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Abstract—In this paper, we present a complete framework for
accurate indoor positioning and tracking using the 802.11a Wi-
Fi network. Channel frequency response is first estimated via
the least squares (LS) method using an orthogonal frequency
division multiplexing (OFDM) pilot symbol. For accurate time
of arrival (ToA) distance estimates in multipath environments,
super resolution technique i.e. MUltiple SIgnal Classification
(MUSIC) is used which capitalizes on the autocorrelation matrix
of the estimated channel frequency response. The estimated
distances from the base stations (BSs) are then used in the
observation model for particle filter (PF) tracking for which a
constant velocity motion model is used, depicting indoor mobile
movement. The tracking performance of the combined MUSIC-
PF is compared with PF performance when a conventional cross
correlator (CC) is used for delay estimates. It is shown via
simulation that the PF-MUSIC performance is superior to the
PF-CC performance.

Index Terms—Localization, tracking, WiFi networks.

I. INTRODUCTION

I
NDOOR localization has been of great interest to re-

searchers in the last decade [1]. Location information of

objects (or humans) will be an integral part of the Internet of

things (IoT) paradigm. Indeed, new technologies such as the

impulse based ultra wide band (UWB) technology, courtesy to

its large bandwidth, offers exceedingly high timing and hence

distance estimate accuracy [2]. However, it will require the

installation of new indoor wireless infrastructures. Thus the

aim now is to use existing indoor wireless technologies i.e.

the IEEE 802.11a WiFi for cost effective indoor localization

and tracking. The first step in most localization systems is the

accurate distance estimates between the mobile device (MD)

and fixed base stations (BSs) or anchors. Although coarse

distance estimates can be obtained using the attenuation of the

signal, the time of arrival (ToA) has been a very successful

strategy for accurate distance estimates [3]. However, its

accuracy is limited to the bandwidth of the underlying physical

layer signal. In case of the 802.11a standard, a bandwidth

of 20 MHz is allowed [4], which translates into a sample

rate of 50 ns. Thus when a conventional cross correlator

(CC) is used for delay estimation, in the worst case, a delay

that is midway between two samples will have an error of

7.5 m associated with it. This clearly is unacceptable espe-

cially in indoor scenarios. Although, sub sample interpolation

based techniques have been proposed to improve the delay

estimate accuracy [5], frequency domain techniques such as

the preeminent MUltiple SIgnal Classification (MUSIC) and

its derivatives have proved to provide superior performance

[6]. The MUSIC algorithm, originally developed for bearing

estimation, has recently been adopted for multipath delay

estimation [7]. MUSIC operates on the autocorrelation of the

estimated channel frequency response. Thus the first step is

the estimation of the multipath channel frequency response,

which in this paper is achieved by the least squares (LS)

technique using the block type orthogonal frequency division

multiplexing (OFDM) pilot symbol [8]. Distance estimates are

readily available once the first arriving multipath or direct line

of sight (LoS) is obtained from all BSs via MUSIC algorithm.

The distance estimates from a minimum of three BSs are

used in the observation model for tracking purposes. How-

ever these distance estimates are highly non-linear in terms

of the location coordinates of the MD. Traditional tracking

algorithms such as Kalman filter (KF) [9] are optimal in linear

observations and Gaussian noise. For nonlinear observations,

techniques such as the extended Kalman filter (EKF) [10], [11]

can be adopted in which the non-linear distance estimates are

first linearized via first order Taylor series. Other approaches

may include the unscented Kalman filter (UKF) [12] which is

deemed more accurate than the EKF.

To overcome the limitations of the KF and its variants,

in recent years the focus of research has shifted to Monte

Carlo based methods, such as particle filters (PFs) [13]. PF

numerically approximates the nonlinear filtering problem by

first generating a set number of random samples (particles),

then predicting and updating them via the prior and likelihood

probability density functions (pdfs) respectively. In this paper,

we present the combined MUSIC-PF algorithm which utilizes

the super resolution delay estimation of MUSIC and also

demonstrates the superior tracking performance of the PF.

The rest of the paper is organized as follows. Section II

describes the signal model of the 802.11a WiFi systems, it

also presents the LS estimation of the channel frequency

response and the MUSIC algorithm. Section III deals with the

localization and tracking of the MD. In section IV, we present

the simulation results which are followed by the conclusions.

II. SIGNAL MODEL

For future use, the following notations are defined. Rn is

the set of n dimensional real numbers. (.)T and (.)H represent



the transpose and Hermitian transpose operation. E(.) refers

to the expectation operation. I represents the identity matrix.

N (µ, σ2) denotes the normal distribution with mean µ and

variance σ2. ⊗ represents the circular convolution.

