes acutely isolated from mouse SAN (Fig. 3a). Sample current traces

were recorded in the absence and in the presence of c-di-GMP (100 µM), or 2’3’-cGAMP (100 µM), and

without (top), or with cAMP (10 µM, bottom), in the pipette solution. Both c-di-GMP and 2’3’-cGAMP

shifted V1/2 of If negative (Fig. 3b,c) (by 5 and 5.3 mV, respectively, see Supplementary Table 3) because

both compounds inhibit the shift induced by basal cAMP concentrations. Accordingly, the positive shift in

V1/2 generated by the addition of cAMP (see Supplementary Table 3) is partially or completely inhibited by

c-di-GMP (b, shift = 4.9 mV) and 2’3’-cGAMP (c, shift = 0.8 mV). The effect of c-di-GMP and 2’3’-

cGAMP on If mimics a cholinergic type of action
17, and hence predicts that both compounds reduce cardiac

automaticity. When tested on the activity of single SAN cells, 2’3’-cGAMP indeed substantially decreased

the spontaneous rate of these cells, when added at 100 µM via the pipette (Fig. 4d). A 5.3 mV shift in V1/2

and a 29% decrease in heart rate from the control of 6.7 ± 0.8 Hz (n = 4) to 4.7 ± 0.3 Hz (n = 5) (P < 0.05)

(Fig. 4d) correspond to the effects of physiological concentrations of acetylcholine (about 30 nM)17.

Next we set up a search for synthetic molecules, which would bind HCN4 CLP and modulate channel

function. To this aim we exploited libraries of low molecular weight compounds through in silico screening.

Eleven compounds, structurally unrelated to cyclic dinucleotides, were selected for their high predicted

binding affinity and tested on HCN4 currents. The compound N'-biphenyl-2-yl-N-[1-(3-

cyanobenzyl)piperidin-4-yl]-N-(pyridin-3-ylmethyl)urea (IUPAC name, CAS number 909664-41-1, hereafter

called C11 (Supplementary Fig. 4) had the strongest effect, completely abolishing the cAMP-induced shift in

V1/2 (Fig. 4a,b). The dose-response curve (Fig. 4c) yielded a k1/2 of 0.42 ± 0.11 μM, i.e. 4-fold higher

apparent affinity than c-di-GMP. Mutation of the interaction sites in the CLP identified by docking (Fig.

4d,e) indeed altered the response of HCN4 to C11, supporting the prediction that C11 binds in the CLP (Fig.
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4f). C11 did not affect human HCN2 channels expressed in HEK293T cells (Fig.4f), confirming that the CLP

is specific of the HCN4 isoform.

When tested on the native If current in the absence and in the presence of cAMP (Figure 4g), C11 shifted V1/2

of If negative by 5.9 mV (Fig. 4h, Supplementary Table 3), efficiently inhibiting the shift induced by basal

cAMP concentrations. The positive shift in V1/2 induced by the addition of cAMP was fully inhibited by C11

(shift = 0.3 mV). Again, when tested on the activity of single SAN cells, C11 decreased the spontaneous rate

of single SAN cells by 30% (from the control of 7.6 ± 0.4 (n = 7) to 5.4 ± 0.5 Hz (n = 6) (P < 0.05)) (Fig. 4i),

effectively mimicking the action of endogenous acetylcholine on heart rate.

Discussion

The combination of structural, biochemical and functional data reported here shows that the C-linker of

HCN4 hosts a regulatory binding site, the CLP, which controls the effect of cAMP on channel open

probability. This mechanism is specific for HCN4 and not effective in HCN1 and HCN2. Since HCN4 is the

main isoform of the cardiac If, occupancy of CLP by ligand molecules indeed prevents β-adrenergic

stimulation on the native current, mimicking the physiological effect of acetylcholine. Even though the

control of the responsiveness of HCN channels to cAMP in the heart is reported here for the first time, a

down regulation of the cAMP effect seems to be a general requirement for fine-tuning of HCN channel

activity. In the brain, where these channels control neuronal excitability and information processing, their

response to cAMP is down regulated by the beta subunit TRIP8b18,19; this cytoplasmic protein co-assembles

with HCN channels and inhibits channel opening by antagonizing the effect of cAMP. TRIP8b allosterically

competes with cAMP for channel opening and shifts the activation curve to more negative potential; the same

