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Abstract

This paper estimates a �rm-speci�c capital DSGE model. Firm-speci�c capital

improves the �t of DSGE models to the data (as shown by a large increase in the value

of the log marginal likelihood). This results from a lower implied estimate of the NKPC

slope for a given degree of price stickiness. Firm-speci�c capital leads to a better �t to

the volatilities of macro variables and a greater persistence of in�ation. It is also shown

that �rm-speci�c capital reduces the dependence of New Keynesian models on price

markup shocks and that it increases the persistence of output to monetary shocks.
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1 Introduction

Despite being a more appealing choice of modelling capital (standard business cycle models

assume that capital can be instantly and costlessly transferred across �rms which is em-

pirically unrealistic) there are still few examples of dynamic stochastic general equilibrium

(DSGE) models with �rm-speci�c capital and very little empirical work on the topic.1

Altig, Christiano, Eichenbaum and Linde (hence ACEL, 2011) estimate the �rm-speci�c

and homogeneous capital DSGE models in terms of the reduced form New Keynesian Phillips

curve (NKPC) and show how the assumption of �rm-speci�c capital reduces the frequency

of price re-optimization at the �rm level.2 This approach implies the two models to be

observationally equivalent with respect to aggregate prices and quantities (and to di¤er only

in terms of price frequency adjustment at the micro level). This is because only the mapping

between the structural parameters and the slope of the NKPC is a¤ected by the introduction

of �rm-speci�c capital.

In this paper I take the reverse approach. I �x the frequency of price adjustment at

the �rm level with values based on micro studies (such as Klenow and Kryvtsov, 2008). I

then study the di¤erences at the aggregate level of modelling capital as �rm-speci�c rather

than the more conventional homogeneous capital case. That is, in this paper, the parameter

priors between the two models are assumed to be identical at the micro rather than at the

macro level (and the models will di¤er in terms of the implied prior of the NKPC slope).

The estimated model in this paper is similar to that in ACEL (2011) but rather than

using a limited information strategy I adopt a Bayesian estimation approach (which has

become very popular in macroeconomics with Smets and Wouters, 2003, 2007, as prominent

references). This too is an important di¤erence because the posterior distribution obtained

from Bayesian estimation o¤ers a particularly natural method of comparing models which

1One possible reason for this is that when capital is �rm-speci�c it is no longer possible to solve the
price setting problem without considering the �rm�s optimal investment behavior. This makes the model
considerably less tractable but it turns out to still be possible to derive an aggregate-supply relation following
the method developed in Woodford (2005).

2Other relevant empirical papers that have done this are Eichenbaum and Fisher (2007) and Matheron
(2006).
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enables me to show that �rm-speci�c-capital is important for DSGE models to achieve a

better �t to U.S. macro time series data (as shown by a large increase in the value of the

log marginal data density).3 This paper also extends the knowledge in the literature by

looking at a wider range of shocks than those considered in previous studies of �rm-speci�c

capital models. Besides total factor productivity and monetary shocks the model includes

discount rate, labor supply, government spending, capital-embodied technology and price

markup shocks too.

My analysis suggests that the improved �t to the data of the New Keynesian model seems

to be behind a better �t to the volatilities of macro variables observed in the data. Of par-

ticular interest is the �nding that �rm-speci�c capital substantially increases the persistence

of in�ation. This represents an important result since a major limitation of micro-founded

models of dynamic price adjustment is that they do not imply in�ation inertia (Romer,

2011). Previous approaches adopted to bringing in�ation inertia into New Keynesian mod-

els have not been fully satisfying.4 The models, for the benchmark case, presented here are

purely forward-looking, having no �intrinsic� in�ation persistence (that is, all persistence is

�inherited� from the driving variable in the NKPC). This shows that it is possible for price

staggering models to account for the high reduced form persistence seen in the data without

the presence of a lagged in�ation term (as done in Galí and Gertler, 1999, and Christiano,

3As I do, de Walque, Smets and Wouters (2006) and Nolan and Thoenissen (2008) analyze how �rm-
speci�c capital a¤ects the aggregate behavior of economic variables. However, de Walque, Smets and Wouters
(2006) assume Taylor contracts whereas I assume Calvo contracts (which is more conventional in the business
cycle literature). Nolan and Thoenissen (2008) adopt a calibration methodology which makes it hard to assess
which model �ts the data better. With calibration the marginal likelihood is not computed, so in order to
discriminate between models one would need to specify: (i) a distance to measure the di¤erence between
estimated and model moments, and (ii) a loss function that would determine which moments are the most
important to match.

4The most prominent approaches are: rule-of thumb behavior (Galí and Gertler, 1999), indexation of
price contracts (Christiano, Eichenbaum and Evans, 2005) and sticky information (Mankiw and Reis, 2002).
Galí and Gertler (1999) introduce inertia by assuming that a fraction of �rms raises prices mechanically in line
with past in�ation rates. This is unrealistic, since we do not observe micro prices that change automatically
with lagged in�ation (see the evidence shown in Bils and Klenow, 2004, and Nakamura and Steinsson, 2008).
Christiano, Eichenbaum and Evans (2005) and Mankiw and Reis (2002) assume some adjustment of prices
between reviews. Again, this does not match the observations at the micro level (see Bils and Klenow,
2004, and Nakamura and Steinsson, 2008). Many prices are �xed for extended periods and there is little
support that �rms set price paths like those predicted by models of price indexation of contracts or sticky
information.
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Eichenbaum and Evans, 2005) in their aggregate supply relation (intrinsic persistence). This

has important implications for monetary policy (see Fuhrer, 2010).

The �rm-speci�c capital speci�cation is able to �t the data better because it implies a

lower implied slope of the NKPC for a given degree of price stickiness. If in the homogeneous

capital model one chooses a degree of price stickiness so that its implied prior NKPC slope is

about the same as that of the �rm-speci�c capital model, then the di¤erences in �t between

the models become negligible. The �rm-speci�c capital, however, �ts the evidence better

for a plausible degree of price stickiness at the micro level. Empirical macro researchers

who follow a Bayesian approach choose parameter priors mostly to be in line with micro

studies. For those using this method, the results in this paper suggest it is bene�cial to

model capital as �rm-speci�c. Researchers that prefer the more conventional homogeneous

capital assumption may opt instead to allow the degree of price stickiness to be determined

from macro estimates of the NKPC slope. The main di¢culty with such an approach is that

identi�cation of the NKPC slope has been shown to be weak (see Mavroeidis, Plagborg-

Møller and Stock, 2014).

