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Abstract

Iterative Proportional Fitting (IPF), also known as biproportional �tting, `raking' or the RAS algo-
rithm, is an established procedure used in a variety of applications across the social sciences. Primary
amongst these for urban modelling has been its use in static spatial microsimulation to generate small
area microdata � individual level data allocated to administrative zones. The technique is mature,
widely used and relatively straight-forward. Although IPF is well described mathematically, accessible
examples of the algorithm written in modern programming languages are rare. Therefore, there is a
tendency for researchers to `start from scratch', resulting in a variety of ad hoc implementations and
little evidence about the relative merits of di�erent approaches. These knowledge gaps mean that an-
swers to certain methodological questions must be guessed: How can `empty cells' be identi�ed and
how do they in�uence model �t? Can IPF be made more computationally e�cient? This paper tackles
these questions and more using a systematic methodology with publicly available code and data. The
results demonstrate the sensitivity of the results to initial conditions, notably the presence of `empty
cells', and the dramatic impact of software decisions on computational e�ciency. The paper concludes
by proposing an agenda for robust and transparent future tests in the �eld.
Keywords: Iterative proportional �tting, spatial microsimulation, modelling

1 Introduction

Surveys of the characteristics, attitudes and behaviour of individual people or households constitute a widely
available empirical basis for social science research. The aggregation of survey data of this type also has a
long history. Generally this involves translating raw data from a `long' format to a `wide' data format (Van
Buuren, 2012). The impacts of this process of aggregation should not be underestimated: a large proportion
of administrative data that is available to the public and under academic license is provided in this form,
with implications for the types of analyses that can be conducted. Notably for modellers, it is di�cult to
build an agent-based model from geographically aggregated count data.

Long data is often described as `microdata' in the spatial microsimulation literature. Long data is
analogous to the ideal of `tidy data' advocated by Wickham (2014b), who has created software for converting
between the two data forms. Long data can be regarded as being higher in �delity than long data and is
closer to the form in which survey information is entered into a database, one individual at a time (Fig. 1).

In wide or `areal' datasets, by contrast, each row represents a contiguous and mutually exclusive geo-
graphic area containing a subset of the total population. In wide data each column represents a variable
value or bin (Openshaw, 1983; see Fig. 1). The transformation from `long' to `wide' is typically carried out
for the following reasons: to preserve anonymity of participants (Lee, 2009; Marsh & Dale, 1993); to ease
storage and retrieval of information � aggregate-level datasets can represent information about millions of
individuals in relatively little computer disk space; and to ease the loading, visualisation and analysis of
o�cial data in geographical information systems (GIS).

The process of aggregation is generally performed in three steps:

1. Conversion of variables into discrete categories (e.g. a person aged 21 could be allocated to the age
band 20�25).

2. Assignment of a column to each unique category.

3. Assignment of integer counts to cells in each column to represent the number of people with each
characteristic.
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However, the process of aggregation has some important disadvantages. Geographically aggregated
datasets are problematic for the analysis of multi-level phenomena (Openshaw, 1984) and can hinder un-
derstanding of the interdependencies between individual and higher-level variables across space (Lee, 2009).
In an e�ort to address the drawbacks associated with this lack of microdata, statistical authorities in many
countries have made available samples of individual-level data, usually with carefully designed measures
to prevent identi�cation of individuals. Prada et al. (2011) provide an insightful discussion of this subject
from the perspective of the publication of `public use microdata samples' (PUMS) in the USA, where the
�bene�ts of data dissemination are potentially enormous� (p. 1). Yet there is little consensus about the right
balance between the costs and bene�ts of making more detailed data available. In the UK, to take another
example, a 2% Sample of Anonymised Records (SAR) taken from the 1991 Census was released to academic
researchers (Marsh & Dale, 1993; Middleton, 1995). This has been followed by similar SAR releases in 2001
and 2011. Due to increased ability to store, process and transfer such `big microdata', alongside increasing
awareness of its potential bene�ts for public policy making, the availability of such data is rapidly increas-
ing. �[I]ndividual-level information about entire populations or large samples covering most of the world's
population with multiple observations at high geographic resolution� will soon become available, enthuses
Ruggles (2014, p. 297). Furthermore, the mass collection and analysis of individual-level information from
mobile phones and other sources is already a reality in some sectors.

