Nonlinear Fisher Discriminant Analysis
using a Minimum Squared Error Cost Function
and the Orthogonal Least Squares Algorithm

K.L. Lee S.A. Billings
Department of Automatic Control and Systems Engineering
University of Sheffield
Mappin Street, Sheffield S1 3JD
United Kingdom

Research Report No. 781
October 2000

University of Sheffield
Nonlinear Fisher Discriminant Analysis using a Minimum Squared Error Cost Function and the Orthogonal Least Squares Algorithm

K.L. Lee
Email: cop98kl@sheffield.ac.uk

S.A. Billings
Email: s.billings@sheffield.ac.uk

Department of Automatic Control
and Systems Engineering
University of Sheffield
Sheffield S1 3JD, UK

Abstract: The nonlinear discriminant function obtained using a minimum squared error cost function can be shown to be directly related to the nonlinear Fisher discriminant. With the squared error cost function, the orthogonal least squares algorithm can be used to find a parsimonious description of the nonlinear discriminant function. Two simple classification techniques will be introduced and tested on a number of real and artificial data sets. The results show that the new classification technique can often perform favourably compared with other state of the art classification techniques.

Keywords: Pattern classification, Fisher discriminant, Orthogonal least squares algorithm, Squared error cost function, nonlinear kernel functions, parsimonious, Kernel fisher discriminant, Regularisation.

Nomenclature

x_i Input sample i.

C_i Class i.

n Total number of input samples.

n_i Number of input samples for class i.

w (Non)linear discriminant function.

S_B Between-class scatter matrix.

S_W Within-class scatter matrix.

m_i Sample mean of class i.

$\Phi(\cdot)$ Nonlinear function.

F High dimensional feature space.

S_{B^Φ} Between-class scatter matrix in feature space.

S_{W^Φ} Within-class scatter matrix in feature space.

m_i^Φ Sample mean of class i in feature space.
\(k(\cdot) \) Mercer kernel.
\(d \) Degree of nonlinearity for polynomial kernel.
\(\sigma \) Width of the gaussian kernel.
\(\alpha \) Expansion coefficients of the discriminant function.
\(W \) Classification function.
\(\Xi \) Error vector.
\(Y \) Target vector.
\(y_i \) Target value for class \(i \).
\(u_i \) Column vector of \(n \) ones.
\(w_o \) Threshold.
\(P \) Kernel matrix.
\(T \) \(n \times n \) Orthogonal matrix.
\(A \) Upper unit triangular matrix.
\(\Theta \) Weights of the classification function.

1. Introduction

Fisher linear discriminant analysis is widely known and used in practice. However, linear discriminant analysis is certainly not complex enough for most real world data, hence it is important to develop nonlinear discriminant analysis methods. Recently, kernel based algorithms (Mika et al. 1999) have been proposed to define a nonlinear generalisation of the Fisher linear discriminant algorithm for pattern classification problems. By reformulating the problem into dot product form in a higher dimensional space and using kernels which satisfy the Mercer condition (Vapnik 1995), a closed form solution of the nonlinear discriminant function has been obtained. More importantly, very promising results were reported with the use of the nonlinear Kernel Fisher Discriminant (KFD) algorithm (Mika et al. 1999) when compared with the other state of the art classification techniques. However one particular drawback with the method is that the complexity of the nonlinear Fisher discriminant function scales with the number of training data. This implies that the testing time is going to be very slow for problems with a large number of training data and the computational cost for storing a large data set is also going to be high.

By using a minimum squared error cost function for pattern classification problems, the resulting linear discriminant is directly related to the Fisher linear discriminant (Duda and Hart 1973). With the use of a nonlinear mapping of the input samples, the above relationship can easily be extended to the nonlinear
case. Therefore the nonlinear discriminant function obtained by minimising the squared error cost function is directly related to the nonlinear Fisher discriminant. Hence with a minimum squared error cost function, the well-known Orthogonal Least Squares (OLS) algorithm (Chen et al. 1989 and Chen et al. 1991) can be used to find a parsimonious description for the nonlinear discriminant function. In addition the resulting algorithm is simpler to compute than the Kernel Fisher Discriminant (KFD).