Another relevant result is the signi�cant reduction of the size of the volatility of price

markup shocks, when �rm-speci�c capital is assumed. This is of importance since it helps

address the criticism of Chari, Kehoe, and McGrattan (2009) on the usefulness of New

Keynesian models for policy analysis due to their reliance on these shocks in order to explain

the data..

I also study how the model�s responses to exogenous shocks are changed by the in-

troduction of �rm-speci�c capital. I �nd that the introduction of �rm-speci�c capital has

important dynamic implications. The impulse response functions show that �rm-speci�c cap-

ital, by making �rms change prices by less, aids considerably in propagating the responses

of output, while dampening movements in in�ation, to exogenous �demand� shocks (since

these tend to move output and prices in the same direction) such as �scal and monetary

policy shocks. This is an important point since Chari, Kehoe and McGrattan (2000) found

the standard New Keynesian model to have di¢culty in generating output persistence in
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response to monetary shocks.

Other related empirical papers in the literature include those on sectoral heterogeneity in

price stickiness. Like �rm-speci�c capital, heterogeneous price stickiness leads to more per-

sistent e¤ects on aggregate output of monetary shocks (see for example Carvalho, 2006, and

Dixon and Kara, 2011) and a¤ects the relative importance of exogenous shocks to cyclical

�uctuations (see Bouakez, Cardia and Ruge-Murcia, 2014). It is also worth mentioning other

promising explanations for in�ation persistence. Sargent, Williams and Zha (2006) explain

the historical movements in US in�ation as the result of the monetary authority�s learning

about the state or structure of the economy. Cogley and Sbordonne (2008) show how the

introduction of a time-varying in�ation trend allows for a purely forward-looking NKPC to

�t the data well. In recent work, Bianchi and Ilut (2014) show that the dynamics of in�a-

tion depend crucially on the monetary/�scal policy mix and that high in�ation persistence

disappears when �scal discipline is restored.

The remainder of the paper is organized as follows. Section 2 outlines the DSGE model.

Section 3 describes the estimation methodology and results. In section 4 I look at the

implications for business cycle dynamics. Section 5 summarizes the paper�s �ndings.

2 The Models

In this section I describe the homogeneous and �rm-speci�c capital models. The models

are very similar to those presented in ACEL (2011). The main di¤erences to ACEL (2011)

consist in the introduction of four stochastic shocks (to price markup, discount rate, labor

supply and exogenous spending). In order to analyze better the role of �rm-speci�c capital

in increasing the persistence of in�ation I will consider both the case in which �rms that

do not re-optimize keep prices unchanged (this is the more common formulation for Calvo

price setting, see for example Galí, 2008) and the case in which they follow a lagged in�ation

indexation rule (as in ACEL, 2011). In the last subsection I compare both models with

respect to in�ation dynamics. In the interest of conserving space the exposition is kept brief
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and readers interested in more details can refer to ACEL (2011) and its technical appendix

(ACEL, 2004).

2.1 The Homogeneous Capital Model

2.1.1 Firms

Final Good Firm The �nal consumption good, Yt, is produced by a representative �rm

that operates in a perfectly competitive market. The production function that transforms

intermediate goods, yt(i), into �nal output is given by:

Yt = [

1Z

0

yt(i)
1=�f;tdi]�f;t ; (1)

where �f;t = �f + "f;t is a stochastic parameter that determines the time-varying markup in

the goods market and "f;t is the price markup shock which is assumed to follow a �rst-order

autoregressive, AR(1), process, : "̂f;t = �f "̂f;t�1 + ef;t. The use of �^� is done to denote from

now on variables in log deviation from the steady state and en;t will denote IID-Normal error

terms. Cost minimization implies the following demand for the ith intermediate good:

yt(i) = (Pt=Pt(i))
�f;t=(�f;t�1)Yt; (2)

where Pt is an index cost of buying a unit of Yt:

Pt = [

1Z

0

Pt(i)
1=(1��f;t)di]1��f;t : (3)

Intermediate Good Firms The ith intermediate good �rm production function is:

yt(i) =

(
Kt(i)

�(ztht(i))
1�� � �z�t

0

if Kt(i)
�(ztht(i))

1�� > �z�t ,

otherwise,
(4)
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where � is the capital share and � captures �xed production costs. The variables Kt(i) and

ht(i) represent respectively capital and labor services used as inputs in the production of the

ith intermediate good. The above function includes an aggregate neutral technology process

denoted as zt having as growth rate �z;t. The variable z
�

t is given by:

z�t = �
�=(1��)
t zt; (5)

where �t denotes a shock to capital-embodied technology and has growth rate ��;t. Both

technological shocks are assumed to follow an AR(1) process: �̂z;t = �z�̂z;t�1+ez;t and �̂�;t =

���̂�;t�1 + e�;t.

Intermediate good producers are subject to Calvo price staggering: a fraction �p of �rms

does not re-optimize prices. In the benchmark case I will assume that �rms that are unable

to re-optimize keep prices unchanged (Pt(i) = Pt�1). However, I will also consider the case

in which such �rms adopt a lagged in�ation indexation rule (Pt(i) = �t�1Pt�1(i) where �t

stands for aggregate in�ation �t = Pt=Pt�1).

The ith intermediate good �rm chooses Pt(i); Kt+j(i) and ht(i) to maximize the following

pro�t function subject to (2), (4) and its price setting constraints:

Et

1X

j=0

�j�t+jfPt+j(i)yt+j(i)� Pt+j[wt+jRt+j(�)ht+j(i) + rkt+jKt+j(i)]g; (6)

where 0 < � < 1 is the household�s discount factor, �t+j is the Lagrange multiplier on the

households�s budget constraint, � is the fraction of the wage bill that must be �nanced in

advance, �nally, wt = Wt=Pt, Rt and r
k
t are respectively the real wage, interest rate and

rental rate of capital.

2.1.2 Households

Consider an economy with a continuum of in�nitely lived agents on the interval [0,1] who

have preferences over consumption of a single non-durable good Ct. The preferences of the
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jth household are given by:

Ejt

1X

s=0

�s"b;t+s[log(Ct+s � bCt+s�1)� "l;t+s L
hj;t+s

1+�L

1 + �L
]; (7)

where b > 0 indicates the existence of habit formation,  L measures disutility from working

and �L is the inverse of the labor supply elasticity. There are two preference shocks. A

discount rate ("̂b;t = �b"̂b;t�1 + eb;t) and a labor supply shock ("̂l;t = �l"̂l;t�1 + el;t).