Nevertheless, most o�cial microdatasets such as the SAR and PUMS are not suitable for spatial analysis
due to the low level of geographic resolution. There has been discussion of ways to further disaggregate the
geography of such microdata, with due emphasis on risks to con�dentiality (Tranmer et al., 2005). This is
linked with calls to collect more sensitive policy relevant variables (e.g. income and wealth, social attitudes)
often ignored in national surveys. In other words, there is a lack of rich geocoded individual-level data in
most countries, which was the original motivation for the development of spatial microsimulation and 'small
area estimation' approaches (Birkin & Clarke, 1988; Wong, 1992; Ballas et al., 2005).1

Spatial microsimulation combines social survey microdata (such as the Understanding Society panel
dataset UK) with small area census data to synthesis geographically speci�c populations. A number of
techniques are available � see Tanton (2014) for a recent review � including deterministic reweighting
(Birkin & Clarke, 1989), genetic algorithms and simulated annealing (Williamson et al., 1998) as well as
approaches based on linear regression (Harding et al., 2011). Methodological advance in spatial microsim-
ulation is an active �eld of development with ongoing re�nements (e.g. Lovelace & Ballas, 2013; Pritchard
& Miller, 2012) and debates about which approaches are most suited in di�erent situations (Harland et al.,
2012; Smith et al., 2009; Whitworth, 2013; Williamson, 2013)

Insu�cient data collection for research needs is not the only motivation for spatial microsimulation. Even
when the ideal variables for a particular study are collected locally, information loss occurs when they are
are geographically aggregated. This problem is exacerbated when continuous variables are converted into
discrete categories and cross-tabulations, such as age/income, are not provided. Unfortunately this is often
the case.

Within this wider context, Iterative Proportional Fitting (IPF) is important as one of the key techniques
used in spatial microsimulation. IPF can help overcome the limitations of wide, geographically aggregated
data sources when used in spatial microsimulation. In simplistic terms, spatial microsimulation can be
understood as the reversal of geographic aggregation described in points 1�3 above, to approximate the
original `long' dataset (Fig. 1). Thus the need for spatial microsimulation is largely driven by statistical
agencies' reluctance to `open-up' raw georeferenced microdata (Lee, 2009).

Re�ecting its role in overcoming these data limitations, spatial microsimulation is known as population

synthesis in transport modelling. Population synthesis captures the central role of spatial microsimula-
tion, to simulate geographically speci�c populations based. Some ambiguity surrounds the term spatial
microsimulation as it can also refer a wider approach based on spatial microdata (Clarke & Holm, 1987;
Lovelace et al., 2014). In this paper we focus on the former meaning, which is also known as static spatial

microsimulation (Ballas et al., 2005).

1.1 What is IPF and why use it?

In abstract terms, IPF is a procedure for assigning values to internal cells based on known marginal totals
in a multidimensional matrix (Cleave et al., 1995). More practically, this enables the calculation of the
maximum likelihood estimate of the presence of given individuals in speci�c zones. Some confusion surrounds
the procedure because it has multiple names: the `RAS algorithm', `biproportional �tting' and to a lesser

1There is much overlap between spatial microsimulation and small area estimation and the terms are sometimes used
interchangeably. It is useful to make the distinction, however, as small area estimation refers to methods to estimate summary
statistics for geographical units � sometimes via a spatial microdataset. With spatial microsimulation, on the other hand, the
emphasis is on generating and analysing spatial microdata.
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Figure 1: Schema of iterative proportional �tting (IPF) and combinatorial optimisation in the wider context
of the availability of di�erent data formats and spatial microsimulation.
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extent `raking' have all been used to describe the procedure at di�erent times and in di�erent branches of
academic research (Lahr & de Mesnard, 2004). `Entropy maximisation' is a related technique, of which IPF
is considered to be a subset (Johnston & Pattie, 1993; Rich & Mulalic, 2012). Usage characteristics of these
di�erent terms are summarised in Table 1.

Table 1: Usage characteristics of di�erent terms for the IPF procedure, from the Scopus database. The
percentages refer to the proportion of each search term used to refer to IPF in di�erent subsets of the
database: articles published since 2010 and mentioning �regional�, respectively.