allosteric competition occurs when ligands bind to the CLP in HCN4. The modulation by CLP is therefore

functionally but not structurally comparable to that of TRIP8b. Since TRIP8b is exclusively expressed in the

brain, this modulator is not relevant for the control of cardiac pacemaking activity. The CLP-based

mechanism described here, remarkably specific for HCN4, therefore constitutes a relevant way to down

regulate the response of If to cAMP in sinoatrial-node.
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The observation that occupancy of the CLP prevents cAMP modulation sheds light on the allosteric coupling

between the CNBD and the pore in HCN proteins5. Ligand binding to the CLP seems to act as a lock,

hampering the movement of the C-linker and preventing the transmission of the conformational change from

the CNBD to the pore5. The CLP is strategically located between two mobile regions of the C-linker, the

“elbow” and “shoulder”, a location typically occupied by allosteric effectors in many unrelated proteins.

When the cAMP-bound CNBD initiates the conformational changes leading to channel activation, the ligand-

bound CLP prevents structural rearrangement therefore favoring the resting configuration of the C-linker.

Mutagenesis analysis further supports the finding that the CLP is located in a crucial position that controls

gating properties of the channel. Three out of four mutations introduced in the CLP in this study (Y559T,

F564T, E566K), resulted in channels with altered gating properties (altered basal value of V1/2 and/or altered

response to cAMP) (Fig 2e). The CNBD is known to regulate V1/2 by exerting a tonic inhibition on the

transmembrane pore that is removed by cAMP. Hence the CLP must be in a central position for basal and

cAMP-driven control exerted by the CNBD on channel gating. In this context it is worth mentioning that the

equivalent mutation of E566K in HCN2 (E515K) has been found in a patient with idiopathic generalized

epilepsy20. Similarly to that found in HCN4, E515K induces a 30 mV negative shift in the activation curve

of HCN2 and a consequent strong reduction of current availability near resting voltages.

The functional significance of the CLP in HCN4 makes this binding site a potential target for the delivery of

heart rate control drugs. The high affinity for the CLP shown by Compound 11, which blocks adrenergic

stimulation at nanomolar concentrations, proves that it is in principle possible to design an effective drug by

in silico docking to the CLP. Because of the isoform-specificity of the CLP such drugs may be attractive

alternatives to the less isoform-specific channel pore blockers21.

A most unexpected finding is that prokaryotic and eukaryotic cyclic dinucleotides, are potent antagonist of

cAMP in HCN4. The interest in cyclic dinucleotides as second messengers in mammals has so far been

restricted to the immune system where they initiate the STING-mediated release of interferon in response to

the presence of bacterial10 or viral22 DNA in the cytoplasm. Since a number of different cyclic dinucleotides

are able to regulate HCN4 activity, we cannot exclude the possibility that other endogenous ligands bind to

the CLP. Still it is worth noting that the cyclic-GMP-AMP synthase (cGAS)23, the key enzyme which



10

produces the mammalian 2’3’-cGAMP, is abundantly expressed in many different tissues including heart24.

Other indirect pieces of evidence support a role of cyclic dinucleotides for If regulation. For example it has

been reported that bacterial endotoxins such as lipopolysaccharides, the major pathogen-associated molecular

pattern, cause myocardial depression in sepsis. The bacterial toxins down regulate in a yet unknown fashion

the If current by inducing a negative shift in the channel activation curve
25-27. On the basis of present findings

and recent data on the immune reaction of mammals showing that cyclic di-nucleotides spread systemically

via gap junctions28, it is reasonable to speculate that the presence of bacteria stimulates an endogenous

production of cyclic dinucleotides, which in turn are responsible for the regulation of the If current.

