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ABSTRACT 1 

This paper presents a method that provides a solution to the long standing problem of 2 

calculating internal force distributions based on displacement measurements of piles, 3 

retaining walls and tunnels. It is based on the principle of virtual work and therefore, 4 

analytically correct in the linear elastic range, and works without the need of any 5 

boundary conditions.  6 

The validation against multiple case studies, showcasing loading conditions including 7 

seismic, earth pressures, external loads, or sliding slopes in multiple ground conditions 8 

and construction processes, confirms its flexibility and applicability to any structure 9 

where displacements are observed. Although the validation presented here applies to 10 

bending moments and axial forces, the method is theoretically correct and applicable to 11 

other internal force distributions. 12 

Keywords: Axial forces, Curvature, Moment distributions, Piles, Retaining structures, 13 

Soil/structure interactions, Tunnels. 14 

INTRODUCTION 15 

The behaviour and structural design of underground structures is governed by the 16 

distribution of internal forces. Out of these internal forces, bending moments are most 17 

critical for structures supporting bending forces, such as laterally loaded piles and 18 

retaining walls, and subsequently for the amount of reinforcement that the structure 19 

must be provided with. In tunnels, axial forces are equally relevant, not for 20 

reinforcement considerations only, but to guarantee its stability as well. However, 21 

despite the importance of these internal forces, traditional monitoring techniques of 22 

these structures concentrate on measuring total or relative deformations to verify design 23 
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assumptions rather than enabling direct conclusions about the governing internal forces 24 

of the structure itself.  25 

This disconnection between monitoring and design parameters arises for two main 26 

reasons (Fuentes, 2012): lack of proven and widely accepted monitoring techniques to 27 

measure internal forces, especially bending moments, and the lack of a general method 28 

to translate displacement measurements into internal forces.  29 

With regards to bending moments, and in response to the first of the above 30 

shortcomings, some have recently developed techniques using fibre optics that are 31 

capable of measuring bending moments or curvature indirectly (e.g. see Inaudi et al, 32 

1998; Mohamad et al, 2010, 2011 and 2012; Fuentes, 2012). However, this technique is 33 

still suffering from the fact that measurements are indirect – i.e. curvature is inferred 34 

from axial strains – and that in order to obtain other relevant parameters, such as 35 

displacements, a cumbersome double integration needs to be carried out. Nip & Ng 36 

(2005) illustrated the problems of this integration process based on beam theory and 37 

overcame this successfully defining multiple boundary conditions over a controlled pile 38 

test and applying an iterative process to calculate the integration constants and fitting 39 

parameters. However, due to these conditions, the method cannot be simply used for 40 

other structures where less control over the boundary conditions is present. Mohamad 41 

et al (2011) used a numerical integration and boundary conditions of zero rotation and 42 

displacement at the wall toe, which were reasonable due to the depth of the wall under 43 

consideration. For less deep structures this assumption would be incorrect and hence 44 

further measurements, additional known boundary conditions or both must be provided. 45 
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Furthermore, it must be noted that calculation of displacements from curvature provides 46 

only part of the total displacement as it ignores rigid body translations and rotations. 47 

The second shortcoming, translating displacements into bending moments or curvature, 48 

has been, to date, challenging. It involves the double derivation of a fitted curve to the 49 

displacement profile that, as Brown et al (1994) highlighted, often presents difficulties 50 

and errors that propagate through the double derivation process. In order to reduce 51 

these errors, multiple readings are needed and other boundary conditions need to be 52 

imposed in advance so that the results are acceptable. Hence, although satisfactory 53 

solutions have been provided in the literature, these apply to specific conditions and 54 

structures and therefore, need to be used with caution elsewhere. 55 

The situation in tunnels is even more problematic as the available solutions to obtain 56 

bending moments and axial loads from displacements involve back-calculation and 57 

iterative processes using models that are successful in forward prediction - e.g. 58 

continuum models (Muir Wood, 1975; Curtis, 1976; Einstein & Schwartz, 1979; 59 

Duddeck & Erdman, 1985; El Naggar et al, 2008 and Carranza-Torres, 2013), 60 

convergence-confinment methods (e.g. Panet and Guenot, 1982), bedded beam 61 

springs (ITA, 1998; Oreste, 2003) or finite element analysis. Although satisfactory in its 62 

forward use, they also apply to specific conditions and still do not provide an 63 

independent check on the original calculation method.  64 

This paper presents the first application of the unit-load to the calculation of internal 65 

forces - You et al (2007) used its more typical application for displacement calculations 66 

for a shield tunnel and, similarly, Kim (1996) used it for validating the displacements 67 

obtained from predictive methods in model tunnels. It is based on the principle of virtual 68 
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work, and enables calculating the internal force distributions of piles, retaining walls and 69 