The discrete time OFDM signal is represented by

x [n] =

N−1∑

k=0

X (k) exp

(
j2πkn

N

)
for n = 0, 1, ..., N−1,

(1)

where X (k) is data symbol and N is the number of sub-

carriers.

The cyclic prefix (CP) is inserted as the guard interval to

avoid inter symbol interference (ISI).

x̄ [n] =

{
x [N + n] for n = −NCP ,−NCP + 1, ...,−1

x [n] for n = 0, 1, ..., N − 1
(2)

where NCP is the number of CP symbols.

The received discrete time signal can now be given as

ȳ [n] = x̄ [n]⊗ h [n] + w [n] , (3)

where w [n] is the additive white Gaussian noise (AWGN) and

h [n] is the discrete time channel impulse response i.e.

h [n] =

L−1∑

l=0

alδ (nTs − τl) , (4)

Ts being the sampling rate. L is the number of multipaths

and δ (.)is the Dirac delta function. al and τl is the complex

attenuation and delay of the lth path.

The CP is removed at the receiver and the received symbols

are obtained after the fast Fourier transform (FFT) operation

Y (k) =
1

N

N−1∑

n=0

y (n) exp

(
−
j2πkn

N

)
. (5)

If there is no ISI, due to large enough CP then the received

OFDM signal Y (k) can be represented by

Y (k) = X (k)H (k) +W (k) , (6)

where W (k) is the Fourier transform of w (n) and H (k) is

the channel transfer function which can be represented by

H (k) =

L−1∑

l=0

al exp

(
−
j2πkτl
Ts

)
(7)

or

H (fk) =
L−1∑

l=0

al exp (−j2πfkτl) (8)

for fk = k
Ts

and k = 0, 1, ..., N − 1.
When the block type pilot symbol Xp is used, the LS

channel frequency response can be estimated as

Ĥ = X
−1
p Y, (9)

where Xp = diag [Xp (1) , · · · , Xp (N − 1)] and Y =

[Y (1) , · · · , Y (N − 1)]
T

.

The estimated channel transfer function can then be mod-

eled as

Ĥ = H+w = Va+w (10)

where

Ĥ =
[
Ĥ (f0) Ĥ (f1) · · · Ĥ (fN−1)

]T

H =
[
H (f0) H (f1) · · · H (fN−1)

]T

w =
[
w (0) w (1) · · · w (N − 1)

]T

V =
[
v (τ0) v (τ1) · · · v (τL−1)

]T

v (τl) =
[
1 exp (−j2πf1τl) · · · exp (−j2πfN−1τl)

]T

a =
[
a0 a1 · · · aL−1

]T
.

The autocorrelation matrix of the estimated channel transfer

function is then given by

R
ĤĤ

= E
[
ĤĤ

H
]
= VE

{
aa

H
}
V

H + σ2
wI. (11)

With the assumption that E
{
aa

H
}

is non-singular and

V is full rank due to all values of τl being different. If

λ0 ≥ λ1 ≥, . . . ,≥ λN−1 represent the eigen values of the

the autocorrelation matrix R
ĤĤ

. Then it follows that the

corresponding eigen vectors ei spaning the space of dimension

N can be split into two orthogonal sub-spaces Es and En.

Where Es = [e0, e1, . . . , eL−1] corresponding to eigen values

λi > σ2
w, lie in the signal subspace while eigen vectors

En = [eL, eL+1, . . . , eN−1] corresponding to λi < σ2
w, lie

in the noise subspace. The noise projection matrix Pw can

now be formulated as

Pw = EnE
H
n . (12)

Since the vector v (τl) lie in the signal subspace, it is

orthogonal to the the projection matrix Pw. The MUSIC

algorithm finds the delay v (τl) for which

Pwv (τl) = 0 (13)

or alternatively those τl which maximize the pseudo spectrum

SMUSIC =
1

‖Pwv (τl)‖
2
. (14)

Thus in multipath environments, L − 1 peaks are obtained

using the MUSIC algorithm from the pseudo spectrum. For

ToA and hence distance estimation, the first peak on the delay

axis is selected. The first detected peak could correspond to

a LoS delay or a multipath with the smallest positive bias.

Once the distance estimates are obtained from at least 3

BSs, localization and tracking techniques can be applied as

discussed in the next section.

III. LOCALIZATION AND TRACKING OF MOBILE DEVICE

We consider a two dimensional network with one MD which

has unknown coordinates θ = [x, y]
T (

θ ∈ R2
)

at any given

time that are to be estimated referenced to M BSs with known

locations θi = [xi, yi]
T (

θi ∈ R2
)

i = 1, ...,M. The MD

is assumed to have on board sensors that measure velocity,

orientation etc.