The paper is organised as follows. In section 2 a brief review of the linear and Kernel Fisher Discriminant (KFD) algorithms is given. The direct relationship between the nonlinear discriminant obtained by minimising a squared error cost function and the nonlinear Fisher discriminant is shown in section 3. A brief review of the orthogonal least squares algorithm is also given in Section 3. Two simple classification methods will be introduced using the orthogonal least squares algorithm and these two methods are tested on an extensive number of experiments and the results are presented in section 4. Brief conclusions are provided in Section 5.

2. Linear and Kernel Fisher Discriminants

2.1 Linear Fisher Discriminant Analysis

Given a set of \(n \) \(d \)-dimensional samples \(\{x_1, x_2, \ldots, x_n, y_i \in \mathbb{R}^d \} \) with \(n_1 \) samples in Class 1 denoted \(C_1 \) and \(n_2 \) samples in class 2 denoted \(C_2 \) then the Fisher linear discriminant (Duda and Hart 1973 and Ripley 1996) is given by the vector \(w \), \((w \in \mathbb{R}^d) \) which maximises the following function

\[
J(w) = \frac{w^T S_B w}{w^T S_W w}
\]

(1)

where \(S_B = (m_1 - m_2)(m_1 - m_2)^T \)

(2)

and \(S_W = \sum_{i=1}^{2} \sum_{x \in C_i} (x - m_i)(x - m_i)^T \)

(3)

\(S_B \) is known as the between-class scatter matrix, \(S_W \) is called the within-class scatter matrix and \(m_i \) is the sample mean of the respective classes defined as

\[
m_i = \frac{1}{n_i} \sum_{x \in C_i} x
\]

(4)

The reasoning behind making \(J(w) \) as large as possible is to look for a direction \(w \) which maximises the difference between the two projected means in \(S_B \) while minimising the variance of the individual classes \(S_W \). Hence samples belonging to two different classes are well separated by projection onto this optimal direction. This effect is illustrated in Figure 1. Furthermore, by assuming normal distributions
and equal covariance for the two different classes, the resulting linear discriminant function is in the same direction as the Bayes optimal classifier.

![Diagram](image)

Figure 1. Projection of 2-dimensional samples onto a line. In direction \mathbf{w}_1 the projected samples are well separated whereas in direction \mathbf{w}_2 the projected samples are mixed.

2.2 Nonlinear Fisher Discriminant Analysis

However, the usefulness of linear Fisher discriminant analysis is somewhat limited in real world problems and a nonlinear Fisher discriminant analysis would be highly desirable. A simple method of obtaining the nonlinear discriminant is to first map the samples into some high dimensional feature space Φ using a nonlinear function $\Phi(\cdot)$, then linear discriminant analysis can be performed in this feature space. The resulting discriminant function will be linear in the feature space Φ but nonlinear in the input space. Hence, the nonlinear discriminant function $\mathbf{w} \in \Phi$ can be obtained by maximising

$$J(\mathbf{w}) = \frac{\mathbf{w}^T S_{\Phi} \mathbf{w}}{\mathbf{w}^T \mathbf{S}^w \mathbf{w}}$$

(5)

where $S_{\Phi} = (\mathbf{m}_1 - \mathbf{m}_2)(\mathbf{m}_1 - \mathbf{m}_2)^T$

(6)

and $S^w = \sum_{i=1,2} \sum_{x \in \mathcal{C}_i} (\Phi(x) - \mathbf{m}_i)(\Phi(x) - \mathbf{m}_i)^T$

(7)
\[m_i^\phi = \frac{1}{n_i} \sum_{x \in c_i} \phi(x) \]