Search term N. cita-
tions

Commonest
subject area

% since
2010

% mentioning
�regional�

Entropy maximisation 564 Engineering 30 9
�Iterative proportional �tting� 135 Mathematics 22 16
�RAS Algorithm� 25 Comp. science 24 24
�Iterative proportional scaling� 15 Mathematics 27 0
Matrix raking 12 Engineering 50 0
Biproportional estimation 12 Social sciences 17 33

Ambiguity in terminology surrounding the procedure has existed for a long time: when Michael Bacharach
began using the term `biproportional' late 1960s, he did so with the following caveat: �The `biproportional'
terminology is not introduced in what would certainly be a futile attempt to dislodge `RAS', but to help to
abstract the mathematical characteristics from the economic associations of the model� (Bacharach, 1970).
The original formulation of the procedure is generally ascribed to Deming & Stephan (1940), who presented
an iterative procedure for solving the problem of how to modify internal cell counts of census data in `wide'
form, based on new marginal totals. Without repeating the rather involved mathematics of this discovery, it
is worth quoting again from Bacharach (1970), who provided as clear a description as any of the procedure in
plain English: �The method that Deming and Stephan suggested for computing a solution was to �t rows to
the known row sums and columns to the known column sums by alternate [iterative] scalar multiplications
of rows and columns of the base matrix� (p. 4). The main purpose for revisiting and further developing the
technique from Bacharach's perspective was to provide forecasts of the sectoral disaggregation of economic
growth models. It was not until later (e.g. Clarke & Holm, 1987) that the procedure was rediscovered for
geographic research.

Thus IPF is a general purpose tool with multiple uses. In this paper we focus on its ability to disaggregate

the geographically aggregated data typically provided by national statistical agencies to synthesise spatial

microdata, as illustrated in Fig. 1.
In the physical sciences both data formats are common and the original long dataset is generally avail-

able. In the social sciences, by contrast, the long format is often unavailable due to the long history of
con�dentiality issues surrounding o�cially collected survey data. It is worth emphasising that National
Census datasets � in which characteristics of every individual living in a state are recorded and which
constitute some of the best datasets in social science � are usually only available in wide form. This poses
major challenges to researchers in the sciences who are interested in intra-zone variability at the local level
(Whitworth, 2012; Lee, 2009).

A related long-standing research problem especially prevalent in geography and regional science is the
scale of analysis. There is often a trade-o� between the quality and resolution of the data, which can result
in a compromise between detail and accuracy of results. Often, researchers investigating spatial phenom-
ena at many scales must use two datasets: one long non-spatial survey table where each row represents
the characteristics of an individual � such as age, sex, employment status and income � and another
wide, geographically aggregated dataset. IPF solves this problem when used in spatial microsimulation by
proportional assignment of individuals to zones of which they are most representative.

1.2 IPF in spatial microsimulation

Spatial microsimulation tackles the aforementioned problems associated with the prevalent geographically
aggregated wide data form by simulating the individuals within each administrative zone. The most detailed
output of this process of spatial microsimulation is synthetic spatial microdata, a long table of individuals
with associated attributes and weights for each zone (see Table 2 for a simple example). Because these
individuals correspond to observations in the survey dataset, the spatial microdata generated in this way,
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of any size and complexity, can be stored with only three columns: person identi�cation number (ID),
zone and weight. Weights are critical to spatial microdata generated in this way, as they determine how
representative each individual is of each zone. Synthetic spatial microdata taken from a single dataset can
therefore be stored in a more compact way: a `weight matrix' is a matrix with rows representing individuals
and columns geographic zones. The internal cells re�ect how re�ective each individual is of each zone.

Representing the data in this form o�ers a number of advantages (Clarke and Holm, 1987). These
include:

• The ability to investigate intra-zone variation (variation within each zone can be analysed by sub-
setting a single area from the data frame).

• Cross-tabulations can be created for any combination of variables (e.g. age and employment status).

• The presentation of continuous variables such as income as real numbers, rather than as categorical
count data, in which there is always data loss.

• The data is in a form that is ready to be passed into an individual-level model. For example individual
behaviour could simulate tra�c, migration or the geographical distribution of future demand for
healthcare.