tunnels when the displacements of the structure are known, without the need of any 70 

boundary conditions. The validation here concentrates on bending moments for all three 71 

structure types and axial forces in tunnels, as they are the most relevant to their 72 

performance. However, the methodology would equally apply to other internal force 73 

distributions.  74 

THE UNIT-LOAD METHOD IN ITS TRADITIONAL USE  75 

The unit-load (UL) method uses the principle of virtual work and is widely used in 76 

structural engineering for the calculation of displacements of structures. Its 77 

implementation involves the definition of two structural systems: one comprising the real 78 

structure with its external loads (denoted here as ‘real’) and the second (denoted as ‘1’) 79 

consisting of the same structure with only a single unit-load applied at the point and in 80 

the direction of the displacement to be calculated. Once the two systems are defined, 81 

Gere and Timoshenko (1987) show that the displacement, u, of the real structure at the 82 

point of application of the unit-load is 83 

� � ��� �� � �	� �
 � ��� �� � �
� ��       (1) 84 

where N1, M1, V1 and T1 are respectively the normal stress, bending moments, shear 85 

stress and torsion internal force distributions of the unit-load structure. The second term 86 

in each integral represents the corresponding small displacement of the real system.  87 

The above equation applies to any material behaviour as long as the displacement 88 

terms are small (Gere & Timoshenko, 1987). For a linear elastic material, where the 89 

deformations are related to the internal forces through well-known elasticity constants, it 90 

becomes 91 
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� � � ��������� �� � ���������� �� � � ����������� �� � � ���������� ��    (2) 92 

where E is the elastic Young’s modulus, G the shear modulus, I the second moment of 93 

inertia, A, the area of the cross section and Ip the polar moment of inertia. 94 

PROPOSED METHOD 95 

Reversing equation (2) allows calculation of the internal forces of the real structure, 96 

Nreal, Mreal, Vreal or Treal, based on the observed displacements, u, at a given time.  97 

If Nreal, Mreal, Vreal or Treal adopt a generalised linear equation of the form 98 

N!"#$, M!"#$, V!"#$, T!"#$ � )*�+ � ,- � ,�)�*�+ � ,.).*�+ � ⋯� ,0)0*�+  (3) 99 

the constants C and integrals can be separated and equation (1) can be written in its 100 

matrix form  101 

1 � 23 ∙ 53 � 26 ∙ 56 � 27 ∙ 57 � 28 ∙ 58       (4) 102 

where the different suffices refer to each of the internal force distributions; u is the array 103 

containing all of the observed displacements, generally of dimensions (k,1); C (n+1,1) 104 

are single column arrays containing the coefficients in (3) that define the distributions of 105 

internal forces; and B (k,n+1) are matrices which elements are the integrals resulting 106 

from the application of equation (1) generally or (2) for linear elastic materials.  107 

Hence, equation (4) represents the general system of equations to be solved for C. It 108 

must be noted that a different n may apply, in principle, for each internal force 109 

distribution (e.g. using the same number of coefficients for all distributions results in 110 

4(n+1) unknowns). However, if only bending moments are considered, (4) can be 111 

written as  112 



 

7 
 

9��� .….�<…�= > � ?@@
@@@
A��*�+��� �� ��*�+�B�*C+�� �� … ��*�+�BD*C+�� �� … ��*�+�BE*C+�� ����*F+��� �� ��*F+�B�*C+�� �� … ��*F+�BD*C+�� �� … ��*F+�BE*C+�� ����*G+��� �� ��*G+�B�*C+�� �� … ��*G+�BD*C+�� �� … ��*G+�BF*C+�� ����*H+��� �� ��*H+�B�*C+�� �� … ��*H+�BD*C+�� ��… ��*H+�BE*C+�� ��IJJ

JJJ
K
?@@
@A,-,�…,<…,0 IJJ

JK   (5) 113 

where M(j)1 is the unit-load bending moment distribution of the system with a unit-load 114 

applied at the position and in the direction of uj. 115 

Each row in equation (5) can hence be rewritten as 116 

�< � ���∑ MN<0O�NP� ,NQ�           (6) 117 

where Bi,j represents each of the integrals shown in equation (5).  118 

The system of equations in (5) was solved in MATLAB (2013) using the method of least-119 

squares. The conditions for the system to have a unique solution are that k > n+2 and 120 

the rank of B is greater than k. In general the first condition will always apply (e.g. for a 121 

pile under lateral load where its bending moment is approximated using a 4th order 122 

polynomial, n=5, k must be equal or greater than 7. This requirement is easily fulfilled in 123 

practice as the typical number of readings for an instrumented pile will traditionally 124 

exceed this number; the same typically applies to retaining walls and tunnels). The 125 