Eqn (5) is a well-known expression called the generalised Rayleigh quotient and a vector \(\mathbf{w} \) which maximises \(J(\mathbf{w}) \) must satisfy

\[\gamma S_w^\phi \mathbf{w} = S_\beta^\phi \mathbf{w} \]

where \(\gamma \) is a constant. Assuming that \(S_w^\phi \) is nonsingular

\[\gamma \mathbf{w} = (S_w^\phi)^{-1} S_\beta^\phi \mathbf{w} \]

then eqn (10) can be solved by finding the eigenvectors of \((S_w^\phi)^{-1} S_\beta^\phi \). But this may not be necessary since

\[S_\beta^\phi \mathbf{w} = (m_1^\phi - m_2^\phi)(m_1^\phi - m_2^\phi)^T \mathbf{w} = \beta (m_1^\phi - m_2^\phi), \beta \text{ is a constant.} \]

Hence, the discriminant function \(\mathbf{w} \) becomes

\[\mathbf{w} = (S_w^\phi)^{-1} (m_1^\phi - m_2^\phi) \]

(12)

Only the direction is important, so the constant is dropped in eqn (12). Unfortunately, the mapping function \(\phi(\cdot) \) may not be known explicitly and if the dimension of the feature space \(F \) is very high or infinite, eqn (12) may be difficult to use to solve for the discriminant function. To get around this difficulty, the problem is reformulated to involve only the dot product of the training samples in the feature space, that is \(\phi(x_i) \cdot \phi(x_j) \). Furthermore, using Mercer kernels (Vapnik 1995) which satisfy

\[k(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) \]

(13)

The problem can be solved without ever mapping explicitly to the feature space \(F \).

The polynomial kernel \(k(x_i, x_j) = (x_i \cdot x_j + 1)^d \), where \(d \) is the degree of nonlinearity, and the Gaussian kernel \(k(x_i, x_j) = \exp \left(-\frac{\| x_i - x_j \|}{\sigma^2} \right) \), where \(\sigma \) is the width are some typical kernels which satisfy the Mercer condition.

Following (Mika et al. 1999), since the nonlinear discriminant function \(\mathbf{w} \in F \), this must lie in the span of all training samples in \(F \) according to the theory of reproducing kernels.

Hence \(\mathbf{w} \) can be expressed as

\[\mathbf{w} = \sum_{i=1}^{N} \alpha_i \phi(x_i) \]

(14)

After some manipulation of equations, eqn (5) becomes
Nonlinear Discriminant Analysis

\[J(\alpha) = \frac{\alpha^T M \alpha}{\alpha^T N \alpha} \]

where \(M = (M_1 - M_2)(M_1 - M_2)^T \) with \(M_i = \frac{1}{n_i} \sum_{j=1}^{n_i} \sum_{x \in C_i} k(x_j, x) \)

and \(N = \sum_{i=1,2} K_i (I - 1_{n_i}) K_i^T \)

\(K_i \) is a \(n \times n \) matrix with elements \((K_i)_{ab} = k(x_a, x_b), x_a, x_b \in C_i \). \(I \) is the identity matrix and \(1_{n_i} \) is the matrix with all elements set to \(\frac{1}{n_i} \).

Eqn (15) can be solved by finding the leading eigenvector of \(N^{-1} M \) and the projection of a new sample \(x \) onto \(w \) is given by

\[\Phi(x) \cdot w = \sum_{i=1}^{n} \alpha_i k(x_i, x) \]

(16)

However, the discriminant function obtained is only an optimal direction which separates the samples from the two different classes. To solve the classification problem, an optimal threshold needs to be determined. In (Mika et al. 1999) a linear Support Vector Machine (SVM) (Vapnik 1995 and Burges 1998) was employed to estimate the optimal threshold.

Although very promising results were obtained with the use of the Kernel Fisher Discriminant (KFD) algorithm, there are a few drawbacks with this method. For problems with a large number of training samples, it is very computationally intensive to find the leading eigenvectors of \(N^{-1} M \). Also, from eqn (16), it can be seen that the complexity of the discriminant function scales with the number of training samples. This is highly undesirable and this approach will be slow in the testing phase. Furthermore, linear Support Vector Machines (SVM) or other classification techniques have to be used to estimate the optimal threshold, this introduces an extra step into the method. The use of SVM also means another extra parameter has to be controlled, the regularisation constant in SVM. Note that regularisation has already been used in the KFD algorithm by replacing \(N \) with \(N_\mu \)

\[N_\mu = N + \mu I \]

(17)

where \(I \) is again the identity matrix and \(\mu \) is a positive constant.