The budget constraint is given by:

Mt+1 = Rt[Mt �Qt + (xt � 1)M
a
t ] + Aj;t +Qt +Wj;thj;t � PtTt

+Ptr
k
t ut �Kt +Dt � (1 + �(Vt))PtCt � Pt�

�1
t (It + a(ut) �Kt); (8)

where Mt and Qt are respectively the household�s money stock and cash balances, xt is the

gross growth rate of the economy-wide per capita stock of money Ma
t (which equals Mt in

equilibrium), Aj;t is the net cash in�ow from state-contingent securities, Tt are government

taxes, ut is the utilization rate of capital which household�s rent to �rms (Kt = ut �Kt), Dt

are �rm pro�ts and Vt is the velocity of the household�s cash balances (Vt = PtCt=Qt). The

capital-embodied technology process �t is used here as the price of investment goods (It)

relative to consumption goods.

The function �(�) is an increasing and convex function that captures the role of cash

balances in facilitating transactions. To solve the model it is necessary to specify the steady

state values of the function�s level (�), �rst (�0) and second derivatives (�00). To do this, one

�rst de�nes the interest semi-elasticity of money demand (�t):

�t � �
100� d(logQt=Pt)

400� dRt
:

Evaluating �t at the steady state gives the following expression:

� =
1

4
(
1

R� 1
)(

1

2 + ��
);
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where �� is the curvature of �(�) at the steady state (�� = �00V=�0). Finally the �rst order

condition for Qt at the steady state results in:

R = 1 + �0V 2:

Because R is obtained from estimated parameters, the function �(�) can then be parameter-

ized by choosing values for �, � and V .

The function a(�) measures adjustment costs to changing the utilization rate of capital

(ut) and is assumed to be increasing and convex. In the steady state u = 1 and a(1) = 0.

To solve the model, one needs only the elasticity of the capital utilization cost function:

�a = a00(1)=a0(1) = 	k=(1�	k). Following Smets and Wouters (2007) I estimate the model

in terms of the parameter 	k rather than �a.

The capital accumulation equation is given by:

�Kt+1 = (1� �) �Kt + (1� S(
It
It�1

))It; (9)

where � is the depreciation rate and S(�) is the investment adjustment cost function which

is assumed to be increasing and convex. In the steady state S = S 0 = 0 and S 00 is a positive

constant which a¤ects only model dynamics.

2.1.3 Wage Setting Decision

As in ACEL (2011) and Nolan and Thoenissen (2008) I assume a continuum of monopo-

listically competitive households (indexed on the unit interval), each of which supplies a

di¤erentiated labor service to the production sector. Labor hours are aggregated with a

Dixit-Stiglitz technology:

Ht = [

1Z

0

h
1=�w
j;t dj]�w ; (10)
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where �w de�nes the steady state wage markup over the marginal rate of substitution of

leisure for consumption. Labor demand for household j�s labor is:

hj;t =

�
Wt

Wj;t

��w=(�w�1)
Ht; (11)

where ~Wt is the price index cost of Ht:

Wt = [

1Z

0

W
1=(1��w)
j;t dj](1��w); (12)

where �w de�nes the steady state wage markup over the marginal rate of substitution of

leisure for consumption. The household union takes into account the labor demand curve

when setting wages which are set in staggered contracts (�w gives the probability that a

household will not be able to renegotiate wages at any given period). If a household cannot

re-optimize its wage at time t, it sets Wj;t according to

Wj;t = �t�1�z�Wj;t�1:

2.1.4 Monetary and Fiscal Policy

The growth of money supply (xt) is as in ACEL (2011):

x̂t = x̂M;t + x̂z;t + x̂�;t: (13)

The stochastic processes x̂M;t, x̂z;t, and x̂�;t are de�ned as follows:

x̂M;t = �xM x̂M;t�1 + eM;t;

x̂z;t = �xzx̂z;t�1 + czez;t + cpzez;t�1;

x̂�;t = �x�x̂z;t�1 + c�e�;t + cp�e�;t�1;
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where eM;t is a monetary policy shock. As in ACEL (2011) the terms capturing the response

of monetary policy to innovations in neutral (x̂z;t) and capital-embodied (x̂�;t) technology

have both an autoregressive component and a moving average, MA, component.

The government adjusts lump sum taxes to ensure that its intertemporal budget con-

straint holds (Gt = Tt) . Government expenses are assumed exogenous and to follow a �rst

order autoregressive process: ĝt = �gĝt�1 + eg;t where gt = Gt=z
�

t .

2.1.5 Market Clearing

Loan market clearing requires that:

WtHt = xtMt �Qt: (14)

The economy�s resource constraint is given by:

(1 + �(Vt))Ct +�
�1
t (It + a(ut) �Kt) +Gt 6 Yt: (15)

2.2 The Firm-Speci�c Capital Model

The �rm-speci�c capital model di¤ers in very little from the homogeneous capital model.

In this model, �rms own their capital (which cannot be instantly and costlessly reallocated

across �rms) rather than renting it from households as in the homogenous capital model

case. In the �rm-speci�c capital model the capital accumulation equation is given by:

�Kt+1(i) = (1� �) �Kt(i) + (1� S(
It(i)

It�1(i)
))It(i): (16)

The ith intermediate good �rm chooses Pt(i); �Kt+j(i); ut+j(i) and ht(i) to maximize the
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following pro�t function subject to (2), (4), (16) and its price setting constraints:

Et

1X

j=0

�j�t+jfPt+j(i)yt+j(i)�Pt+jwt+jRt+j(�)ht+j(i)�Pt+j�
�1
t+j[It+j(i)+a(ut+j(i))

�Kt+j(i)]g:

(17)

The models are identical in every other aspect.

2.3 In�ation Dynamics

The economy�s price in�ation equation, often referred to as the NKPC, in the benchmark

case (�rms that are unable to re-optimize keep prices unchanged) in both the homogeneous

and the �rm-speci�c capital model, takes the following form:

�̂t = �Et�̂t+1 + (ŝt + "̂f;t); (18)

where  is a function of the model�s structural parameters and ŝt is the average real marginal

cost in log deviation from the steady state. I also consider the case in which �rms that are

unable to re-optimize adopt a lagged in�ation indexation rule as in ACEL (2011), in which

case, the NKPC takes for both models (homogeneous and �rm-speci�c capital) the form:

��̂t = �Et��̂t+1 + (ŝt + "̂f;t): (19)

The dynamic relationship between in�ation and aggregate economic activity may be

identical for the homogeneous and �rm-speci�c capital models but they di¤er with respect

to the magnitude of :

 =
(1� �p)(1� �p�)

�p
�:

In the homogeneous capital model � = 1. As shown in ACEL (2004) in the �rm-speci�c

capital model � 6 1 is a non-linear function of the parameters of the model. The assumption

of �rm-speci�c capital changes the predicted slope of the Phillips curve trade-o¤ to an extent

12



that can be quantitatively signi�cant; in particular, for a given degree of price stickiness (�p)

the �rm-speci�c capital implies a smaller  relative to the homogeneous capital model (see

Woodford, 2005).