These bene�ts have not gone unnoticed by the spatial modelling community. Spatial microsimulation
is now considered by some to be more than a methodology: it can be considered as a research �eld in its
own right, with a growing body of literature, methods and software tools (Tanton & Edwards, 2013). In
tandem with these methodological developments, a growing number of applied studies is taking advantage
of the possibilities opened up by spatial microdata. Published applications are diverse, ranging from health
(e.g. Tomintz et al., 2008) to transport (e.g. Lovelace et al., 2014), and there are clearly many more domain
areas in the social sciences where spatial microdata could be useful because human systems inherently
operate on multiple levels, from individuals to nations.

IPF is used in the microsimulation literature to reweight individual-level data to �t a set of aggregate-level
constraints. Its use was revived in the social sciences by Wong (1992), who advocated the technique's use for
geographical applications and to help avoid various `ecological fallacies' inherent to analysis of geographically
aggregated counts (Openshaw, 1984).

A clear and concise de�nition is provided by Anderson (2013) in a Reference Guide (Tanton & Edwards,
2013): "the method allocates all households from the sample survey to each small area and then, for each
small area, reweights each household" (p. 53). Anderson (2013) also provides a simple explanation of the
mathematics underlying the method. Issues to consider when performing IPF include selection of appropriate
constraint variables, number of iterations and `internal' and `external' validation (Edwards & Clarke, 2009;
Pritchard & Miller, 2012; Simpson & Tranmer, 2005). It has been noted that IPF is an alternative to
`combinatorial optimisation' (CO) and `generalised regression weighting' (GREGWT) (Hermes & Poulsen,
2012). One issue with the IPF algorithm is that unless the fractional weights it generates intergerised, the
results cannot be used as an input for agent-based models. Lovelace & Ballas (2013) provide an overview of
methods for integerisation to overcome this problem. To further improve the utility of IPF there has been
methodological work to convert the output into household units (Pritchard & Miller, 2012).

In addition to IPF, other strategies for generating synthetic spatial microdata. These are described in
recent overviews of the subject (Tanton & Edwards, 2013; Ballas et al., 2013). The major (in terms of
usage) alternatives are simulated annealing, an althorithm whose e�cient implementation in Java is de-
scribed by Harland (2013) and GREGWT, a deterministic approach resulting in fractional weights whose
mathematics are described by Rahman (2009) (a recent open source implementation is available from git-
lab.com/emunozh/mikrosim). However, it is not always clear which is most appropriate in di�erent situa-
tions.

There has been work testing (Jirou²ek et al., 1995) and improving IPF model results (Teh & Welling,
2003) but very little work systematically and transparently testing the algorithms underlying population
synthesis (Harland et al., 2012). The research gap addressed in this paper is highlighted in the conclusions
of a recent Reference Guide to spatial microsimulation: �It would be desirable if the spatial microsimulation
community were able to continue to analyse which of the various reweighting/synthetic reconstruction
techniques is most accurate � or to identify whether one approach is superior for some applications while
another approach is to be preferred for other applications�.

2 The IPF algorithm: a worked example

In most modelling texts there is a precedence of theory over application: the latter usually �ows from the
former (e.g. Batty, 1976). As outlined in Section 1.1, however, the theory underlying IPF has been thor-
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oughly demonstrated in research stemming back to the 1940s. Practical demonstrations are comparatively
rare.

That is not to say that reproducibility is completely absent in the �eld. Simpson & Tranmer (2005) and
Norman (1999) exemplify their work with code snippets from an implementation of IPF in the proprietary
software SPSS and reference to an Excel macro that is available on request, respectively. Williamson (2007)
also represents good practice, with a manual for running combinatorial optimisation algorithms described in
previous work. Ballas et al. (2005) demonstrate IPF with a worked example to be calculated using mental
arithmetic, but do not progress to illustrate how the examples are then implemented in computer code. This
section builds on and extends this work, by �rst outlining an example that can be completed using mental
arithmetic alone before illustrating its implementation in code. A comprehensive introduction to this topic
is provided in a tutorial entitled �Introducing spatial microsimulation with R: a practical� (Lovelace, 2014).
This section builds on the tutorial by providing context and a higher level description of the process.

IPF is a simple statistical procedure �in which cell counts in a contingency table containing the sample
observations are scaled to be consistent with various externally given population marginals� (McFadden
et al., 2006). In other words, and in the context of spatial microsimulation, IPF produces maximum
likelihood estimates for the frequency with which people appear in di�erent areas.