Full Methods and any associated references are available in the online version of the paper
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Figure legends

Figure 1 | Crystal structure of the soluble portion CL-CNBD (C-linker plus CNBD) of HCN4 in

complex with cGMP.

a, Ribbon representation of the HCN4 CL-CNBD tetrameric assembly (individual subunits colored in red,

green, blue, and magenta). Bound cGMP molecules are shown in stick representation (yellow) surrounded by

their electron density (2FO-FC map contoured at 1: cyan mesh). The “canonical” cGMP binding sites and the

newly discovered C-linker pocket (CLP) binding sites are indicated. b, Ribbon representation of a HCN4 CL-

CNBD subunit in complex with cGMP. Helices of the C-linker region and the -roll are indicated; helices of

the C-linker are labeled (A’-C’). c, cGMP bound at the HCN4 CLP, showing hydrogen bonds and salt

bridges (dashed lines) that stabilize the cGMP molecule. Residues involved in cGMP stabilization are shown

in stick representation and labeled (see Supplementary Table 2 for the list of interactions). The HCN4 CL-

CNBD subunits are colored accordingly to panel a. d, Electrostatic surface at CLP. The blue and red colors

highlight positively and negatively charged surfaces, respectively. The bound cGMP is shown as stick

representation. e, Molecular docking simulation showing a molecule of c-di-GMP bound at the HCN4 CLP.
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Residues involved in cGMP stabilization are shown in stick representation and labeled (in red the residues

that have been mutated, see Figure 2 for details). f, Electrostatic surface at CLP, with the docked c-di-GMP

molecule shown as stick representation.

Figure 2 | Effect of c-di-GMP on voltage-dependence of activation of WT and mutant HCN4 channels.

a, Mean activation curves of HCN4 channels expressed in HEK293T cells and measured in whole-cell, in

control (■) and with 100 µM c-di-GMP (∆). Boltzmann equation fitted to the data points yielded half

activation voltage (V1/2) values of -98.1 ± 2.7 mV and -96.3 ± 1.7 mV, and slope factor (s) of 8.5 mV and 8.9

mV, respectively for control and c-di-GMP. b, Mean activation curves of HCN4 recorded in control (■), 15 

µM cAMP (●), 15 µM cAMP + 100 µM c-di-GMP (▲). V1/2 values are -99.8 ± 1.5, -79.8 ± 1. 8, -98.1 ± 3

and slope factor (s) 10.3, 9.1, 12 mV for control, cAMP, cAMP + c-di-GMP, respectively. Number of cells in

a: ■, n = 3; ∆, n = 4; in b: ■, n = 6; ●, n = 6; ▲, n = 5. c, Dose-response curve of c-di-GMP, evaluated as

recovery from cAMP-induced shift in the activation curve (back shift, mV). The cAMP concentration was 15

μM. Hill equation fitted to the mean data points (n  3) yielded a k1/2 value of 1.8 ± 0.4 μM and n = 1.2 ± 0.2.

d, Effect of c-di-GMP on HCN4 current measured in inside-out patches. Current recorded at – 140 mV (tails

at -40 mV) in control solution (black), 15 µM cAMP (blue) and 15 µM cAMP + 100 µM c-di-GMP (orange).

In this experiment the cAMP-induced shift was +15 mV. Inset: mean shift (mV) measured in the presence of

cAMP (blue, n = 5) and cAMP + 100 µM c-di-GMP (orange, n = 3). e, Effect of 100 µM c-di-GMP on

channel half activation voltage, V1/2, in WT and HCN4 mutants. Data are mean values of n ≥ 3 experiments

performed in whole-cell. Control (), 15 µM cAMP (●), 15 µM cAMP + 100 µM c-di-GMP (▲). f, Effect

of three different cyclic dinucleotides, c-di-AMP, 3’3’-cGAMP (prokaryotic) and 2’3’cGAMP (eukaryotic),

on V1/2 (mV) in HCN4 and of c-di-GMP on V1/2 (mV) in human HCN2 and HCN1. Control (), 15 µM

cAMP (●), 15 µM cAMP + 100 µM of the indicated cyclic dinucleotide (▲). Number of cells were: c-di-

AMP, n = 9, 3’3’-cGAMP, n = 9; 2’3’-cGAMP, n=11, c-di-GMP on HCN2 and HCN1 n = 4.
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Figure 3 | Effects of c-di-GMP and 2’3’-cGAMP on voltage dependence of If activation and

spontaneous rate in SAN.

a, Representative whole-cell If currents recorded in control and in the presence of either 100 µM c-di-GMP

or 100 µM 2’3-cGAMP, at the indicated voltages, without (top) and with 10 µM cAMP in the pipette

(bottom). b, c, Mean If activation curves measured in the absence (filled symbols) and in the presence of 10

µM cAMP (open symbols) in control (circles) and with 100 µM c-di-GMP (b, squares) or 100 µM 2’3’-

cGAMP (c, diamonds) in the pipette. Comparison of data in b and in c always involves day-matched

preparations. Number of cells in b: ●, n = 9; ○, n = 8; ■, n = 8; □, n =13; in C: ●, n =5;○, n = 4;, n = 6; ,

n =6. d, Left, representative recordings of single SAN cell spontaneous activity in control and in the presence

of 2’3’-cGAMP (100 µM). Right, mean spontaneous rate recorded in control and in the presence of 2’3’-

cGAMP. * P< 0.05, Student t-test.