The above mentioned problems can be avoided by employing a minimum squared error cost function and using the OLS algorithm (Chen et al. 1991). The new algorithm that is produced using this approach is discussed in the next section.
3. Minimum Squared Error and the Orthogonal Least Squares Algorithm

3.1 Minimum squared error cost function

Given a set of \(n \) \(d \)-dimensional samples \(\{x_1, x_2, \ldots, x_n, x_1 \in \mathbb{R}^d \} \), with no loss of generality, assume that the first \(n_1 \) samples are in class 1 denoted with values \(y_1 \) and the next \(n_2 \) samples are in class 2 denoted with values \(y_2 \). A nonlinear map \(\Phi(\cdot) \) is applied to the samples to give

\[
\begin{bmatrix}
1 & \Phi(x_1) \\
\vdots & \vdots \\
1 & \Phi(x_{n_1}) \\
1 & \Phi(x_{n_1+1}) \\
\vdots & \vdots \\
1 & \Phi(x_n)
\end{bmatrix}
\begin{bmatrix}
w_0 \\
w \\
e_1 \\
\vdots \\
e_n
\end{bmatrix}
=
\begin{bmatrix}
y_1 \\
y_1 \\
y_2 \\
\vdots \\
y_2
\end{bmatrix}
\]

where \(w_0 \) is the threshold, \(w \) is the discriminant function and \(e_i, i = 1, 2, \ldots, n \) are the errors.

In matrix form: \(XW + \Xi = Y \) (19)

The task is to find the classification function \(W \) which minimises the square of the error

\[
J(W) = \|\Xi\|^2 = \|Y - XW\|^2
\]

A well-known solution is

\[
X^TW = X^TY
\]

\[
W = (X^TX)^{-1}X^TY
\] (22)

3.2 Relation to nonlinear Fisher discriminant analysis

The linear discriminant function obtained using a minimum squared error cost function has been shown to be directly related to the linear Fisher discriminant (Duda and Hart 1973). For the nonlinear case, the same result should apply since a linear discriminant will still be performed in the feature space and the nonlinearity will simply be derived from the nonlinear mapping \(\Phi(\cdot) \) of the input data.

Following the linear case by setting \(y_1 = \frac{n}{n_1} \) and \(y_2 = -\frac{n}{n_2} \), it can be shown that the minimum squared error discriminant function \(w \) is directly related to the nonlinear Fisher discriminant.

Let \(u_i \) be a column vector of \(n_i \) ones and \(\Phi(X_1) = [\Phi(x_1) \ldots \Phi(x_{n_1})]^T \) and \(\Phi(X_2) = [\Phi(x_{n_1+1}) \ldots \Phi(x_n)]^T \), so that the matrix \(X \) becomes

\[
X = \begin{bmatrix}
u_1 & \Phi(x_1) \\
u_2 & \Phi(x_2)
\end{bmatrix}
\] (23)
Hence eqn (21) takes the form

\[
\begin{bmatrix}
\Phi(X_1) \quad \Phi(X_2) \\
\Phi(X_1)^T \quad \Phi(X_2)^T
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}^T
w_0
=
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}^T
\begin{bmatrix}
\frac{n}{n_1} u_1 \\
\frac{n}{n_2} u_2
\end{bmatrix}
\]
(24)

Since \(m_i^\Phi \) is defined as

\[
m_i^\Phi = \frac{1}{n_i} \sum_{x \in C_i} \Phi(x)
\]
(25)

and

\[
S_w^\Phi = \sum_{i=1}^{2} \sum_{x \in C_i} (\Phi(x) - m_i^\Phi)^T (\Phi(x) - m_i^\Phi)
\]
(26)