A. Motion model

Numerous motion models have been suggested in literature

such as random walk, Singer type model [14]. For indoor

localization, in this paper, we assume a basic constant velocity

model. The state space vector is given by x = [x, y, vx, vy]
T

,

where vx and vy represent the velocity in the x and y direction.

The constant velocity model is then given by

xt = Fxt−1 + nt, (15)

where F is the transition matrix and is given by

F =




1 0 T 0
0 1 0 T

0 0 1 0
0 0 0 1


 .

T is the discretization period and nt is the Gaussian process

noise at the tth step. Its covariance is given by C = σ2
nI.

B. Observation model

The estimated delay τ̂i from the ith BS based on the first

peak of the pseudo spectrum can be used to estimate the

distance d̂i, i.e. d̂i = cτ̂i
(
c ≈ 3× 108

)
, where it can be

modeled as

d̂i = di +mi, (16)

where di is the actual distance given by

di =

√
(x− xi)

2
+ (y − yi)

2
(17)

and mi is the associated Gaussian noise. The measurement

equation can thus be written as

zt = h (xt) +mt, (18)

where h (xt) =
[
d̂1, . . . , d̂M

]T
, the noise vector mt has a

covariance matrix R = diag
[
σ̂2
1 , . . . , σ̂

2
M

]
, where σ̂2

i is the

noise variance associated with the distance estimate from the

ith BS. Since the eigen values λL, . . . , λN−1 correspond to

noise eigen vectors, and is an indication of the noise variance,

the variance in delay and hence distance estimate from the ith

BS can be estimated by taking the average of all noise eigen

values for the ith BS i.e.

σ̂2
i ≈

N−1∑

j=L

λi
j . (19)

C. Particle filter

This subsection highlights the operation of the PF for indoor

MD tracking. PF [13] is an implementation of the Monte Carlo

methods for sequential Bayesian filtering. Bayesian filters aims

to operate on the posterior pdf of the state vector. As new

information is made available the recursive Bayesian filter

updates the posterior pdf of the state vector. If the observation

model is linear and the all the noise components can be

assumed Gaussian then the recursive Bayesian filter reduces

to the KF.

PFs, on the other hand, approximate the posterior pdf nu-

merically with random samples (particles). The approximation

accuracy depends on the number of particles. The particles

once generated randomly are propagated and updated based

on the motion and observation model respectively. PFs do not

require the observation model to be linear or the noise to be

Gaussian.

The recursive Bayesian formula to obtain the posterior

p (x1:t|z1:t) from p (x1:t−1|z1:t−1) is given by

p (x1:t|z1:t) =
p (zt|xt) p (xt|xt−1)

p (zt|z1:t−1)
p (x1:t−1|z1:t−1) ,

(20)

where z1:t is the set of all observation up to time step t.

The posterior pdf can be approximated by a set of Ns

particles x
i
1:t with associated weights wi

t, i.e.

p (x1:t|z1:t) =

Ns∑

i=1

wi
tδ

(
x1:t − x

i
1:t

)
. (21)

Here the particles are generated from a proposed importance

function or proposal density q (x1:t|z1:t) and the weights wi
t

are given by

wi
t =

p
(
x
i
1:t|z1:t

)

q
(
xi
1:t|z1:t

) . (22)

Now if the proposal density is chosen such that

q (x1:t|z1:t) = q (xt|xt−1, zt) q (x1:t−1|z1:t−1) . (23)

Then from (20), (22) and (23), the weights are given by

wi
t ∝

p
(
zt|x

i
t

)
p
(
x
i
t|x

i
t−1

)

q
(
xi
t|x

i
t−1, zt

) wi
t−1. (24)

A straightforward approach is to select the prior p (xt|xt−1)
as the proposal density i.e. q

(
x
i
t|x

i
t−1, zt

)
= p

(
x
i
t|x

i
t−1

)
,

which reduces (24) to

wi
t ∝ p

(
zt|x

i
t

)
wi

t−1. (25)

Finally, since we are only interested in the state vector at

the current time step t, the marginalized density p (xt|z1:t) is

given by

p (xt|z1:t) =

Ns∑

i=1

wi
tδ

(
xt − x

i
t

)
. (26)

A resampling procedure follows to reduce the degeneracy

problem. Degeneracy occurs when all particles except a few

are given negligible weights which impairs the performance

of the particle filter.

To explain (20)-(26) in words, basically two steps; predic-

tion and update are involved. During the prediction stage a set

of particles with corresponding weights are passed through the

motion model where random noise is also added to simulate

the effects of state noise. These particles are then reweighed

on the basis of newly available observation data, thus the

approximation of the posterior density at the current time

step is completed. The state vector can then be estimated by

taking the mean of the posterior density. Finally resampling is

performed. The combined MUSIC-PF steps are described in

Algorithm 1.