Figure 4 | Effect of C11 on HCN4, If channels and spontaneous rate in SAN.

a, Exemplary screening procedure for active compounds performed in HEK293T cells in whole cell. A

mixture of three compounds selected by docking (mix), inhibits the cAMP-induced positive shift in HCN4

activation curve. Individual testing of the three molecules shows that C11 (but not C5 and C8) is the active

molecule as it reproduces the effect of the mix. b, Effect of 100 μM C11 on the activation curve of HCN4. 

Control (), 15 µM cAMP (●), 15 µM cAMP +100 µM C11 (▲). Number of cells: , n = 4; ●, n = 5; ▲, n

= 4. Boltzmann fit yielded V1/2 values of -94.8 ± 1.9, -79.3 ± 1.7, -94.2 ± 2.7 and slope factor (s) = 9.6, 10.7,

12.2 mV for control, cAMP, cAMP + C11, respectively. c, Dose-response curve of C11 evaluated as

recovery of the shift induced by cAMP in HCN4 (back shift, mV). Data is mean values of n ≥ 3. Fitting of

Hill equation to the experimental data yielded a k1/2 value of 0.42 ± 0.1 μM and n = 0.8 ± 0.1 d, Electrostatic

surface at CLP, with inhibitor C11 docked using eHiTS. e, Docking of C11 bound in the CLP of HCN4 as

predicted using eHiTS. Residues involved in the predicted binding pose are shown in stick representation and

labeled (for clarity, the orientation of the CLP is identical to that in panels c-f of Fig. 1). f, Effect of 100 µM
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C11 on channel half activation voltage, V1/2 (mV), in HCN4 WT and in the HCN4 mutants F613T and Y682F.

Effect of 200 µM C11 on V1/2 (mV) in HCN2. Data is mean values of n ≥ 3 experiments performed in whole

cell. Control (), 15 µM cAMP (●), 15 µM cAMP + 100 µM (or 200 µM) C11 (▲). g, Representative

whole-cell If currents recorded in control and in the presence of 100 µM C11, at the indicated voltages,

without (top) and with 10 µM cAMP in the pipette (bottom). h, Mean If activation curves measured in the

absence (filled symbols) and in the presence of 10 µM cAMP (open symbols) in control (circles) and with

100 µM C11(triangles) in the pipette. Comparison of data in h always involves day-matched preparations.

Number of cells in h: ●, n =15;○, n = 9; ▲, n = 15; Δ, n = 7. i, Left, representative recordings of single

SAN cell spontaneous activity in control and in the presence of C11 (100 µM). Right, mean spontaneous rate

recorded in control and in the presence of C11. * P< 0.05, Student t-test.
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Material and Methods

Protein preparation

The cDNA fragment comprising the C-linker (CL) and CNBD region of human HCN4 (residues 521-723),

was cloned into a modified pET-24b plasmid, transformed into E. coli Rosetta strain, overexpressed and

purified as previously described14.

Crystallization and structure determination
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Crystallization trials were set up in 96-well sitting drop plates (Greiner) using the Orxy 8.0 crystallization

robot (Douglas Instruments) and stored at 4 °C. Crystallization conditions were eventually further optimized

manually in 24-well hanging-drop plates. Crystals of the HCN4 CL-CNBD-(cGMP) complex (protein

concentration 7-13 mg/ml, 2.5-50 mM cGMP) were grown by vapor-diffusion method using 10-15%

PEG3350, 200 mM sodium acetate buffer (pH 5.0) and 200 mM ammonium phosphate as a precipitant

solution. Crystals were cryoprotected with the same solution with a 5% increase of PEG3350 and with the

addition of 25% glycerol. A full data set was collected at 100K to 2.7 Å resolution, using synchrotron

radiation (= 0.97238 A, ID29 beamline, ESRF, Grenoble, France). Raw data were processed with Mosflm29

and Scala30 and the structure was solved by molecular replacement using the program MolRep31 for the