second condition was always fulfilled for the cases studied and should always be 126 

checked.  127 

APPLICATION TO RETAINING WALLS AND LATERALLY LOADED PILES 128 

Assumptions  129 

The following general assumptions are made: linear elastic material behaviour applies; 130 

cross sections that are plane before deformation remain plane and; only small 131 

deformations are applied to the structure.  132 
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Since the focus for piles and retaining walls is on calculating bending moments, only the 133 

displacements perpendicular to the pile / retaining wall longitudinal axis need to be 134 

considered. 135 

It is also assumed that bending moments are the dominating internal force in relation to 136 

the above displacement and therefore, Eqs. (5) and (6) apply. This has been previously 137 

confirmed by others like Anagnostopoulos and Georgidis (1993), who showed that the 138 

axial load has a limited effect on the lateral displacement of piles and concluded that it 139 

can be disregarded in static conditions, or Abdoun et al (2013) who also confirmed this 140 

when showing that the presence of axial forces had little impact on lateral 141 

displacements under seismic loading. Similarly, shear forces can be disregarded as 142 

Gere & Timoshenko (1987) proved that their contribution to the lateral displacements is 143 

small. Finally, the problems studied here are either plane strain or axisymmetrical 144 

approximations, which means that torsion is also not relevant.  145 

In order to apply (5) and (6), the real structures were idealised: propped walls as a 146 

simply supported beam (Fig. 1a) and cantilever walls and laterally loaded piles as a 147 

cantilever beam (Fig. 1b). Although these assumptions have been made by others – 148 

e.g. Nig & Ng (2005) for laterally loaded piles – they are proposed and their validation is 149 

part of this paper for more general conditions and geometries. 150 
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 151 

Figure 1. Piles and embedded retaining walls (a) UL for propped walls (b) UL for propped 152 

walls for cantilever walls and laterally loaded piles (c) Displacement definitions (d) 153 

Bending displacements 154 

Structural observed displacements (herein called uO - See Figure 1c) can be divided into 155 

three different main components (Gaba et al, 2003): rigid body rotation (ψ); rigid body 156 

translation (d) and; bending (uD) as illustrated in Figure 1d. Out of the three, only the 157 

latter contributes to the bending moments in the structure; hence, its isolation is needed 158 

for the application of the method and should be the only component to be used. In linear 159 

elastic behaviour, these can be superimposed which simplifies the process of sorting. 160 

 161 



 

10 
 

Formulation 162 

Using polynomials of order n in equation (3) such as 163 

)-*�+ � 1, )�*�+ � ��, … , )0*�+ � �0        (7) 164 

and the unit-load bending moment distributions for propped walls  165 

	*<+�*�+ � S TQUGT �, � V W<X UGT � � W< , � Y W< Z         (8)  166 

and, similarly, for cantilever walls and laterally loaded piles (see Figure 1 for variable 167 

definitions),  168 

	*<+�*�+ � [W< X �, � V W<0, � Y W< Z          (9)  169 

the integrals in Eq. (5) and (6) become 170 

M<,N � TQUGT UD]FNO. � W< ^X TD]�NO. � TD]�NO� � UGD]F*NO.+T X UGD]�NO� _       (10) 171 

for propped retaining walls and 172 

M<,N � W< UGD]�NO� X UGD]FNO.            (11) 173 

for cantilever walls and laterally loaded piles.  174 

Equations (10) and (11) define the system of equations in (5) and (6) to be solved. 175 

Choice of function f(x) 176 

Multiple authors have chosen polynomials to approximate displacements and bending 177 

moments of underground structures due to their versatility. However, the choice of order 178 

is much less thoroughly explained in the literature and the reasons for choice are 179 

normally justified by the amount of boundary conditions available, or a trial and error 180 

procedure rather than a rigorous goodness-of-fit. A common mistake is to choose higher 181 

order polynomials as they provide an apparent better fit to data; however, this may lead 182 
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to over-fitting and instabilities that are important, especially if the polynomials are used 183 

to derive other parameters from its derivatives such as shear forces or soil reaction. de 184 

Sousa (2006) proposed a sophisticated technique using polynomial splines in order to 185 

solve this problem. The strategy proposed here to address the above problem is simple 186 

and presented using Reese (1997) and Mohamad et al (2011) case studies (see Table 187 

1 for description): 188 

- First, the bending moments are calculated using multiple polynomial orders and Eq. 189 