3 Model Estimation

3.1 Estimation Methodology

I use Bayesian techniques to estimate the models presented in section 2.5 As in Smets and

Wouters (2007), I estimate the mode and standard deviation of the posterior distribution

by maximizing the log posterior function (that combines the parameter priors with the

likelihood of the data). The mean and log data density (computed by modi�ed harmonic

mean estimation) were obtained after the Metropolis-Hastings algorithm was used to get a

complete picture of the posterior distribution.6

The dataset used consists of the following quarterly US aggregate time series: 100 times

the log di¤erence of the GDP de�ator (dlPt), real consumption (dlCt), real investment (dlIt),

real wages (dlWt) and real GDP(dlYt), 100 times the log of average hours (lHt) worked

(for the non-farm business sector for all persons) and the federal funds rate (FFt). These

are the same time series as in Smets and Wouters (2007) but updated to include more

recent observations as well. I will therefore estimate the models for the period 1966Q1 to

2012Q4 (whereas Smets and Wouters, 2007, estimated their model with data from 1966Q1

to 2004Q4).

5This was done with Dynare. The Matlab codes were based on those de-
veloped by ACEL (2011), which can be obtained from Christiano�s website
(http://faculty.wcas.northwestern.edu/~lchrist/research/ACEL/acelweb.htm), and Wieland et al. (2012).

6A sample of 250 000 draws was created. The value of the scale used for the jumping distribution in
Metropolis-Hastings algorithm was adjusted to yield an acceptance rate of approximately 23%, the opti-
mal rate proposed by Gelman et al. (1996). The MCMC univariate and multivariate diagnostics indicate
convergence and stability in all measures of the parameter moments.
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The corresponding measurement equations are:

2
6666666666666664

dlYt

dlCt

dlIt

dlWt

lHt

dlPt

FFt

3
7777777777777775

=

2
6666666666666664

�y

�y

�y + �k

�y

�h

�

�r

3
7777777777777775

+

2
6666666666666664

b~yt � b~yt�1
ĉt � ĉt�1

{̂t � {̂t�1

b~wt � b~wt�1
ĥt

�̂t

R̂t

3
7777777777777775

; (20)

where ~yt = yt=z
�

t , ~wt = wt=z
�

t and
�h is normalized to be equal to zero. The parameters �y; �k;

� and r relate to the model�s steady state as follows: �z� = 1 + �y=100, �� = 1 + �k=100,

� = 1+�=100 and R = 1+r=100.

The Bayesian approach has several advantages over other methods. The calibration ap-

proach does not attach any probabilistic measures of uncertainty to the quantitative state-

ments that it generates. Unlike generalized method of moments (GMM) or the minimum

distance method, Bayesian estimates are based on the likelihood function generated by the

DSGE model (the Bayesian approach therefore satis�es by construction the Likelihood Prin-

ciple that states that all of the information existing in a sample is contained in the likelihood

function). Bayesian methods also have several advantages over maximum likelihood esti-

mation (MLE). Fernández-Villaverde and Rubio-Ramírez (2004) �nd Bayesian estimates to

outperform MLE results in small samples. In addition, the Bayesian approach uses pri-

ors to incorporate additional information into the parameter estimation, thus avoiding the

�dilemma of absurd parameter estimates� common when maximum likelihood is applied in

DSGE estimation, and helps in identifying parameters.7

7Likelihoods of DSGE models are full of local maxima and minima and of nearly �at surfaces. As
Fernández-Villaverde (2009) points out this is due both to the �sparsity of the data (quarterly data do not
give us the luxury of many observations that micro panels provide) and to the �exibility of DSGE models
in generating similar behavior with relatively di¤erent combination of parameter values.�
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3.2 Prior Distribution of the Parameters

I �xed some of the parameters in the estimation procedure. The depreciation rate � is �xed

at 0.025, the exogenous spending-GDP ratio is set at 18% and the steady-state markup of

the labor union (�w) at 1.5. These are the same values as in Smets and Wouters (2007).

The steady-state markup of the intermediate �rm (�f) is set at 1.05 (the intermediate value

considered by ACEL, 2011). The Calvo price stickiness parameter �p is set at 0.5, a value

chosen to be consistent with the evidence on prices reported by Bils and Klenow (2004) and

Klenow and Kryvtsov (2008). As mentioned in the introduction estimates of �p from macro

data do not provide any information on the degree of price stickiness (since the estimates

depend on modelling assumptions, as shown in the previous section). The remaining �xed

parameters are set as in ACEL (2011). I assume the inverse elasticity of labor supply with

respect to real wages �L and the labor disutility parameter  L to be 1. The fraction of the

wage bill that must be �nanced in advance � is also set to 1. V and � are set to 0.45 and

0.036 respectively. Finally, � is chosen to ensure that �rm pro�ts are zero in the steady

state.

I now proceed to discuss the choice of prior distribution for the remaining model�s para-

meters. I start by discussing the prior of the parameters which were not estimated in Smets

and Wouters (2007). The quarterly trend growth rate of capital-embodied technology (�k) is

assumed to be normal distributed of mean 0.4 and standard deviation 0.1. This is the same

prior as that I adopted for �y, which was chosen to be the same as in Smets and Wouters

(2007). This seemed a reasonable choice given that ACEL (2011) choose �xed parameter

values which would be the equivalent of 0.42 and 0.45 for �k and �y respectively. The prior

for the steady state interest semi-elasticity of money demand (�) was chosen to be a normal

distribution of mean 0.6 and standard deviation of 0.25. This was based on the estimates of

ACEL (2011) whose benchmark model estimate of � was 0.61 (with standard error of 0.23).

The remaining structural parameters are common to the Smets and Wouters (2007) model

and identical priors were adopted.

The priors for the exogenous processes are also the same as in Smets and Wouters (2007).
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The standard errors of the shocks are assumed to follow an inverse-gamma distribution with

a mean of 0.1 and standard deviation of 2. The AR and MA parameters are assumed to be

beta distributed with mean 0.5 and standard deviation 0.2.

The �rst three columns of Tables 1 and 2 give an overview of the assumptions made

regarding the prior distribution (shape, mean and standard deviation) of the estimated

parameters.