HCN4 CL-CNBD-(cGMP) complex. The crystal structure of human HCN4 in complex with cAMP14 (PDB

entry-code 3U11) was used as search model. To avoid model bias, the bound cAMP was removed from the

search model. Several cycles of manual rebuilding, using the program COOT32, and refinement, using the

program REFMAC533 (rigid body and restrained refinement), were carried out to improve the electron

density map. The final R-factor and R-free are 21.1 % and 27.2 %, respectively. The program Procheck34 was

used to assess protein stereochemical quality (Ramachandran statistics: allowed region = 92.7%, favorably

allowed region = 7.3%). The program PISA35 was used to identify and analyze the quaternary assemblies.

Constructs

The hHCN4 and hHCN2 complementary DNA was inserted in the eukaryotic expression vector pcDNA 3.1

(Clontech Laboratories). Mutations were generated by site-directed mutagenesis (QuikChange site-directed

mutagenesis kit; Agilent Technologies) and confirmed by sequencing.

Electrophysiology of HEK293T cells

Complementary DNA of wild-type and mutant channels was co-transfected for transient expression into

HEK293T cells with a plasmid containing green fluorescent protein. One to five days after transfection, GFP-

expressing cells were selected for patch-clamp experiments at room temperature (25 to 26 °C) either in

whole-cell configuration or inside-out by means of macropatch. The pipettes used in whole-cell experiment

contained (mM): 10 NaCl, 130 KCl, 1 egtazic acid (EGTA), 0.5 MgCl2, 2 ATP (Na salt) and 5 HEPES–KOH
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buffer (pH 7.2). The extracellular baths solution in whole-cell experiments contained (mM): 110 NaCl, 30

KCl, 1.8 CaCl2, 0.5 MgCl2, 1 BaCl2, 2 MnCl2 and 5 HEPES–NaOH buffer (pH 7.4). The pipettes used in the

inside-out macropatch experiments contained (mM): 70 NaCl, 70 KCl, 1.8 CaCl2, 1 MgCl2, and 5 HEPES–

KOH buffer (pH 7.4); a solution containing (mM) 144 KCl, 1 NaCl, 1 EGTA, 1 MgCl2 and 10 HEPES–KOH

buffer (pH 7.2) perfused the intracellular sides of the patches. Because the midpoint of activation of HCN4

shifted by approximately 40 mV in a hyperpolarized direction after patch excision, we waited at least 5 min

after obtaining inside-out patches before beginning experiments. In most cases, this was sufficient to limit

drift to a few millivolts over the time course of the experiment. cAMP, c-di-GMP, c-di-AMP, 2’3’-cGAMP

and 3’3’-cGAMP (BioLog Life Science Institute, Bremen, Germany) and compound 11 (Peakdale Molecular,

Chapel-en-le-Frith, UK) were added at the indicated concentrations to the pipette’s solution in whole-cell or

to the bath solution in inside-out. All values are given as mean ± SEM.

Data analysis

The activation curves for hHCN4 and hHCN2 currents recorded in HEK293T cells under whole-cell

conditions were obtained by standard activation and deactivation protocols and analyzed by the Boltzmann

equation, y=1÷{1+exp[(V−V1/2)÷s]}, where y is fractional activation, V is voltage, V1/2 half-activation

voltage, and s the inverse slope factor (mV). Mean activation curves were obtained by fitting individual

curves from each cell to the Boltzmann equation and averaging half-activation voltages and inverse slope

factors. Shifts of the voltage–dependent activation induced by perfusing cyclic nucleotides on the

intracellular side of macropatches were evaluated by measurement of the change in holding potential

producing superimposition of current traces in control and in the presence of cGMP according to a previously

developed protocol36. The activation curves in inside-out macropatches and the shifts induced by cGMP were

obtained by slow voltage ramp protocols and calculated as previously reported37. The dose–response curves

were analyzed by the Hill equation, as follows: S÷Smax = 1÷ [1+(k1/2÷[ligand])
n], where S is the shift (cAMP

or cGMP) or the back shift (for cyclic dinucleotides or C11), k1/2 is the half-maximal concentration, and n is

the Hill factor. In inside-out measurements, each patch was exposed to the ligand only once. All values are

given as mean ± SEM.
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Isolation and electrophysiology of sinoatrial node cells