The method is also known as `matrix raking' or the RAS algorithm (Birkin & Clarke, 1988; Simpson
& Tranmer, 2005; Kalantari et al., 2008; Jirou²ek et al., 1995), and has been described as one particular
instance of a more general procedure of `entropy maximisation' (Johnston & Pattie, 1993; Blien & Graef,
1998).

The mathematical properties of IPF have been described in several papers (Bishop et al., 1975; Fienberg,
1970; Birkin & Clarke, 1988). Illustrative examples of the procedure can be found in Saito (1992), Wong
(1992) and Norman (1999). Wong (1992) investigated the reliability of IPF and evaluated the importance
of di�erent factors in�uencing the its performance. Similar methodologies have since been employed by
Mitchell et al. (2000), Williamson et al. (2002) and Ballas et al. (2005) to investigate a wide range of
phenomena.

We begin with some hypothetical data. Table 2 describes a hypothetical microdataset comprising 5
individuals, who are de�ned by two constraint variables, age and sex. Table 3 contains aggregated data for
a hypothetical area, as it might be downloaded from census dissemination portals such as Casweb.2 Table 4
illustrates this table in a di�erent form, demonstrating the unknown links between age and sex. The job of
the IPF algorithm is to establish estimates for the unknown cells, which are optimized to be consistent with
the known row and column marginals.

Table 2: A hypothetical input microdata set (the original weights set to one). The bold value is used
subsequently for illustrative purposes.

Individual Sex Age Weight

1 Male 59 1
2 Male 54 1
3 Male 35 1

4 Female 73 1
5 Female 49 1

Table 3: Hypothetical small area constraints data (s).

Constraint ⇒ i j
Category ⇒ i1 i2 j1 j2

Area ⇓ Under-50 Over-50 Male Female
1 8 4 6 6

2Casweb (casweb.mimas.ac.uk/) is an online portal for academics and other researchers to gain access to the UK's o�cial
census data in geographically aggregated form.
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Table 4: Small area constraints expressed as marginal totals, and the cell values to be estimated.

Marginal totals j
Age/sex Male Female T

i
Under-50 ? ? 8
Over-50 ? ? 4
T 6 6 12

Table 5 presents the hypothetical microdata in aggregated form, that can be compared directly to Table
4. Note that the integer variable age has been converted into a categorical variable in this step, a key
stage in geographical aggregation. Using these data it is possible to readjust the weights of the hypothetical
individuals, so that their sum adds up to the totals given in Table 4 (12). In particular, the weights can be
readjusted by multiplying them by the marginal totals, originally taken from Table 3 and then divided by
the respective marginal total in 5. Because the total for each small-area constraint is 12, this must be done
one constraint at a time. This is expressed, for a given area and a given constraint (i, age in this case) in
Eq. (1).

Table 5: Aggregated results of the weighted microdata set (m(1)). Note, these values depend on the weights
allocated in Table 2 and therefore change after each iteration.

Marginal totals j
Age/sex Male Female T

i
Under-50 1 1 2
Over-50 2 1 3
T 3 2 5

w(n+ 1)ij =
w(n)ij × sTi

mT (n)i
(1)

In Eq. (1), w(n + 1)ij is the new weight for individuals with characteristics i (age, in this case), and j
(sex), w(n)ij is the original weight for individuals with these characteristics, sTi is element marginal total
of the small area constraint, s (Table 3) and mT (n)i is the marginal total of category j of the aggregated
results of the weighted microdata, m (Table 5). n represents the iteration number. Although the marginal
totals of s are known, its cell values are unknown. Thus, IPF estimates the interaction (or cross-tabulation)
between constraint variables. Follow the emboldened values in the Tables 2 to 6 to see how the new weight
of individual 3 is calculated for the sex constraint. Table 6 illustrates the weights that result. Notice that
the sum of the weights is equal to the total population, from the constraint variables.

Table 6: Reweighting the hypothetical microdataset in order to �t Table 3.