Then eqn (24) can be simplified further to give

\[
\begin{bmatrix}
\frac{n}{n_1 m_1^\Phi + n_2 m_2^\Phi} \quad (n_1 m_1^\Phi + n_2 m_2^\Phi)^T \\
(n_1 m_1^\Phi + n_2 m_2^\Phi) S_w^\Phi + n_1 \Phi(x)^T m_1^\Phi + n_2 \Phi(x)^T m_2^\Phi
\end{bmatrix}
\begin{bmatrix}
w_0 \\
w
\end{bmatrix}
=
\begin{bmatrix}
0 \\
\frac{n}{n_1 m_1^\Phi - m_2^\Phi}
\end{bmatrix}
\]
(27)

Solving eqn (27) gives

\[
w_0 = - (m^\Phi)^T w
\]
(28)

\[
w = \eta (S_w^\Phi)^{-1} (m_1^\Phi - m_2^\Phi)
\]
(29)

where \(\eta \) is a constant and \(m^\Phi \) is the total sample mean in the feature space and is defined as

\[
m^\Phi = \frac{n_1 m_1^\Phi + n_2 m_2^\Phi}{n}
\]
(30)

Clearly both eqn (12) and eqn (29) are similar except for an unimportant constant. This shows that the nonlinear discriminant function obtained by using a minimum squared error cost function with \(y_1 = \frac{n}{n_1} \) and \(y_2 = - \frac{n}{n_2} \) is identical to the nonlinear Fisher discriminant case.

However, eqn (22) cannot be used to solve for the classification function \(W \) since the matrix \(X \) may not be known explicitly. Therefore, a similar trick of transforming the problem into dot product form is required in this case as well. Substituting eqn (14) into eqn (18) and replacing \(\Phi(x_i) \cdot \Phi(x_j) \) with \(k(x_i, x_j) \) gives

\[
\begin{bmatrix}
1 \\
\vdots \\
1
\end{bmatrix}
\begin{bmatrix}
k(x_1, x_1) & \cdots & k(x_1, x_n) \alpha_1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & k(x_n, x_1) \alpha_n
\end{bmatrix}
\begin{bmatrix}
w_0 \\
\alpha_1 \\
\alpha_n
\end{bmatrix}
+
\begin{bmatrix}
e_1 \\
\vdots \\
e_n
\end{bmatrix}
=
\begin{bmatrix}
\frac{n}{n_1} u_1 \\
\frac{n_1}{n_2} u_2
\end{bmatrix}
\]
(31)
in matrix form
\[P\Theta + \Xi = Y \] \hspace{1cm} (32)

In this case the matrix \(P \) is known explicitly and the problem is to find \(\Theta \) which minimises the squared error. The solution for \(\Theta \) can be obtained as
\[\Theta = (P^T P)^{-1} P^T Y \] \hspace{1cm} (33)

Typically the matrix \((P^T P) \) is highly ill conditioned and one solution is to employ regularisation, where the matrix \((P^T P) \) is replaced by \((P^T P + \lambda I) \) where \(\lambda \) is a positive constant. Therefore the threshold and the discriminant function can be obtained by solving
\[\Theta = (P^T P + \lambda I)^{-1} P^T Y \] \hspace{1cm} (34)

Knowing the values of \(\Theta \) and letting \(c \) be the mid-value of \(\frac{n}{n_1} \) and \(-\frac{n}{n_2}, c = \frac{1}{2} \left(\frac{n}{n_1} - \frac{n}{n_2} \right) \), then the following decision rule will be obtained. For a new sample \(\mathbf{x} \), decide class 1 if \(w_0 + \sum_{i=1}^{n} \alpha_i k(\mathbf{x}, \mathbf{x}_i) > c \), otherwise decide class 2. Hence there is no requirement to use an additional classification technique to determine the threshold.

This formulation avoids the two problems in KFD, firstly in finding the leading eigenvectors of \(N^{-1} M \) and secondly in using an additional classification technique to estimate the threshold. However this approach is not pursued in this study since the solution obtained is not sparse, in the sense that all the training samples are used to construct the classification function.

The answer in obtaining a sparse solution can be provided by using the well-known Orthogonal Least Squares (OLS) algorithm. This new method of finding the classification function by using a Nonlinear Fisher Discriminant function combined with the OLS algorithm will be called the NFD-OLS algorithm.