Algorithm 1 MUSIC-PF Algorithm

Initialization

I. MUSIC

For t = 1, ...,
1) For j = 1, ...,M
-Perform LS channel estimation to estimate Ĥ for each BS.

-Generate autocorrelation matrix R
ĤĤ

and apply MUSIC

algorithm for each BS.

-Estimate distance from the first delay estimate and set R =
diag

[
σ̂2
1 , · · · , σ̂

2
M

]
.

II. PF

2) Generate samples
{
x
i∗
0 ∼ N

(
µ0, σ

2
0

)}
, i = 1, ..., Ns. Set

t = 1 and wi∗
0 = 1

Ns

.

(3) prediction step

For i = 1, ..., Ns predict according to

x
i
t = p

(
xt|x

i∗
t−1

)
,

which is simply done by passing the generated samples

through the state equation

x
i
t = Fx

i∗
t−1 + n

i
t

(3) update step

update weights according to

wi
t = p

(
zt|x

i
t

)
wi

t−1

Normalize weights w̃i
t =

wi

t∑
Ns

i=1
wi

t

.

(3) estimate output

The state is estimated by the mean of the posterior i.e.

x̂t = E {p (xt|zt)}

or

x̂t =
1

Ns

Ns∑

i=1

w̃i
tx

i
t

resample if required. Set t = t+ 1 and wi
t =

1

Ns

.

IV. PERFORMANCE EVALUATION

PF tracking using OFDM signals based on the IEEE 802.11a

standard are used for the simulation purposes. The IEEE

802.11a employs a 64 sub-carrier symbol, in which 53 sub

carriers are for useful data. Channel estimation can be per-

formed either using a comb type pilot or a block type. In

comb type arrangement the pilots are uniformly distributed

within each OFDM symbol, however we have chosen the block

type pilot arrangement for channel estimation in this paper, in

this type, the pilot signals form one complete OFDM symbol

which spreads across all sub-carriers. A CP size of 10 is used

to avoid ISI. Simulation parameters are given in table I.

Five BSs are positioned at

[(0, 0) , (50, 0) , (50, 100) , (50, 50) , (0, 100)], to locate

and track the MD which moves at a constant velocity of

1m/s, while the MD is allowed abrupt changes in its direction.

The time step T for each observation is considered 1s and

the motion model noise variance σ2
n = 1. For all BSs, three

multipaths are considered i.e. L = 2, with random delay

Parameter Value

BW 20 MHz

Symbol duration 3.2 µs

No. of sub-carriers 64

No. of used subcarriers 52

CP 10

Pilot type Block

Table I
SIMULATION PARAMETERS BASED ON THE IEEE 802.11A STANDARD
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Figure 1. Comparison between MUSIC-PF and CC-PF techniques.

between 1-10 ns.

Fig. 1 shows the performance comparison between the CC-

PF and MUSIC-PF algorithms, the true trajectory of the MD is

also shown. It is evident that the MUSIC algorithm along with

PF outperforms the CC-PF. After the initial transient stage, the

MUSIC-PF converges and follows the true path of the MD

closely. On the other hand, the CC-PF, due to coarse range

estimates of the CC in multipath scenarios performs poorly

and shows unacceptable variation around the true path.

Fig. 2, compares the root mean square error (RMSE) at each

time step between CC-PF and MUSIC-PF. The RMSE value
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Figure 2. RMSE comparison between MUSIC-PF and CC-PF algorithm.
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Figure 3. RMSE comparison of MUSIC-PF for different number samples.

at the tth time step is obtained as

RMSEt =

√
(x̂t − xt)

2
+ (ŷt − yt)

2
,

where (x̂t, ŷt) and (xt, yt) represent the estimated and true

coordinates at the tth time step. It is again evident from Fig.

2 that the MUSIC-PF outperforms CC-PF by a considerable

margin.

Fig. 3, compares the performance of the MUSIC-PF al-

gorithm with different number of particles. It is seen that a

good transient performance is shown with a large number of

particles. However the performance of the PF is unaltered after

convergence even with a small number of particles.

V. CONCLUSIONS

In this paper, we presented a framework for accurate

multipath indoor localization and tracking of mobile nodes.

Accurate delay estimation of OFDM signals based on the IEEE

802.11a standard is performed via the super resolution MUSIC

technique and tracking is done via PF. The combined MUSIC-

PF algorithm begins with the estimation of the channel transfer

function, which is then used to generate autocorrelation matrix,

on which the MUSIC algorithm operates for delay estimation.

Once the delay (and hence the distance) information from

all BSs is made available, it is used in the observation

model for PF tracking. A simplistic constant velocity motion

model is considered for indoor MD movement. It is shown

via simulation result that the performance of the MUSIC-PF

algorithm supersedes that of CC-PF in which the multipath

delay estimation is done via a conventional CC.
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