I now look at how mean prior assumptions a¤ect di¤erently the slope of the NKPC

between the two models. These di¤erences are captured by the parameter � which measures

how much less steep the NKPC slope is in the �rm-speci�c capital (FSC) model relative to

the homogeneous capital (HC) model. In the homogenous capital model � = 1 whereas in the

�rm-speci�c capital model � 6 1 and depends on the value of several structural parameters.

I focus on the parameters that one would consider more relevant for capital dynamics: the

parameter that determines the elasticity of the capital utilization cost function (	k), the

parameter that determines investment adjustment costs (S 00) and the capital share (�).

Table 3 shows the sensitivity of � in the FSC model to changes in the values of 	k, S
00, and

� while keeping the remaining parameters �xed at the respective prior means values. The

table shows that for the prior mean values considered, the NKPC slope () in the FSC model

is only 22% as steep as that of the HC model. Let�s start by looking at how changes in 	k

a¤ect the steepness of the NKPC slope. For values of 	k close to zero the elasticity of capital

utilization is high, for values of 	k close to 1 the elasticity of capital utilization is low. Table

3 shows that low values of 	k increase the steepness of the NKPC slope while high values

decrease it. This makes sense, the more variable capital utilization is the less constrained

�rms are in adjusting the capital input and therefore the assumption of �rm-speci�c capital

becomes less relevant. Table 3 also shows that the steepness of the NKPC slope is not

very sensitive to the value of investment adjustment costs. Finally, the higher the capital

share the stronger the e¤ect on the NKPC slope from the assumption of �rm-speci�c capital.

Similar �ndings to those in this table were also reported by Madeira (2014) in the context

of a model where employment is �rm-speci�c.
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3.3 Parameter Estimates

For summary purposes I follow Rabanal and Rubio-Ramírez (2005) and present only the

mean and the standard deviation of the posterior distributions for the parameters of both

models. The numbers for the benchmark case are reported in Tables 1 (structural parame-

ters) and 2 (exogenous shock parameters). To conserve space, parameter estimates for the

case when �rms that are unable to re-optimize adopt a lagged in�ation indexation rule and

other robustness exercises are shown in a �web appendix� to this paper.

The estimates of most parameters turn out to be relatively similar for both models and in

line with those found in other studies such as Rabanal and Rubio-Ramírez (2005) and Smets

and Wouters (2003, 2007). For this reason I highlight only the parameters where there are

marked di¤erences between the �rm-speci�c capital (FSC) and homogeneous capital (HC)

models. Few of the structural parameters are signi�cantly altered. One of those is the

quarterly trend growth rate of output (�y). This is estimated to be 0.35 in the FSC model

while in the HC model an estimate of 0.4 is obtained. The habit formation parameter (b) also

appears to di¤er between models. The respective estimate for the FSC and HC models is

0.39 and 0.47. Another parameter signi�cantly altered is 	k which determines the elasticity

of the capital utilization cost function. The mean estimate of 	k is 0.71 in the FSC model

but only 0.59 in the HC model. This implies that capital utilization is estimated to be less

responsive to the rental rate of capital under the �rm-speci�c capital assumption. The other

remaining structural parameter substantially a¤ected is the capital share, �. This parameter

is estimated to be 0.26 when capital is assumed to be �rm-speci�c but only 0.21 under the

more conventional homogeneous capital assumption. The analysis in the previous subsection

of Table 3 suggests that the higher values of 	k and � estimated in the FSC model indicate

that the data favors a lower value of the NKPC slope .

In the case of the exogenous shocks parameters there are more marked di¤erences between

models. The estimates of the mean volatility of both capital-embodied technology (��) and

price markup shocks (�f) are reduced with the assumption of �rm-speci�c capital. In the

FSC model the estimated mean of �� is 1.99 while in the HC model a value of 2.54 is
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obtained. For the volatility of the price markup shock the estimated mean of the FSC model

is 0.28 which is substantially lower than the 0.58 value obtained in the HC model. Turning

attention to the autoregressive coe¢cients, one observes that the estimates of the government

spending (0.94 under the FSC assumption and 0.84 under the HC assumption) and labor

supply (0.49 under the FSC assumption and 0.38 under the HC assumption) shocks are

higher in the FSC model than in the HC model, whereas the opposite happens with price

markup (0.68 under the FSC assumption and 0.93 under the HC assumption) and monetary

shocks (0.17 under the FSC assumption and 0.36 under the HC assumption).

These di¤erences between model estimates extend to the case when �rms that are unable

to re-optimize adopt a lagged in�ation indexation rule.

4 Implications for Business Cycle Fluctuations

4.1 Data Fit

The marginal likelihood of the model gives an indication of the overall empirical performance

of the model given the data and re�ects its prediction ability. It therefore forms a natural

benchmark for comparing the overall �t of the two DSGEmodels considered here. I computed

the marginal likelihood by modi�ed harmonic mean estimation for both the �rm-speci�c

capital and homogeneous capital models. The values are displayed in the last line of Table

2. The log marginal likelihood of the model with �rm-speci�c capital is -1653.89 which is

considerably higher than that of the homogeneous capital model (-1762.32). Calculation

of the Bayes factor (BF) indicates this to be a large improvement in �t to the data. The

BF of model 1 against model 2 is the ratio of their marginal likelihoods. Kass and Raftery

(1995) suggest that values of 2 logBF above 10 can be considered very strong evidence in

favor of model 1. When I consider the �rm-speci�c capital model (model 1) against the

homogeneous capital model (model 2) the value of 2 logBF is 216.86. This strongly supports

the hypothesis that introducing �rm-speci�c capital in DSGE models is highly relevant for

the understanding of business cycle �uctuations.
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What is driving the improvement in the �t to the data? Table 4 presents the key busi-

ness cycle statistics (standard deviation, contemporaneous correlation with GDP growth and

degree of �rst order autocorrelation, AC) for the US aggregate time series data used to es-

timate the models and the corresponding values obtained by simulating the models under

their respective estimated mean parameter values. The FSC model matches better the stan-

dard deviation observed in the data of all variables apart for consumption growth, average

hours worked and the nominal interest rate. With respect to the contemporaneous correla-

tion with output growth, the FSC model only does better with respect to the cyclicality of

the real wage growth. The di¤erence between the two models with respect to persistence is

largest for in�ation. The FSC model generates a 0.75 degree of �rst order autocorrelation

which is considerably more than the 0.63 of the HC model and much closer to what is ob-

served in the data (0.87). This constitutes an important �nding since a major limitation of

micro-founded models of dynamic price adjustment is that they do not imply in�ation inertia

(Romer, 2011). It is somewhat surprising to �nd that the �rm-speci�c capital model leads

to increased persistence in in�ation, despite the fact that its assumption leads to a �atter

Phillips curve (Fuhrer, 2006, 2010, shows that a smaller  reduces in�ation persistence in

the purely forward-looking NKPC). The reason lies in the lower mean estimated volatility

of the price markup shock. Fuhrer (2006, 2010) shows that in�ation is more autocorrelated,

in the purely forward-looking NKPC, the smaller the volatility of the shock that perturbs

the driving process. However, with respect to the persistence of the remaining variables

none of the models seems to outperform the other. The FSC model matches better the

�rst order autocorrelation observed in the data of real consumption growth and real wage

growth. However, the HC model matches better the autocorrelation of output, investment

and interest rates.