3.3 The Orthogonal Least Squares Algorithm
A brief review of the Orthogonal Least Squares algorithm (Chen et al. 1989 and Chen et al. 1991) is given below.
An orthogonal decomposition of \(P \) is given as
\[P = TA \] \hspace{1cm} (35)
where \(A \) is an \(n \times n \) upper unit triangular matrix.
\[
A = \begin{bmatrix}
1 & \tau_{12} & \cdots & \tau_{1n} \\
1 & \tau_{21} & \cdots & \tau_{2n} \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{bmatrix}
\]

and \(T\) is a \(n \times n\) matrix with orthogonal columns satisfying
\[
T^T T = \text{diag}\{\kappa_1, \kappa_2, \ldots, \kappa_n\}, \quad \kappa_i = t_i^T t_i
\]
(37)

Rearranging eqn (32) yields
\[
Y = (PA^{-1})(A\Theta) + \Xi = Tg + \Xi
\]
(38)

With a squared error cost function, the values of \(g\) can be obtained easily as
\[
g_i = \frac{t_i^T Y}{t_i^T t_i}
\]
(39)

and \(A\Theta = g\)

(40)

Knowing \(A\) and \(g\), \(\Theta\) can be determined through back substitution.

To obtain the Error Reduction Ratio (ERR), consider the squared error cost function
\[
J = \Xi^T \Xi = (Y - Tg)^T (Y - Tg)
\]
(41)

Using eqn (39), the above eqn (41) can be simplified as
\[
J = Y^T Y - g^T T^T T g
\]
(42)

Hence Error Reduction Ratio (ERR) due to \(P_i\) may be expressed as
\[
\text{ERR}_i = \frac{g_i^2 t_i^T t_i}{Y^T Y}
\]
(43)

Using this ERR ratio, significant terms (columns of the matrix \(P\)) can be selected in a forward-selection procedure (Chen et al. 1989, Chen et al. 1991). At the \(i\) iteration, the term which gives the largest value of \(\text{ERR}_i\) is selected and added to the previously selected \((i-1)\) terms. The selection procedure can be terminated using cross-validation. Empirical results in time series analysis have shown that parsimonious models can be obtained using the orthogonal least squares algorithm.

3.4 A side note on other values of \(Y\)

Instead of putting \(y_1 = \frac{n}{n_1}\) and \(y_2 = -\frac{n}{n_2}\) to differentiate the two classes, \(y_1\) and \(y_2\) can simply be chosen as +1 and -1 respectively. The task is to find the underlying relationship, which maps the input data to the correct classes. The following decision rule will be obtained. For a new sample \(x\), decide class 1 if \(w_0 + \sum_{i=1}^{d} \alpha_i k(x, x_i) > 0\), otherwise decide class 2. This is called the Simple OLS method.
4. Experiments

The two spirals problem (Lang and Witbrock 1988) is chosen as the first experiment to test the new Nonlinear Fisher Discriminant with OLS algorithm (NFD-OLS). The two spiral problem is a well-known benchmark problem and the two dimensional nature of the problem allows easy visualisation of the classification function learned by the algorithm. The kernel chosen was Gaussian with width equal to 1. There were 194 training samples and the result is displayed in Figure 2. Clearly, the number of nodes used to construct the classification function will play an important role. It can be seen that with 120 nodes, the classification function produces large margins between the decision function and the training samples. This implies a good generalisation property. Note that in this two spirals example, the KFD or SVM algorithms used all the 194 training samples in constructing the classification function.

Figure 2. Two spirals classification problem with 194 training samples. The kernel used is the Gaussian kernel with a width equal to 1. In (a) the number of nodes chosen by OLS to construct the classification function was 50, whereas in (b) and (c) there were 90 and 120 nodes respectively.
In order to test the usefulness of the Simple OLS and NFD-OLS algorithms thoroughly, an extensive number of experiments were conducted on 13 artificial and real world datasets1. The datasets used in (Mika et al. 1999 and Rätsch et al. 1998) were chosen. These datasets can be downloaded from http://www.first.gmd.de/~raetsch/. For each of the 13 cases (except Splice and Image with 20 partitions), a further 100 random partitions were generated. In all cases, Gaussian kernels were used and the width and optimal number of nodes chosen by OLS were estimated from the first five realisations of the training and test samples using 5-fold cross validation. The width and the number of nodes, which gave the minimum total classification error on the first five test sets were chosen to construct the optimal classification function. This optimal classification function was then used on all the 100 partitions and the mean classification errors of the test sets for the 13 cases are shown in Table 1.