Animal protocols conformed to the guidelines of the care and use of laboratory animals established by Italian

(DL. 116/1992) and European (86/609/CEE) directives. 2-6 month old C57/Bl6 mice were deeply

anaesthetized by isofluoran and euthanized by cervical dislocation. Single SAN myocytes were obtained as

described previously38. Isolated cells were maintained at 4 °C in Tyrode solution (in mM: 140 NaCl, 5.4 KCl,

1.8 CaCl2, 1 MgCl2, 5.5 D-glucose, 5 HEPES-NaOH (pH 7.4) for the day of the experiment and patch-

clamped in the whole-cell configuration at 35±0.5 °C. The pipette solution contained (in mM): 10 NaCl, 130

KCl, 1 egtazic acid (EGTA), 0.5 MgCl2, 2 ATP (Na salt) and 5 HEPES–KOH buffer (pH 7.2). When

indicated cAMP (10 µM), c-di-GMP (100 µM), and compound 11 (100 µM) were added to the pipette’s

solution. The If current was recorded from single cells superfused with Tyrode solution to which BaCl2 (1

mM), and MnCl2 (2 mM) were added to improve If dissection.

If activation curves were obtained using a two voltage step protocol in which test voltage steps were applied

from a holding potential of -35 mV to the range -35/-135 mV (20 mV interval). Test steps had variable

duration so as to reach steady-state activation at all voltages and were followed by a step to -125 mV. Plots of

normalized current amplitudes measured at -125 mV as a function of test voltage were fitted with the

Boltzmann (see above). Spontaneous activity was recorded from single SAN cells in Tyrode solution and the

rate was measured with customized software as described previously39. Data was acquired at 1 kHz using an

Axopatch 200B amplifier and pClamp10.2 (Molecular Devices, Sunnyvale CA). Data was analyzed off-line

using Clampfit 10.2 (Molecular Devices) and Origin 8.5 (OriginLab Corp., Northampton MA). Statistical

differences were determined at the P < 0.05 level by either ANOVA or Student's t-test. All values are given

as mean ± SEM.

Western blot

Fifty-percent confluent HEK293TT cells were transfected (in 35 mm diameter wells) respectively with

hHCN4 (2ug) and hSTING (2ug) with Lipofectamine2000 reagent (Invitrogen). pMAX-GFP plasmid was

co-transfected. Expression of hHCN4 was verified by patch-clamp recordings. After 48hrs, cells were

resuspended in PBS pH7.4 supplemented with Triton X-100 1%(v/v) and protease inhibitors cocktail
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(Complete, Roche). Cells were gently broken with a 27G needle. Cells debris was centrifuged at 8000 xg for

10 minutes at 4°C. The supernatant was collected and analyzed by SDS-PAGE and western blot. For

immunodetection STING antibody (Cell Signaling Technology) and anti-rabbit HRP conjugated were used.

Virtual high-throughput screening using eHiTS

The electronic high-throughput screening program eHiTS40,41 utilizes an exhaustive systematic search

algorithm that considers all docking poses that avoid severe steric clashes with the protein. The system

employs unique graph matching algorithms and dock tables which are stored in SQL databases. In the first

instance, the binding pocket is defined by a steric grid which divides regions into separate pockets and

identifying all possible interaction sites. The ligand is divided into rigid fragments and connecting flexible

chains. Each fragment is wrapped into a polyhedron shape with chemical properties assigned to the vertices

of the polyhedron. All rigid fragments are docked to every possible place in the newly identified binding site

and scored for predicted binding affinity. Initially, a simple and fast chemical flag based statistical scoring

function is used during the rigid fragment-docking and pose-matching phases. Using eHiTS (version 9.0), a

library containing 12000 compounds from Peakdale Molecular (http://www.peakdale.co.uk) was screened

against the X-ray crystal structure of HCN4. 1000 compounds were selected for evaluation using the de novo

design program SPROUT 42. From this set, 11 molecules were selected for purchase based upon their

predicted binding affinity to the protein.

Supplementary Figure 1 | Alignment of HCNs sequences

Alignment of the C-linker (A’-F’ helices) + CNBD (helices A, P, B, C, beta strands 1-8) sequences of human

HCN1, HCN2 and HCN4 (NCBI Reference Sequence: NP_066550.2, NP_001185.3, NP_005468.1,

respectively). The orange line marks the residues surrounding the newly identified C linker pocket (CLP).