Overall these �ndings are robust to assuming that �rms which are unable to re-optimize

adopt a lagged in�ation indexation rule. In this case too the FSC model is found to: �t

the data substantially better (the 2logBF is 122.98), match better the standard deviation of

aggregate US time series and generate higher persistence in in�ation (0.9 and 0.85 respective
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values for the �rst order autocorrelation of the FSC and HC models). Assuming the Phillips

curve to have lagged in�ation therefore allows the HC model to generate higher persistence

in in�ation and allows it to have a �t to the data closer to that of the FSC model. Both

the FSC and the HC models have a better �t to the data in the case when �rms that are

unable to re-optimize adopt a lagged in�ation indexation rule than in the benchmark case (in

which �rms that do not re-optimize keep prices unchanged). This con�rms the importance

of introducing sources of higher persistence in in�ation to permit DSGE models a better �t

to the macro data. The �nding that the FSC model �ts the data better than the HC model

is also robust to having � �xed at 0.36 as in ACEL (2011) and using a sample of the data

restricted from 1966Q1 to 2007Q4 in order to exclude the zero lower bound period.8

4.2 Price Frequency Adjustment, NKPC Slope and Data Fit

Table 5 shows the implied average price duration (APD) in months, the implied NKPC

slope () and the resulting log marginal likelihood by modi�ed harmonic mean estimation

for di¤erent values of the Calvo price stickiness parameter (�p) in the benchmark case. In

the benchmark case APD = 3=(1� �p).
9 In the �rst line �p is set at 0.5 which implies that

average price duration is 6 months. This is in line with the micro evidence in Klenow and

Kryvtsov (2008) who estimated price frequency adjustment to be between 4 and 7 months.

The third column shows that for this value the implied NKPC slope for the mean estimates

8The DSGE model equations are linearized before estimation. Therefore, parameter estimates could have
been distorted because the models do not take into account non-linearities such as the zero lower bound on
central bank interest rates and downward wage rigidity (which appear to have been binding in the period
after 2007Q4). The �nding that the estimates were not much a¤ected is consistent with the DSGE estimation
results in Galí, Smets, and Wouters (2012) who also did not �nd large di¤erences in parameter values of
adding observations from 2007 onwards (the main di¤erences consisted only of a higher estimated degree
of wage stickiness and persistence in shocks). The non-linearities could have represented a greater issue if
the goal were to be the estimation of a single reduced form equation. Galí (2011) shows that estimates of
the New Keynesian Wage Phillips curve are signi�cant when using a sample of the data ending in 2007Q4
but not when including data on the recent recession (despite falling during the 2007-2009 recession, wage
in�ation has remained positive, while the model predicts wage de�ation).

9In the case when one assumes that �rms that are unable to re-optimize adopt a lagged in�ation index-
ation rule the average price duration in both models is 3 months independent of the value of �

p
. In this

case, 3=(1��
p
) is the average period between price re-optimization and no longer corresponds to the average

price duration (in the benchmark case these are the same, since �rms that do not re-optimize keep prices
unchanged).
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(shown in Table 1) is 0.09 for the FSC model and 0.5 for the HC model. The GMM estimates

of  by Galí and Gertler (1999) for the period 1960Q1 until 1997Q4 vary between 0.01 and

0.05. Therefore while under both the FSC and HC assumptions the implied NKPC slope is

very high, it is considerably less so for the FSC model. As shown in the prior subsection the

FSC model �ts the aggregate data considerably better than the HC model (2 logBF=216.86).

The second line of Table 5 shows what happens when the models are re-estimated with

the probability of non-adjustment of prices increased to 2/3, which implies that prices on

average remain unchanged for a period of 9 months. This is a value which exceeds those

reported by Klenow and Kryvtsov (2008) but is broadly in line with the price frequency

adjustment �between 7 and 9 months� found by Nakamura and Steinsson (2008) in the

micro data. For this value of �p the implied NKPC slope is 0.03 and 0.17 for the FSC and

HC models respectively. The NKPC slope  in the FSC model is therefore consistent with

the estimates obtained by Galí and Gertler (1999). In the HC model the NKPC becomes

substantially ��atter� but is still at a value of  much higher than those obtained in the

literature. For �p = 2=3 the FSC model also �ts the data signi�cantly better, but the �gap�

between models is reduced (2 logBF is 168.82). The �t of both models to the data improved

with the increase in the degree of price stickiness.

The bottom line of Table 5 shows the models� data �t and NKPC slope when the average

price duration is set at 12 months (�p = 0:75). Again, the NKPC becomes �atter for both

models but in the HC model it is still at quite a high value (0.08). This means that the

HC model has at the same time an average price duration which is too high relative to that

found in the micro studies and a NKPC which is too steep relative to the macro estimates

in the literature. Again, the data �t of both models improves with a higher degree of price

stickiness and a lower .10 The gap in data �t (2 logBF is 61.86) between the FSC and HC

models remains signi�cant but is further reduced.

The question remains if the di¤erences in �t between the models are solely due to a

10The �nding of improved data �t at lower values of  is consistent with the results of Rudd and Whelan
(2007) and Madeira (2014) who using updated datasets obtained insigni�cant estimates of  using the labor
share marginal cost measure proposed by Galí and Gertler (1999). Mavroeidis, Plagborg-Møller and Stock
(2014) also obtained insigni�cant estimates of  for the Galí and Gertler (1999) sample with revised data.
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di¤erent implied slope of the NKPC. If all model parameters were estimated with MLE then

the �t between the models would be identical. However, due to the Bayesian estimation

approach the posterior likelihood of the FSC and HC models is also determined by priors on

the models� parameters. It may therefore be the case that the di¤erences between the �t of

the two models are not solely restricted to di¤erences in the implied prior of the NKPC slope

(). To answer this question I �xed the parameter �p in the HC model in such a way as to

make the prior of  the same as that of the FSC model. Table 6 shows the respective values

of �p, average price duration (APD) in months and the resulting log marginal likelihood

for di¤erent prior mean values of . The table shows that for the same mean implied prior

value of , the HC model requires about twice the duration in average price duration (values

much higher than those reported in the micro studies). The di¤erences in �t between the

two models, however, are negligible (except when  = 0:11 in which the di¤erences could

be viewed as evidence that the HC model is strongly preferred to the FSC model). This

suggests that the empirical di¤erences in �t between the FSC and HC model are mostly due

to di¤erent implied values of  for a given degree of price stickiness.