From Table 1, the results obtained using Simple OLS and Nonlinear Fisher Discriminant with OLS (NFD-OLS) are quite favourable compared to the other existing classification methods. The Nonlinear Fisher discriminant with OLS algorithm is slightly superior than the other methods since this approach produced the best results four times (highest) out of the 13 cases considered. Note that the number of nodes selected by Simple OLS and NFD-OLS to construct the classification functions for the 13 cases were in most cases less than 10\% of the training data. The exact numbers of nodes used are shown in Table 2. Hence a very economical solution was obtained using the OLS algorithm in pattern classification problems and this produced short testing times and a saving in storage costs.

1 The Breast Cancer dataset was provided by the University Medical Center, Inst. of Oncology, Ljubljana. Thanks to M. Zwitter and M. Soklic for the dataset.
<table>
<thead>
<tr>
<th>Data Set</th>
<th>RBF</th>
<th>AB</th>
<th>AB R</th>
<th>SVM</th>
<th>KFD</th>
<th>Simple OLS</th>
<th>NFD-OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banana</td>
<td>10.8±0.6</td>
<td>12.3±0.7</td>
<td>10.9±0.4</td>
<td>11.5±0.7</td>
<td>10.8±0.5</td>
<td>10.8±0.4</td>
<td>10.7±0.5</td>
</tr>
<tr>
<td>B. Cancer</td>
<td>27.6±4.7</td>
<td>30.4±4.7</td>
<td>26.5±4.5</td>
<td>26.0±4.7</td>
<td>25.8±4.6</td>
<td>25.3±4.1</td>
<td>25.8±4.8</td>
</tr>
<tr>
<td>Diabetes</td>
<td>24.3±1.9</td>
<td>26.5±2.3</td>
<td>23.8±1.8</td>
<td>23.5±1.7</td>
<td>23.2±1.6</td>
<td>23.3±1.8</td>
<td>23.1±1.8</td>
</tr>
<tr>
<td>German</td>
<td>24.7±2.4</td>
<td>27.5±2.5</td>
<td>24.3±2.1</td>
<td>23.6±2.1</td>
<td>23.7±2.2</td>
<td>24.0±2.1</td>
<td>24.0±2.3</td>
</tr>
<tr>
<td>Heart</td>
<td>17.6±3.3</td>
<td>20.3±3.4</td>
<td>16.5±3.5</td>
<td>16.0±3.3</td>
<td>16.1±3.4</td>
<td>16.5±3.1</td>
<td>15.8±3.4</td>
</tr>
<tr>
<td>Image</td>
<td>3.3±0.6</td>
<td>2.7±0.7</td>
<td>2.7±0.6</td>
<td>3.0±0.6</td>
<td>4.8±0.6</td>
<td>2.8±0.6</td>
<td>2.9±0.5</td>
</tr>
<tr>
<td>Ringnorm</td>
<td>1.7±0.2</td>
<td>1.9±0.3</td>
<td>1.6±0.1</td>
<td>1.7±0.1</td>
<td>1.5±0.1</td>
<td>1.6±0.1</td>
<td>1.6±0.1</td>
</tr>
<tr>
<td>F. Sonar</td>
<td>34.4±2.0</td>
<td>35.7±1.8</td>
<td>34.2±2.2</td>
<td>32.4±1.8</td>
<td>33.2±1.7</td>
<td>33.5±1.6</td>
<td>33.6±1.6</td>
</tr>
<tr>
<td>Splice</td>
<td>10.0±1.0</td>
<td>10.1±0.5</td>
<td>9.5±0.7</td>
<td>10.9±0.7</td>
<td>10.5±0.6</td>
<td>11.8±0.6</td>
<td>11.7±0.6</td>
</tr>
<tr>
<td>Thyroid</td>
<td>4.5±2.1</td>
<td>4.4±2.2</td>
<td>4.6±2.2</td>
<td>4.8±2.2</td>
<td>4.2±2.1</td>
<td>4.5±2.4</td>
<td>4.6±2.4</td>
</tr>
<tr>
<td>Titanic</td>
<td>23.3±1.3</td>
<td>22.6±1.2</td>
<td>22.6±1.2</td>
<td>22.4±1.0</td>
<td>23.2±2.0</td>
<td>22.6±1.1</td>
<td>22.4±1.0</td>
</tr>
<tr>
<td>Twonorm</td>
<td>2.9±0.3</td>
<td>3.0±0.3</td>
<td>2.7±0.2</td>
<td>3.0±0.2</td>
<td>2.6±0.2</td>
<td>2.7±0.2</td>
<td>2.7±0.2</td>
</tr>
<tr>
<td>Waveform</td>
<td>10.7±1.1</td>
<td>10.8±0.6</td>
<td>9.8±0.8</td>
<td>9.9±0.4</td>
<td>9.9±0.4</td>
<td>10.0±0.4</td>
<td>10.0±0.4</td>
</tr>
</tbody>
</table>