(5), (6), (10) and (11). Typical starting values of polynomial orders, based on 190 

experience, are: 5th to 9th (Singly Propped walls), 6th to 10th (Multi-propped walls) and 4th 191 

to 8th (Cantilever walls and laterally loaded piles). The above values of polynomial order 192 

are only initial; iterations beyond those values may be necessary until the best order is 193 

found as shown below. 194 

- Model Evaluation –The Akaike Information Criterion (AIC) (Akaike, 1974) was used to 195 

evaluate each polynomial. Later updates (Hurvich and Tsai, 1991), that correct for 196 

models where the number of points is similar to the number of independent variables to 197 

be estimated, were dismissed as it increases the risk of under-fitting (Bozogan, 1987). 198 

The AIC approach provides a formulation that complies with the principle of parsimony, 199 

by which the simplest model is selected, and eliminates the risk of over-fitting. AIC is 200 

found using the following equation 201 

`a, � Xb ∗ LNeff�= g � 2*i � 1+         (12) 202 

where SSE is the Sum of Square of Errors defined as 203 

jjk � ∑ l)0 X )mn.��             (13) 204 
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and fn is the polynomial under evaluation, and )m is an estimator which is defined as the 205 

average of all the polynomials used.  206 

Figures 2 and 3 show the implementation of Eq. (5) and this strategy. The optimal 207 

orders (lowest AIC score) are 9th for Mohamad et al (2011) and 6th for Reese (1997). 208 

When the lowest AIC value corresponds to the highest or lowest polynomial order 209 

considered initially, it will be necessary to reduce or increase the order until the 210 

minimum is found.  211 

212 

 213 

Figure 2. Development of method for Mohamad et al (2011) (a) Polynomial choice (b) AIC 214 

- Once the best order has been chosen, the final solution is taken as the average of fits 215 

between the optimal polynomial order and the two closest orders with the lowest AIC 216 

score. It must be noted that the two closest may be on one side of the optimal. For 217 
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example, in Mohamad et al (2011), the optimal order is 9th and 10th and 11th have lower 218 

AIC scores than 8th. Hence, the final solution is taken as the average of polynomials of 219 

orders 9th, 10th and 11th.  220 

The above strategy was tested for all the cases in Table 1 as part of the validation 221 

process below. Appendix A shows its full application, including AIC plots for all the 222 

cases.  223 

224 

 225 

Figure 3. Development of method for Reese (1997) (a) Polynomial choice (b) AIC 226 

Validation 227 

Six case studies (described in Table 1) were analysed to validate the method’s 228 

application to piles and embedded retaining walls. They portray multiple loading 229 

conditions (earth pressures, tunnel induced load on piles, earthquake induced loads on 230 

−1000 −500 0 500 1000 1500
0

1

2

3

4

5

6

7

Moment (kNm)

Le
ng

th
 fr

om
 to

e 
(m

)

 

 

8th 4th
5th

6th

Measured
Average of all fits 

7th

Calculated

4 5 6 7 8
665

670

675

680

685

690

Polynomial order

A
IC



 

14 
 

piles, to piles embedded in sliding embankments), structural dimensions and 231 

construction methodologies and hence, cover a wide spectrum of situations. 232 

233 

 234 

Figure 4. Calculation (a) Curvature (b) Input displacement - Mohamad et al (2011) 235 
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236 

 237 

Figure 5. Calculation (a) Bending moment (b) Input displacement - Ou et al (1998) 238 
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239 

 240 

Figure 6. Calculation (a) Bending moment (b) Input displacement - Reese (1997) 241 
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242 

 243 

Figure 7. Calculation (a) Bending moment (b) Input displacement - Cheng et al (2007) 244 
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245 

 246 

Figure 8. Calculation (a) Bending moment (b) Input displacement - Liyanapathirana & 247 

Poulos (2005) 248 
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250 

 251 

Figure 9. Calculation (a) Bending moment (b) Input displacement - Smethurst & Powrie 252 

(2007) 253 

Figures 4 to 9 show comparisons between the Calculated values (resulting from the 254 

method’s application) and the Observed values (obtained from the literature). The 255 

figures also show the Input displacement and the Observed values to illustrate in which 256 

cases a transformation, like that shown in Figure 1d, was needed to calculate uD.  257 

The match between the maximum Observed values from the literature and the 258 

Calculated is within 10% for all cases, with the exception of Smethurst & Powrie (2007), 259 
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estimate by the authors for a stage where the pile is no longer behaving fully elastically. 261 

It therefore confirms the potential of the method to predict bending moments beyond the 262 

elastic range if the adequate value of EI is used.  263 

The Calculated values deviate, in some instances (e.g. Ou et al, 1998) towards the 264 

ends of the structure, typically, the upper part, which corresponds to where the 265 

displacement readings, mostly done by inclinometers, accumulate the highest errors. 266 

Therefore, this source of deviation cannot be simply attributed to the method as it is 267 

more likely to be mostly due to inaccuracies in displacement measurements. 268 

APPLICATION TO TUNNELS 269 

Assumptions 270 

The same general assumptions used for piles and retaining walls apply to tunnels. 271 