Individual Sex age-group Weight New weight, w(2)

1 Male Over-50 1 1× 4/3 = 4

3

2 Male Over-50 1 1× 4/3 = 4

3

3 Male Under-50 1 1× 8/2 = 4
4 Female Over-50 1 1× 4/3 = 4

3

5 Female Under-50 1 1× 8/2 = 4

After the individual level data have been re-aggregated (Table 7), the next stage is to repeat Eq. (1)
for the age constraint to generate a third set of weights, by replacing the i in sTi and mT (n)i with j and
incrementing the value of n:

w(3)ij =
w(2)ij × sTj

mT (2)j
(2)
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Apply Eq. (2) to the information above and that presented in Table 7 results in the following vector of
new weights, for individuals 1 to 5:

w(3) = (
6

5
,
6

5
,
18

5
,
3

2
,
9

2
) (3)

As before, the sum of the weights is equal to the population of the area (12). Notice also that after
each iteration the �t between the marginal totals of m and s improves. The total absolute error (TAE,
described in the next section) improves in m(1) to m(2) from 14 to 6 in Table 5 and Table 7 above. TAE
for m(3) (not shown, but calculated by aggregating w(3)) improves even more, to 1.3. This number would
eventually converge to 0 through subsequent iterations, as there are no `empty cells' (Wong, 1992) in the
input microdataset, a de�ning feature of IPF (see Section 5.4 for more on the impact of empty cells).

Table 7: The aggregated results of the weighted microdata set after constraining for age (m(2)).

Marginal totals i
Age/sex Male Female T

j
Under-50 4 4 8
Over-50 8

3

4

3
4

T 6 2

3
5 1

3
12

The above process, when applied to more categories (e.g. socio-economic class) and repeated iteratively
until a satisfactory convergence occurs, results in a series of weighted microdatasets, one for each of the
small areas being simulated. This allows for the estimation of variables whose values are not known at the
local level (e.g. income) (Ballas et al., 2005). An issue with the results of IPF is that it results in non-integer
weights: fractions of individuals appear in simulated areas. This is not ideal for certain applications, leading
to the development of strategies to 'integerise' the fractional weights illustrated in Table 7. Methods for
performing integerisation are discussed in (Ballas et al., 2005), (Pritchard & Miller, 2012) and, most recently
in (Lovelace & Ballas, 2013), who systematically benchmarked and compared di�erent procedures. It was
found that the probabilistic `truncate, replicate, sample' (TRS) and `proportional probabilities' methods
� which use repeat sampling on the raw weights and non-repeat sampling (whereby a selected individual
cannot be selected again) of the truncated weights, respectively � were most accurate. These methods are
therefore used to test the impact of integerisation in this paper.

3 Evaluation techniques

To verify the integrity of any model, it is necessary to compare its outputs with empirical observations
or prior expectations gleaned from theory. The same principles apply to spatial microsimulation, which
can be evaluated using both internal and external validation methods (Edwards & Clarke, 2009). Internal

validation is the process whereby the aggregate-level outputs of spatial microsimulation are compared with
the input constraint variables. It is important to think carefully about evaluation metrics because results
can vary depending on the measure used (Voas & Williamson, 2001).

Internal validation typically tackles such issues as �do the simulated populations in each area microdata
match the total populations implied by the constraint variables?� and �what is the level of correspondence
between the cell values of di�erent attributes in the aggregate input data and the aggregated results of spatial
microsimulation?� A related concept from the agent based modelling literature is veri�cation, which asks
the more general question, �does the model do what we think it is supposed to do?� (Ormerod & Rosewell,
2009, p. 131) External validation is the process whereby the variables that are being estimated are compared
to data from another source, external to the estimation process, so the output dataset is compared with
another known dataset for those variables. Both validation techniques are important in modelling exercises
for reproducibility and to ensure critical advice is not made based on coding errors (Ormerod & Rosewell,
2009).

Typically only aggregate-level datasets are available, so researchers are usually compelled to focus in-
ternal validation as the measure model performance. Following the literature, we also measure perfor-
mance in terms of aggregate-level �t, in addition to computational speed. A concern with such a focus on
aggregate-level �t, prevalent in the literature, is that it can shift attention away from alternative measures
of performance. Provided with real spatial microdata, researchers could use individual-level distributions
of continuous variables and comparison of joint-distributions of cross-tabulated categorical variables be-
tween input and output datasets as additional measures of performance. However one could argue that the
presence of such detailed datasets removes the need for spatial microsimulation (Lee, 2009). Real spatial
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microdata, where available, o�er an important opportunity for the evaluation of spatial microsimulation
techniques. However, individual-level external validation is outside the scope of this study.