The amino acids interacting with the cGMP molecule found in the CLP (PDB ID code 4KL1) are highlighted

in orange. In red are the amino acids different in the three isoforms.
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Supplementary Figure 2 | Comparison of HCNs isoforms

a, Overall structural comparison of CL-CNBDs in complex with cGMP from HCN4 (green), and HCN2

(grey, PDB entry-code 1Q3E)4. The comparison has been made by superimposing the CNBD core domain of

the HCN isoforms. For clarity only the Cα backbones at the C-linker regions are shown. The rms deviation 

for residues at the C-linker regions ranges between 1.1 Å and 1.4 Å depending on the subunits present in the

crystal asymmetric units. b, Overall structural comparison (similar to panel a) of CL-CNBDs in complex

with cAMP from HCN4 (blue; PDB entry-code 3U11), HCN1 (yellow; PDB entry-code 3U0Z), and HCN2

(orange; PDB entry-code 3U10)14. The Cα backbones of the HCN1 and HCN2 cluster together (rms 

deviation of 1.4 Å for residues at the C-linker regions for all subunits present in the crystal asymmetric units),

whereas differences are evident, especially for the C’ and D’-helices, for the HCN4 isoform (rms deviation

for residues at the C-linker regions ranging between 1.6 Å and 1.7 Å for HCN4 and HCN1 and between 2.5

Å and 2.6 Å for HCN4 and HCN2, depending on the subunits present in the crystal asymmetric units).

Helices at the C-linker region are indicated, together with the position of the cGMP binding site at the C-

linker pocket of HCN4. c, Close up view of the canonical cGMP binding pocket in the CNBD of HCN4

(green) reveals a perfect agreement of the cGMP binding mode with the HCN2 structure (grey) co-

crystallized with cGMP (PDB: 1Q3E)4. As in HCN2, the cGMP molecule is found in the syn configuration,

bound between the beta roll and the C helix. All the agonist-protein interactions found in HCN2 are

conserved (Supplementary Table 2b), including the purine-specific hydrogen bonds with Thr670 of the beta-

roll and with Arg710 of the C helix. Alpha helices and beta sheets of the CNBD are labeled.

Supplementary Figure 3 | Effect of cGMP on HCN4 in HEK293T cells

a, Exemplary activation curve of HCN4 channels measured in Control (■) and 1 mM cGMP (●), from an

inside-out macropatch. Boltzmann fit yielded V1/2 of -120 mV and -108 mV and s of 8 mV and 7 mV for
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control and cGMP respectively. Inset: current recorded from the same macropatch during a two-step protocol

from a holding potential of -30 mV to -130 mV and to -60 mV, before (black) and after (red) the addition of

1 mM cGMP b, Mean cGMP-dependent shifts (in mV) measured as a function of increasing cGMP

concentration. Each data point is the average of three to nine patches. Fitting of the data with the Hill

equation yields values of 13.2 μM for the half maximal cGMP concentration (k1/2) and 0.72 for the Hill

coefficient n. c, Effect of high concentrations of cGMP (5 and 10 mM). HCN4 current recorded in inside-out

macropatch at the test voltage of -110 mV, in control solution (black) and after the addition of 5 mM (red) or

10 mM cGMP (blue). cGMP shifted V1/2 by 13 mV (evaluated by changing the holding potential, see

Methods); d, Effect of cGMP in the presence of high concentrations of cAMP on HCN4. Current recorded at

the test voltage of -110 mV in control (black) and after the addition of 5 mM cAMP (red), 5 mM cAMP +

1mM cGMP (blue) and 5 mM cAMP + 2.5 mM cGMP (green). Such a high cAMP concentration prevents

competition with cGMP for the canonical binding pocket in the CNBD. In HCN4, cAMP binds with a k1/2 of

1.5 μM43, an order of magnitude higher than that measured for cGMP (panel b).

Supplementary Figure 4 | Chemical structures of c-dinucleotides and Compound 11

Structures of C-linker pocket binders c-di-GMP, c-di-AMP, two linkage isomers of cyclic GMP-AMP, the

bacterial 3’3’-cGAMP, and the eukaryotic 2’3’-cGAMP and the chemically unrelated compound 11 ((N'-

biphenyl-2-yl-N-[1-(3-cyanobenzyl)piperidin-4-yl]-N-(pyridin-3-ylmethyl)urea).