Here, the focus is on circular tunnels for simplicity, although the same principles apply 272 

to other section shapes. It is assumed that the tunnel lining structure is monolithic (i.e. 273 

the joints are not articulated) and provides full structure continuity.  274 

Furthermore, it is assumed that the ratio between the radius of the tunnel and its lining 275 

thickness is greater than 7 approximately and therefore, the beam can be analysed 276 

using straight beams deflection theory (Roark, 1965) - i.e. equation (2) applies. This 277 

assumption also allows disregarding the effect of shear forces, as the structure can be 278 

considered a thin shell. 279 

Radial displacements, perpendicular to the tunnel cross section, were used (see Figure 280 

10). The Observed displacements (uO) can be, as in piles and retaining walls, divided 281 

into two categories: those that produce bending moments and those that do not. The 282 

latter, in practice, are rigid body (uRB) displacements – i.e. a translation and / or rotation 283 
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- and uniform convergence (uC) displacements – i.e. a uniform reduction in the tunnel 284 

diameter (see Figure 10). The former are displacements referred here as distortion 285 

displacements (uD) – typically ovalisation; however, other potential displacements such 286 

as those arising from gaps behind the lining or localised loading must also be included 287 

(the example shows only ovalisation deformations for simplicity). It is important to note 288 

that everything that follows applies to the rotated tunnel, which means that if a rigid 289 

body rotation has occurred, it needs to be removed from the observed values in 290 

advance to present it as it is shown in Figure 10.  291 

 292 

Figure 10. Tunnel displacements definitions 293 

 294 
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Having made the above distinction, the general equation for the radial displacements 295 

can be written as  296 

�o � �pq � �r � �s           (14) 297 

where uO represents the Observed radial displacements of the rotated tunnel and uRB is 298 

the projection of the rigid body displacement onto the radial direction for each point (e.g. 299 

if the rigid body displacement is a vertical translation as in Figure 10, the tunnel crown 300 

uRB is the Observed total rigid body displacement value, whereas in the springline this 301 

value is zero). The sign convention in Eq. (14) is: negative for radial displacements 302 

acting inwards and positive for those acting outwards. 303 

The uniform convergence and rigid body displacements do not cause a change in 304 

shape (i.e. the normal to tunnel lining does not change direction), which means there is 305 

no shear deformation, and no bending moment. Therefore, if the normal to the tunnel at 306 

the springline remains horizontal after deformation, it follows that the distortion 307 

displacement at this location must also be horizontal. It also means that the vertical 308 

component of the rigid body displacement is equal to the vertical component of the 309 

observed displacement. Hence, if the same horizontal component of the observed 310 

displacement applies at both springlines and in opposite directions, the rigid body 311 

displacement must be vertical (as is the case presented in Figure 10). This reasoning 312 

applies to any tunnel as long as the lining acts as a monolithic material with no joints. 313 

Uniform convergence can be obtained by inspecting the tunnel cross section 314 

displacements at the crown (CR) and the springline (SL) and developing (14) for each 315 

�ofT X �pqfT � �r � �sfT         (15) 316 

�orp X �pqrp � �r � �srp         (16) 317 



 

23 
 

In Figure 10, the distortion deformation of the example is elliptical and therefore, Eq. 318 

(15) refers to displacements in the horizontal direction and (16) in the vertical direction.  319 

Using the ratio between the crown and springline distortion deformations, �srp/�sfT, 320 

substituting this into Eq. (15) and (16), subtracting algebraically both eliminates uC , and 321 

isolating �sfT results in 322 

�sfT � tuvwQtxyvw QtuzxOtxyzxl�Qt{zx t{vw| n          (17) 323 

and inserting (17) into (15) provides the uniform convergence 324 

�r � �}fT X �pqfT X tuvwQtxyvw QtuzxOtxyzxl�Qt{zx t{vw| n         (18) 325 

This value can then be used in Eq. (14) to calculate the final distortion displacements at 326 

any point in the lining 327 

�s � �o X �pq X �ofT � �pqfT � tuvwQtxyvw QtuzxOtxyzxl�Qt{zx t{vw| n       (19) 328 

Other methods can be used to separate sources of Observed displacements. What is 329 

important is to make sure that all displacements that do not produce bending moments 330 

are removed in preparation for the method’s application. However, the methodology 331 

presented here is deemed applicable to most cases of standard displacements in 332 

tunnels and has been validated. 333 

The idealisation needed for the application of the method to tunnels is shown in Figure 334 

11. It consists of a thin ring with a double unit-load applied in diametrically opposite 335 

locations.  336 
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 337 

Figure 11. Tunnel nomenclature definition and idealisation and unit-load structure 338 