Table 1. Comparison on the mean test set classification errors between the Simple OLS, Nonlinear Fisher Discriminant with OLS (NFD-OLS), Kernel Fisher Discriminant (KFD), a single RBF classifier (RBF), AdaBoost (AB), regularised AdaBoost (AB R) and Support Vector Machine (SVM) algorithms. Details of the other methods can be found in (Rätsch et al. 1998). The best method is highlighted in bold and the second best in italic. The mean test set classification errors with standard deviation are also shown.
<table>
<thead>
<tr>
<th>Data Set</th>
<th>No of training samples</th>
<th>No of nodes chosen by Simple OLS</th>
<th>No of nodes chosen by NFD-OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banana</td>
<td>400</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>B. Cancer</td>
<td>200</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Diabetes</td>
<td>468</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>German</td>
<td>700</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Heart</td>
<td>170</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Image</td>
<td>1300</td>
<td>280</td>
<td>200</td>
</tr>
<tr>
<td>Ringnorm</td>
<td>400</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>F. Sonar</td>
<td>666</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Splice</td>
<td>1000</td>
<td>400</td>
<td>330</td>
</tr>
<tr>
<td>Thyroid</td>
<td>140</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Titanic</td>
<td>150</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Twonorm</td>
<td>400</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Waveform</td>
<td>400</td>
<td>27</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 2. Number of nodes chosen by the OLS algorithm to construct the classification function.

5. Conclusions

The nonlinear discriminant function obtained using a minimum squared error cost function is directly related to the nonlinear Fisher discriminant. Furthermore, the threshold is obtained directly by the algorithm without the need to employ an additional classification technique. With a minimum squared error cost function, the well-known OLS algorithm can be applied to obtain an economical description of the nonlinear classification function. Two new methods the Simple OLS and the NFD-OLS were introduced to exploit these benefits.

These methods have been applied to an extensive number of real and artificial data sets. The results obtained suggest that the NFD-OLS algorithm performs at least as well and often better than other state of the art classification techniques. NFD-OLS achieved the best results 4 times out of the 13 cases considered. Furthermore, very sparse descriptions of the classification functions were obtained for most of the 13 cases studied in the experiments. This implies a very short testing time for new data. Regularisation has not been used in this study. This could easily be employed in the algorithm by using the regularised OLS formulation (Chen et al. 1996). Further improvements in the results may be obtained using regularisation. Recently another variant of the Kernel discriminant algorithm (Volker and Volker 2000) has been proposed, which is a more direct extension of the linear Fisher discriminant.
and which is a multi-class classifier. However the strength of the NFD-OLS algorithm lies in the ability of the algorithm to obtain a very parsimonious structure for the discriminant function and the algorithm is very simple to use with excellent results obtained.

Acknowledgements
SAB gratefully acknowledges that part of this work was supported by EPSRC.

References