Supplementary Figure 5 | HCN4 currents recorded with c-di-GMP in whole-cell and in inside–out.

a, b, Representative whole-cell currents from HEK293T cells expressing HCN4 channels recorded at the

indicated voltages in control and in the presence of c-di-GMP, without (a) and with (b) 15 µM cAMP in the

pipette. c, HCN4 currents recorded in one inside-out macropatch at –140 mV (tails at -40 mV) in control
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solution (black), 15 µM cAMP (red), 15 µM cAMP + 100 µM c-di-GMP (green) and 1 mM cAMP + 100 µM

c-di-GMP (blue). The cAMP-induced shift was +15 mV (measured by changing the holding potential, see

Methods). d, activation curve of HCN4 channels measured in one inside-out macropatch by slow voltage

ramps35 in 100 μM c-di-GMP without (black) and with (red) 1 mM cAMP. In the presence of c-di-GMP, 1 

mM cAMP does not induce the positive shift in the channel activation curve. Fitting of Boltzmann curve

yielded V1/2 = -141.5 mV, s = 10.1.

Supplementary Figure 6 | The effect of c-di-GMP on HCN4 is not mediated by the activation of STING

and is not cAMP-specific. a, STING is not detectable in HEK293T cells. Western blot analysis of extracts

from HEK293T cells, untransfected (UN), transfected with a cDNA expression construct encoding hHCN4

(HCN4) or transfected with a cDNA expression construct encoding hSTING (STING). Immunodetection has

been done with the STING antibody. b, Effect of c-di-GMP in the presence of cGMP. The measurement was

performed in whole cell, in HEK293T cells expressing HCN4. Boltzmann equation fitted to the data point

yielded the following values for half activation voltage (V1/2) and slope factor (s): control (■),  -103.8 ± 0.14 

mV and 11.8 ± 0.13 mV, (n =3); + 1 mM cGMP (●), -91.2 ± 0.13 mV and 8.36 ± 0.12 mV, (n =3); 1 mM

cGMP + 100 uM c-di-GMP (▲), -105 ± 0.25 mV and 14.2 ± 0.23 mV, (n =3).

Supplementary Figure 7 | Effect of c-di-AMP, 3’3’-cGAMP and 2’3’cGAMP on the voltage dependence

of HCN4 activation.

Mean activation curves of HCN4 channels expressed in HEK293T cells and recorded in whole cell

configuration in the absence (black squares) and in the presence of 15 μM cAMP (blue circle). Cyclic

nucleotides were added 100 μM in the presence of 15 μM cAMP (orange triangle). Boltzmann equations

were fitted to the mean data points (n≥3) and the resulting V1/2 and s were: c-di-AMP, ■, -97.1 ± 0.2 mV, 10 



24

mV; ●, -82.7 ± 0.2 mV, 11 mV; ▲, -96.3 ± 0.3 mV, 12 mV; 3’3’-cGAMP, ■, -96.5 ± 0.3 mV, 9.1 mV; ●, -

82 ± 1.5 mV, 9.7 mV; ▲, -97.4 ± 0.12 mV, 7.7 mV: 2’3’cGAMP, ■, -96.8 ± 0.5 mV, 9.3 mV; ●, -79.3 ± 2.2

mV, 10.4 mV;▲, -96.5 ± 0.8 mV, 12.3 mV.

Supplementary Figure 8 | Characterization of the interaction of mammalian 2’3’cGAMP with HCN4

a,Molecular docking simulation showing a molecule of 2’3’-cGAMP bound at the HCN4 CLP. Residues

involved in 2’3’-cGAMP stabilization are shown in stick representation and labeled. b, Dose-response curve

of the effect of 2’3’-cGAMP on HCN4. The effect was evaluated as inhibition of the cAMP-induced shift

(back shift) in the voltage-dependent activation of HCN4. Measurements were performed in the whole cell

configuration in HEK293T cells expressing HCN4. The pipette solution contained 15 μM cAMP and the 

indicated 2’3’cGAMP concentrations. Solid line represent fitting of Hill equation to data, yielding the

following values for k1/2= 116 nM and n = 0.95. Number of cells varied between 3 and 15.
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