Formulation 339 

The chosen function to represent the real structure bending moments and axial forces is 340 

shown below  341 

)-*�+ � 1, )�*�+ � cos*�+ , ).*�+ � cos*2�+       (20) 342 

which is much simpler than for piles and retaining walls as it contains only three 343 

constants C (see Eq. 6) to calculate. 344 

The distribution of bending moments for a generic unit-load system applied at an angle 345 

bj was calculated generically for any angle f, using the equations developed by 346 

Lundquist and Burke (1936) 347 
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	*<+�*�+ � � �*<+} � �*1 X sin*�++�*<+� � � sin*�+�*<+� , � V �<� sinl� X �<n � �*<+} � �*1 X sin*�++�*<+� � � sin*�+�*<+� , � Y �< Z (21) 348 

where f varies between 0 and 180o, and 349 

�*<+} � � ^����*�G+F O._Q��          (22) 350 

�*<+� � .Q^����*�G+F O._�            (23) 351 

�*<+� � ���*�G+.            (24) 352 

Using Eq. (20) to (24), similar equations to (10) and (11) can be derived for tunnels as 353 

follows 354 

M<,- � ��*<+} � ���*<+� X 2��*<+� � �lcos*�<+ � 1n      (25) 355 

M<,� � �*<+} sinl�<n X�*<+�� ���l.�Gn. X p ���l�Gnl�Q�Gn.       (26) 356 

M<,. � .���*<+� X p� lcos*�<+ � 1nl2cos*�<+ X 1n      (27) 357 

which allows redefining Eq. (6)  358 

�s< � p��∑ MN<0O�NP� ,NQ�          (28) 359 

that represents the system equations from which the bending moments’ constants of 360 

equation (20) can be calculated. 361 

Equations (6) and (28) are almost identical with the exception of the addition of R in the 362 

latter, which comes from the integration using polar coordinates and the angle f. 363 

The same process applies to the axial force. In this case, the axial force caused by the 364 

unit-load is 365 

�*<+�*�+ � SX �. sin	*�< X �+, � V �<X �. sin	*� X �<+, � Y �< Z       (29) 366 
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Using Eq. (20) and (29), the integrals in (6) become 367 

M<,- � 1            (30) 368 

M<,� � l2�< X �n/4           (31) 369 

M<,. � Xl2 cos. �< X 1n/6         (32) 370 

and the system of equations is defined as 371 

��s< � p��∑ MN<0O�NP� ,NQ�         (33) 372 

The factor m shown in (33) represents the fact that only a marginal contribution of the 373 

distortion movements applies to the axial forces. The majority of the axial force is a 374 

consequence of the displacement uC and can be calculated as  375 

�r � **pOtz+Qpp k`          (34) 376 

so that the final axial load is the summation of NC (which is a constant load) and the 377 

axial load calculated using Eq. (33) that varies for different points in the lining. 378 

The factor, m, can be estimated ignoring the contribution of the shear forces and using 379 

the radial displacement solution presented by Gere & Timoshenko (1987)  380 

�s � ��p��� ^12 ep�g. � 2.12_         (35) 381 

The second term of the equation corresponds to the axial force contribution, and the 382 

first to the bending moments. Figure 12 shows the power law that fits perfectly the ratio 383 

between both contributions, m, when plotted against R/t ratio. Although Eq. (35) and 384 

consequently, Figure 12, correspond to the case of a point load applied at the crown of 385 

the lining, other combinations of external applied loads result in very similar power laws 386 

and hence, the hypothesis was that the power law presented here can be used for 387 
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estimation purposes where the deformation of the tunnel is mainly elliptical. This 388 

hypothesis is validated below for both case studies.  389 

 390 

Figure 12. Ratio between axial force and bending moment contributions to radial 391 

displacements 392 

Choice of function f(x) 393 

Most of the widely accepted solutions for tunnel lining design define the shape of 394 

bending moments and radial displacements in tunnels using multiples of the cosine – 395 

e.g. cos(2f) (Einstein & Schwartz, 1979; El Naggar et al, 2008; Carranza-Torres, 2013) 396 

for simpler modes of deformation and cos(pf) for different orders, where p is an integer 397 

greater than 1 (Muir Wood,1975). 398 

Gere & Timoshenko (1987) showed that the equation linking radial displacement and 399 

bending moment of a circular beam of thin section is  400 

y = 0.1767x-2
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 Ft{ ¡F � �s � X pF�*¡+��           (36) 401 

which means that it is mathematically proven that if a function shape of the form shown 402 

in (20) could be successfully fitted to the displacement profile uD, the same form would 403 

apply to the bending moments, provided that EI remains constant (as it does for the 404 

linear elastic region under consideration).  405 

406 

 407 

Figure 13. Validation of function choice (a) Gonzalez & Sagaseta (2001) (b) Carranza-408 