4.3 Variance Decomposition

Table 7 shows the contribution of each of the exogenous shocks to the 20 quarter (the

midpoint of the interval of the periodicities which correspond to business cycles) forecast error

variance of output, in�ation and the nominal interest rate, for the mean parameter estimates.

The models di¤er substantially in terms of the driving forces of business cycle �uctuations.

Monetary policy shocks (eM;t) explain a larger share of output, in�ation and interest rate

movements under �rm-speci�c capital, whereas price markup (ef;t) shocks explain less.

The results in Table 7 indicate that FSC is useful in reducing the dependence of New

Keynesian models on what Chari, Kehoe, and McGrattan (2009) refer as �dubiously struc-

tural shocks� which correspond to el;t, ef;t, eg;t and eb;t. In the FSC model the �dubious�

shocks account for a total of 59.09%, 32.85% and 6.12% of the business cycle �uctuations

of output, in�ation and the nominal interest rate respectively. In the HC model however
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these shocks play a signi�cantly larger role, accounting for a total of 76.29%, 42.13% and

5.35% of the business cycle �uctuations of output, in�ation and the nominal interest rate

respectively. Therefore we see that in the FSC model dubious shocks represent a smaller

share of output and in�ation �uctuations (due mostly to a reduction in the importance of

price markup shocks) while in interest rates dubious shocks represent a similar fraction in

both models.

These di¤erences are also present if it is assumed that �rms that do not re-optimize adopt

a lagged in�ation indexation rule.

4.4 Impulse Response Functions

In this section I compare the dynamic responses to 1% exogenous shocks of the FSC and

HC models. To conserve space, I present only the responses to monetary policy, neutral

technology, capital-embodied technology and price markup shocks (�gures for the remaining

shocks are included in the �web appendix�). That is, the shocks considered by ACEL (2011)

and the price markup shock (to gain intuition for the substantial di¤erences between the

FSC and HC models with respect to this shock shown previously). In order to understand

better the role of �rm-speci�c capital both models are simulated under the estimated mean

parameter values obtained for the FSC model. Figures 1-4 display the impulse response func-

tions of both models key endogenous variables (output, consumption, investment, capital,

capital utilization, interest rate, in�ation, hours and real wages) for the benchmark case.

I �nd the model�s impulse response functions to exogenous shocks to be signi�cantly

altered by the introduction of �rm-speci�c capital. Firm-speci�c capital makes �rms adjust

prices by less, thus drawing out the period of above-normal output to �demand� shocks

(since these tend to move output and prices in the same direction). The impulse response

functions show that �rm-speci�c capital does indeed aid considerably in propagating the

responses of output not just to some exogenous �demand� shocks such as monetary policy

shocks, but also to some �supply� shocks such as disturbances to neutral technology and

price markups.
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Figure 1 displays the impulse response functions of both models to monetary policy

shocks. The �gure shows that the �rm-speci�c capital model leads to a larger short run

increase in output to a money supply shock. This happens because �rms-speci�c capital is

a real rigidity in the sense of Ball and Romer (1990). As such it strengthens the strategic

complementarity of �rms and mitigates price changes to aggregate economic shocks. For

this reason, prices increase by less in the FSC model in response to a money supply shock

and therefore the increase in output is larger relative to the HC model. This highlights

the role of �rm-speci�c capital as a useful mechanism in helping to address Chari, Kehoe

and McGrattan (2000) criticism of the lack of output persistence of New Keynesian models

to monetary shocks. The impulse response functions help understand why the FSC model

implies that monetary shocks account for a larger share of business cycle �uctuations.

Figure 2 shows that �rm-speci�c capital also ampli�es the e¤ects on output from a neutral

technology shock. This happens because the FSC assumption mitigates the initial increase in

prices resulting from this shock.11 This helps explain why neutral technology shocks explain

a greater fraction of output �uctuations in the FSC model (see Table 7).

Figure 3 shows the impulse response function to a capital-embodied technology shock.

As with the previous shocks the FSC assumption mitigates movements in in�ation. For this

reason the increase in in�ation from the shock is smaller in the FSC model relative to the

HC model and therefore the fall in output is smaller as well. The impulse response functions

show that. in the FSC model. hours and investment move in a di¤erent direction to output

(more so than in the HC model). Because these variables are procyclical in the data (see

Table 4) this can help account for the reduced estimated volatility of this shock in the FSC

model.

The impulse response functions of the price markup shock (Figure 4) are also interesting.

This is the only shock for which one observes larger changes in in�ation in the FSC model

11An increase in in�ation occurs because positive neutral and capital-embodied technology shocks lead to
a fall in capital in the ACEL (2011) model. This can be veri�ed by inspecting the linearized capital evolution
equation in ACEL (2004: 41). Hours increase in response to the shock which implies that marginal costs
increase (because labor and capital are complementary). Higher marginal costs in turn lead to an increase
in in�ation.
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relative to the HC model. Despite the fact that it is not a demand shock the FSC model

generates larger �uctuations in all variables represented relative to the HC model. Why is

this the case? The price markup increase leads to an increase in in�ation and consequently

a fall in output. The fall in output implies a fall in marginal costs. All else equal, the

reduction in marginal costs would lead to a reduction in in�ation which would partially

o¤set the initial direct increase from the markup shock. However, due to stronger strategic

complementarities, the reduction in marginal costs has a smaller e¤ect on prices under �rm-

speci�c capital. For this reason the total increase in in�ation is higher in the FSC model

than in the HC model resulting in ampli�ed reactions of the other macro variables to the

price markup increase. This helps understand why the FSC model does not require such a

large volatility (�f) and autocorrelation (�f) of price markup shocks in order to match the

data.

An analysis of the impulse response functions for the case in which �rms that do not

re-optimize adopt a lagged in�ation indexation rule would yield similar conclusions to those

reported here (again, to conserve space, these results are shown only in the �web appendix�).

5 Conclusion

In this paper I estimate a �rm-speci�c capital DSGE model with Bayesian techniques using

US time series data. I �nd that �rm-speci�c capital is empirically important in order for the

model to match aggregate US data, even in the presence of more than one source of nominal

rigidity (the model includes both sticky prices and wages). By comparing the �rm-speci�c

capital and homogeneous capital models, for a given degree of price stickiness, I �nd that

the New Keynesian model with �rm-speci�c capital �ts better the volatility of aggregate

economic variables seen in the data. Of signi�cant interest is the fact that �rm-speci�c

capital leads to greater persistence of in�ation.