For dynamic microsimulation scenarios, calculating the sampling variance (the variance in a certain
statistic, usually the mean, across multiple samples) across multiple model runs is recommended to test if
di�erences between di�erent scenarios are statistically signi�cant (Goedemé et al., 2013). In static spatial
microsimulation, sub-sampling from the individual level dataset or running stochastic processes many times
are ways to generate such statistics for tests of signi�cance. Yet these statistics will only apply to a small
part of the modelling process and are unlikely to relate to the validity of the process overall (Lovelace &
Ballas, 2013).

This section brie�y outlines the evaluation techniques used in this study for internal validation of static
spatial microsimulation models. The options for external validation are heavily context dependent so should
be decided on a case-by-case basis. External validation is thus mentioned in the discussion, with a focus
on general principles rather than speci�c advice. The three quantitative methods used in this study (and
the visual method of scatter plots) are presented in ascending order of complexity and roughly descending
order of frequency of use, ranging from the coe�cient of determination (R2) through total and standardised
absolute error (TAE and SAE, respectively) to root mean squared error (RMSE). This latter option is our
preferred metric, as described below.

Before these methods are described, it is worth stating that the purpose is not to �nd the `best' evaluation
metric: each has advantages and disadvantages, the importance of which will vary depending on the nature
of the research. The use of a variety of techniques in this paper is of interest in itself. The high degree of
correspondence between them (presented in Section 6), suggests that researchers need only to present one
or two metrics (but should try more, for corroboration) to establish relative levels of goodness of �t between
di�erent model con�gurations.

The problem of internal validation (described as `evaluating model �t') was tackled in detail by Voas
& Williamson (2001). The Chi-squared statistic, Z-scores, absolute error and entropy-based methods were
tested, with no clear `winner' other than the advocacy of methods that are robust, fast and easy to under-
stand (standardized absolute error measures match these criteria well). The selection of evaluation methods
is determined by the nature of available data: �Precisely because a full set of raw census data is not available
to us, we are obliged to evaluate our simulated populations by comparing a number of aggregated tables
derived from the synthetic data set with published census small-area statistics� (Voas & Williamson, 2001,
p. 178). A remaining issue is that the results of many evaluation metrics vary depending on the areal units
used, hence advocacy of `scale free' metrics (Malleson & Birkin, 2012) .

3.1 Scatter plots

A scatter plot of cell counts for each category for the original and simulated variables is a basic but very
useful preliminary diagnostic tool in spatial microsimulation (Ballas et al., 2005; Edwards & Clarke, 2009). In
addition, marking the points, depending on the variable and category which they represent, can help identify
which variables are particularly problematic, aiding the process of improving faulty code (sometimes referred
to as `debugging').

In these scatter plots each data point represents a single zone-category combination (e.g. 16-25 year old
female in zone 001), with the x axis value corresponding to the number of individuals of that description
in the input constraint table. The y value corresponds to the aggregated count of individuals in the same
category in the aggregated (wide) representation of the spatial microdata output from the model. This
stage can be undertaken either before or after integerisation (more on this below). As is typical in such
circumstances, the closer the points to the 1:1 (45 degree, assuming the axes have the same scale) line, the
better the �t.

3.2 The coe�cient of determination

The coe�cient of determination (henceforth R2) is the square of the Pearson correlation coe�cient for
describing the extent to which one continuous variable explains another. R2 is a quantitative indicator of
how much deviation there is from this ideal 1:1 line. It varies from 0 to 1, and in this context reveals how
closely the simulated values �t the actual (census) data. An R2 value of 1 represents a perfect �t; an R2

value close to zero suggests no correspondence between then constraints and simulated outputs (i.e. that the
model has failed). We would expect to see R2 values approaching 1 for internal validation (the constraint)
and a strong positive correlation between target variables that have been estimated and external datasets
(e.g. income). A major limitation of R2 is that it takes no account of additive or proportional di�erences
between estimated and observed values, meaning that it ignores systematic bias (see Legates & McCabe,
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1999 for detail). This limitation is less relevant for spatial microsimulation results because they are generally
population-constrained.