Torres et al (2013). 409 

Figure 13 shows the fitted proposed function in Eq. (20) to the displacement profiles 410 

suggested by Gonzalez & Sagaseta (2001) and Carranza-Torres et al (2013) using the 411 

MATLAB (2013) curve fitting tool. The former presents a profile where symmetry occurs 412 
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around the vertical axis (note the x axis extends to 180o), whereas in the latter, double 413 

symmetry occurs at 90o and subsequently at 180o. 414 

Besides the discussion on the appropriateness of one method or another, which is 415 

beyond the scope of this paper, the figure shows that the chosen function performs well 416 

for both cases and provides very high values of R2 and low of RMSE, indicating an 417 

acceptable goodness-of-fit. This, in turn, shows that the function is also appropriate to 418 

characterise bending moments: a similar rationale applies to axial forces. 419 

Validation 420 

The validation was carried out against an analytical method such as Carranza-Torres et 421 

al (2013) and an FE model in Brinkgreve et al (2011). The former is a more generalised 422 

and complex case than those presented previously by others (e.g. Einstein & Schwartz, 423 

1976) and includes complex processes such as stress relaxation. The second case is 424 

representative of an accurate and calibrated FE model and programme widely used. 425 

Details on both of these are presented in Table 1.  426 

In order to separate the displacements, first an estimate of  �srp/�sfT is needed. In cases 427 

where the rigid body translation is small compared to the maximum distortion 428 

deformations (as is the case in most tunnels), it can be estimated as �orp/�ofT. Hence, 429 

�srp/�sfT values of -1.027 and -1.099 were estimated for Brinkgreve et al (2011) and 430 

Carranza-Torres et al (2013) respectively. This estimate was tested through a sensitivity 431 

analysis of its impact on the calculation of bending moments using the value of pure 432 

shear, -0.5, and extreme values ranging between -0.92 to -1.08 (calculated from Roark 433 

(1965) for the case of a triangular horizontal pressure applied on the sides). Differences 434 

of less than 0.5% in the Calculated bending moment were obtained which confirmed the 435 



 

30 
 

adequacy of the estimate. Eq. (18) was then used to calculate uC, providing values of -436 

1.383E-0m and -6.208E-04m for Brinkgreve and Carranza-Torres respectively. Finally, 437 

Eq. (19) was used to calculate uD.  438 

Using Eq. (34) and the calculated uC value, NC was obtained and was equal to -439 

774.79kN/m (Brinkgreve et al, 2011) and -1552 kN/m (Carranza-Torres et al, 2013). The 440 

m values, were estimated using the equation in Figure 14, and were 3.460E-03 and 441 

1.767E-03 respectively. This allowed calculating the contribution of uD that corresponds 442 

to the axial forces.  443 

Figures 14 and 15 present the results of the method’s application and its comparison to 444 

the observed values. The match to Carranza-Torres et al (2013) is outstanding as the fit 445 

is within 0.5%. For Brinkgreve et al (2011), the method captures the fact that the 446 

bending moment is marginally higher at the crown of the tunnel than at the invert, and 447 

only over-predicts the latter by 14%. The Calculated axial force is closer to the 448 

Observed values and only shows an error of less than 5% for its maximum values at 0 449 

(and 180) and 90 degrees respectively.  450 
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 451 

 452 

Figure 14. Calculation of (a) Bending moment and Axial force (b) Input radial 453 

displacement - Carranza-Torres (2013) 454 
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455 

 456 

Figure 15. Calculation of (a) Bending moment and Axial force (b) Input displacements - 457 

Brinkgreve et al (2011) 458 

Close inspection of Figures 14 and 15 also shows that NC is the arithmetic average of 459 

the axial load for both cases and the deviation from this average is the axial load that 460 
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Diederichs (2009) showed, which may present future opportunities for the estimation of 463 

this ratio. 464 

The outstanding performance of the method against very different case studies not only 465 

validates it but also the procedure presented for the separation and reasoning of the 466 

different displacements contributions. 467 

CONCLUSIONS 468 

The proposed method is analytically correct and based on the principle of virtual work. It 469 

provides a means to calculating internal forces such as bending moments and axial 470 

forces without the need for boundary conditions. It solves therefore a long standing 471 

problem in underground structures that has significant applications in research and 472 

practice as it provides an accurate and independent check on the internal forces in a 473 

structure. This is envisaged to allow producing more optimised design though greater 474 

understanding of the bending moments and axial forces in underground structures. 475 