I also extend the analysis of the e¤ects of �rms-speci�c capital to other exogenous shocks

besides the more conventional monetary and productivity shocks. In particular, I �nd that
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�rm-speci�c capital reduces the reliance of New Keynesian models on price markup shocks

and that it increases the persistence of output to monetary shocks.
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6 Tables

Table 1: Bayesian Estimation of Structural Parameters (benchmark case)

Prior Distribution Estimated Maximum Posterior

FSC HC

Type Mean St. Dev. Mean St. Dev. Mean St. Dev.

�y Normal 0.40 0.10 0.35 0.02 0.40 0.01

�k Normal 0.40 0.10 0.27 0.05 0.24 0.04

100(��1 � 1) Gamma 0.25 0.10 0.61 0.10 0.56 0.10

� Gamma 0.63 0.10 0.80 0.10 0.70 0.10

�h Normal 0.00 1.00 1.43 0.94 0.84 0.92

b Beta 0.70 0.10 0.39 0.04 0.47 0.04

� Normal 0.60 0.25 1.67 0.13 1.72 0.14

	k Beta 0.50 0.15 0.71 0.07 0.59 0.05

S 00 Normal 4.00 1.50 0.17 0.03 0.19 0.02

� Normal 0.30 0.05 0.26 0.01 0.21 0.01

�w Beta 0.50 0.10 0.63 0.03 0.63 0.02
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Table 2: Bayesian Estimation of Exogenous Shock Parameters (benchmark case)

Prior Distribution Estimated Maximum Posterior

FSC HC

Type Mean St. Dev. Mean St. Dev. Mean St. Dev.

�z Inv. Gamma 0.10 2.00 0.94 0.12 0.96 0.12

�� Inv. Gamma 0.10 2.00 1.99 0.16 2.54 0.19

�b Inv. Gamma 0.10 2.00 2.11 0.19 2.36 0.21

�g Inv. Gamma 0.10 2.00 1.01 0.06 0.96 0.05

�f Inv. Gamma 0.10 2.00 0.28 0.02 0.58 0.03

�l Inv. Gamma 0.10 2.00 4.20 0.26 4.59 0.28

�M Inv. Gamma 0.10 2.00 0.73 0.05 0.72 0.07

�z Beta 0.50 0.20 0.77 0.02 0.78 0.02

�� Beta 0.50 0.20 0.45 0.02 0.42 0.02

�b Beta 0.50 0.20 0.99 0.01 0.99 0.005

�g Beta 0.50 0.20 0.94 0.02 0.84 0.06

�f Beta 0.50 0.20 0.68 0.05 0.93 0.01

�l Beta 0.50 0.20 0.49 0.04 0.38 0.03

�xM Beta 0.50 0.20 0.17 0.08 0.36 0.09

�xz Beta 0.50 0.20 0.85 0.01 0.86 0.02

cz Beta 0.50 0.20 0.29 0.12 0.25 0.12

cpz Beta 0.50 0.20 0.61 0.15 0.68 0.13

�x� Beta 0.50 0.20 0.06 0.03 0.09 0.05

c� Beta 0.50 0.20 0.43 0.04 0.36 0.03

cp� Beta 0.50 0.20 0.03 0.02 0.04 0.02

Log data density (modi�ed harmonic mean) -1653.89 -1762.32
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Table 3: Sensivity of steepeness of the NKPC slope in the FSC model

	k S 00 �

0.10 0.50 0.90 0.50 4.00 7.50 0.20 0.30 0.40

� 0.62 0.22 0.12 0.22 0.22 0.22 0.31 0.22 0.17
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Table 4: Business Cycle Statistics (benchmark case)

US data FSC Model HC Model

St. D. Corr(dlYt) AC (1) St. D. Corr(dlYt) AC (1) St. D. Corr(dlYt) AC (1)

dlYt 0.85 1.00 0.30 1.82 1.00 0.25 1.92 1.00 0.27

dlCt 0.72 0.69 0.29 1.35 -0.20 0.48 1.25 0.09 0.49

dlIt 2.41 0.66 0.60 6.05 0.58 0.76 6.91 0.59 0.72

dlWt 0.63 0.02 0.05 1.15 -0.01 -0.14 1.36 -0.02 -0.20

lHt 3.50 0.15 0.98 8.30 0.12 0.95 8.02 0.14 0.95

dlPt 0.60 -0.20 0.87 1.28 0.05 0.75 2.08 -0.05 0.63

FFt 0.90 -0.08 0.96 0.84 -0.003 0.91 0.85 -0.05 0.92
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Table 5: Average price duration (APD),  and data �t for a given �p (benchmark case)

�p APD  Log data density (modi�ed harmonic mean)

FSC HC FSC HC 2 logBF

0.5 6 months 0.09 0.50 -1653.89 -1762.32 216.86

2/3 9 months 0.03 0.17 -1593.69 -1678.10 168.82

0.75 12 months 0.02 0.08 -1571.78 -1633.64 61.86
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Table 6: Average price duration (APD), �p and data �t for a given  (benchmark case)

 �p APD Log data density (modi�ed harmonic mean)

FSC HC FSC HC FSC HC 2 logBF

0.11 0.5 0.72 6 months 11 months -1653.89 -1650.69 -6.40

0.04 2/3 0.83 9 months 17 months -1593.69 -1592.40 -2.58

0.02 0.75 0.87 12 months 24 months -1571.78 -1569.78 -4.00
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Table 7: Variance Decomposition 20 Quarter Horizon (benchmark case)

ez;t e�;t eb;t eg;t ef;t el;t eM;t

b~yt(FSC) 10.30 12.50 22.40 15.35 11.57 9.77 18.11

�̂t (FSC) 36.26 21.80 6.38 1.54 22.49 2.44 9.09

R̂t (FSC) 83.65 4.20 1.48 2.98 1.22 0.44 6.04

b~yt(HC) 3.90 9.08 29.95 5.96 32.42 7.96 10.72

�̂t (HC) 25.93 24.00 5.60 1.69 32.67 2.17 7.93

R̂t (HC) 88.44 1.30 1.49 1.91 1.68 0.27 4.90
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7 Figures

Figure 1: Monetary policy shock (benchmark case)
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Figure 2: Neutral technology shock (benchmark case)
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Figure 3: Capital-embodied technology shock (benchmark case)
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Figure 4: Price markup shock (benchmark case)
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