The versatility and flexibility of the method has been demonstrated using diverse case 476 

studies which shows it is equally applicable to piles, retaining walls and tunnels under 477 

multiple loading conditions. The maximum error between Observed and Calculated 478 

values of bending moment was lower than 10%, with the exception of the case where 479 

slight plastic behaviour occurred and the error was 18%.  480 

The method presents multiple opportunities for future work and its relevance extends 481 

beyond underground structures as the same methodology is theoretically applicable to 482 

any structure. Therefore, its applicability and potential usage is wide. 483 

 484 

 485 



 

34 
 

ACKNOWLEDGMENTS 486 

The author would like to acknowledge the discussions he had and recommendations 487 

received from Eden Almog (Arup Tunnelling, London) throughout the derivation of the 488 

method from its original idea. It is also acknowledged the suggestions that Loretta von 489 

der Tann (University College London and Arup Geotechnics) made on the part dealing 490 

with piles and retaining walls and the general presentation of the paper. 491 

APPENDIX A 492 

This appendix shows the full application of the method to all the case studies presented 493 

for piles and retaining walls.  494 

495 
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Figure A1. Development of method for Ou et al (1998) (a) Polynomial choice (b) AIC 497 

498 

 499 

Figure A2. Development of method for Cheng et al (2007) (a) Polynomial choice (b) AIC 500 
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502 

 503 

Figure A3. Development of method for Liyanapath. & Poulos (2005) (a) Polynomial choice 504 

(b) AIC 505 
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506 

 507 

Figure A4. Development of method for Smethurst & Powrie (2007) (a) Polynomial choice 508 

(b) AIC 509 
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BN, BM, BV, BT matrices which elements are the integrals resulting from the 515 

application of the method corresponding to the normal, moment, 516 

shear and torsion internal force distributions respectively 517 

C0, C1, Cj,Cn coefficients of linear equation representing the internal force 518 

distribution of the real structure 519 

CN, CM, CV, CT arrays of coefficients defining the normal, moment, shear and 520 

torsion internal force distributions respectively 521 

dδ, dθ, dρ, dγ small displacement of the real structure 522 

E   Young’s modulus 523 

G   shear modulus 524 

I   second moment of inertia of cross section 525 

Ip  polar moment of inertia 526 

f0(x), f1(x),fj(x),fn(x) functions of linear equation representing the internal force 527 

distribution of the real structure 528 

)0 function under evaluation 529 

)m  estimate of function  530 

h   embedded length in retaining walls  531 

H   retained height in retaining walls 532 

k number of field measurements of displacements for the real 533 

structure 534 

L   structure length in retaining walls / piles 535 

n indication on the number of functions used to approximate the 536 

internal force distributions 537 
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	*�+  bending moment of the tunnel  538 

	*<+�*�+  bending moment in the pile / retaining wall caused by the unit-load 539 

force 540 

	*<+�*�+  bending moment in the tunnel lining caused by the unit-load force 541 

N1, M1, V1 and T1   normal stress, bending moments, shear stress and torsion internal 542 

force distributions of the unit-load structure 543 

Nreal, Mreal, Vreal  544 

and Treal   normal stress, bending moments, shear stress and torsion internal 545 

force distributions of the real structure 546 

q(x) external pressure acting on retaining walls / piles 547 

q(f) external pressure acting on tunnel lining 548 

R radius of tunnel 549 

SSE Sum of Square of Errors 550 

t tunnel lining thickness 551 

x distance from the toe of the retaining wall / pile 552 

u   displacement of real structure in retaining walls / piles 553 

u   array of field Observed displacements in retaining walls / piles 554 

uj displacement of the real structure at the point j where the unit-load 555 

is applied 556 

uD bending component of field measurement displacements in 557 

retaining walls / piles 558 
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�s  lateral displacement of pile / retaining wall causing bending 559 

moments or radial component of distortion displacement at a point 560 

of the tunnel lining 561 

�r    uniform convergence displacement 562 

�o  observed lateral displacement of pile / retaining wall, radial 563 

displacement of the tunnel lining in the rotated tunnel 564 

�ofT    radial displacement at the tunnel springline observed 565 

�pq  radial component of rigid body displacement at a point of the tunnel 566 

lining 567 

�pqfT     radial component of rigid body displacement at the tunnel springline 568 

�sfT    radial component of distortion displacement at the tunnel springline 569 

�orp    radial displacement at the tunnel crown observed 570 

�pqrp     radial component of rigid body displacement at the tunnel crown 571 

�srp    radial component of rigid body displacement at the tunnel crown 572 

ureal field Observed displacements in retaining walls / piles  573 

as shear coefficient 574 

bj  angle measured from the vertical direction clockwise to the point of 575 

application of the unit-load 576 

d translation displacement 577 

f angle measured from the vertical direction at the tunnel crown and 578 

clockwise 579 

ψ rigid body rotation 580 
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