3.3 Total Absolute and Standardized Error (TAE and SAE)

Total absolute error (TAE) is the sum of the absolute (always positive) discrepancies between the simulated
and known population in each cell of the geographically aggregated (wide format) results. The standardised
absolute error (SAE) is simply TAE divided by the total population (Voas & Williamson, 2001). TAE
provides no level of signi�cance, so thresholds are used. Clarke & Madden (2001) used an error threshold
of 80 per cent of the areas with less than 20 per cent error (SAE <0.20); an error threshold of 10% (SAE
<0.1) can also been used Smith et al. (2007). Due to its widespread use, simplicity and scale-free nature,
SAE is often preferred.

3.4 The modi�ed Z-score

The Z-statistic is a commonly used measure, reporting the number of standard deviations a value is from
the mean. In this work we report zm, a modi�ed version to the Z-score metric that is robust to very small
expected cell values (Williamson et al., 1998). Z-scores apply to individual cells (for a single constraint in
a single area). and also provide a global statistic on model �t (Zm), de�ned as the sum of all zm2 values
(Voas & Williamson, 2001). The measure of �t has the advantage of taking into account absolute, rather
than just relative, di�erences between simulated and observed cell count:

Zmij = (rij − pij)

/







pij(1− pij))
∑

ij

Uij







1/2

(4)

where

pij =
Uij

∑

ij

Uij

and rij =
Tij

∑

ij

Uij

To use the modi�ed Z-statistic as a measure of overall model �t, one simply sums the squares of zm to
calculate Zm2. This measure can handle observed cell counts below 5, which chi-squared tests cannot (Voas
& Williamson, 2001).

3.5 Proportion of values deviating from expectations E > 5%

The proportion of values which fall beyond 5% of the actual values is a simple metric of the quality of the �t.
It focusses on the proportion of values which are close to expected, rather than the overall �t, so is robust
to outliers. The E > 5% metric implies that getting a perfect �t is not the aim, and penalises relationships
that have a large number of moderate outliers, rather than a few very large outliers. The precise de�nition
of 'outlier' is somewhat arbitrary (one could just as well use 1%).

3.6 Root mean square error

Root mean square error (RMSE) and to a lesser extent mean absolute error (MAE) have been frequently
used in both social and physical sciences as a metric of model �t (Legates & McCabe, 1999). Like SAE, the
RMSE takes the discrepancies between the simulated and known values, squares these and divides the sum
by the total number of observations (areas in our case), after which the root is taken. The MAE basically
does the same without the square and root procedure. The former has the bene�t of being widely used and
understood, but is in�uenced by the mean value in each zone. Recent research in climate model evaluation
suggests that the lesser known but simpler MAE metric is preferable to RMSE in many ways (Willmott
& Matsuura, 2005). We use the RMSE error in the �nal results as this is a widely understood and applied
method with a proven track record in the social sciences.

The relationship between these di�erent goodness-of-�t measures was tested, the results of which can be
seen towards the end of Section 6.
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4 Input data

The size and complexity of input data in�uence the results of spatial microsimulation models. Especially
important are the number of constraint variables and categories. We wanted to test the method under a
range of conditions. Therefore, three unrelated scenarios, each with their own input datasets were used.
These are referred to as `simple', `small-area' and `She�eld'. Each consists of a set of aggregate constraints
and corresponding individual-level survey tables. To ensure reproducibility, all the input data (and code)
used to generate the results reported in the paper are available online on the code-sharing site GitHub.3

An introductory tutorial explains the process of loading and `cleaning' input data (Lovelace, 2014). This
tutorial also introduces the basic code used to create and modify the weight matrices with reference to the
`simple' example described below.

The simplest scenario consists of 6 zones which must be populated by the data presented in the previous
section (see Table 2). This scenario is purely hypothetical and is used to represent the IPF procedure and
the tests in the simplest possible terms. Its small size allows the entirety of the input data to be viewed in a
couple of tables (see Table 2 and Table 8, the �rst row of which is used to exemplify the method). As with
all data used in this paper, these tables can be viewed and downloaded online.

Table 8: Geographically aggregated constraint variables for the simple scenario.

Age constraint Sex constraint
Zone 16�49 50+ m f

1 8 4 6 6
2 2 8 4 6
3 7 4 3 8
4 5 4 7 2
5 7 3 6 4
6 5 3 2 6

The next smallest input dataset, and the most commonly used scenario in the paper, is `small-area'. The
area constraints consist of 24 Output Areas (the smallest administrative unit in the UK), with an average
adult population of 184. Three constraint �les describe the number of people (number of households for
tenancy) in each category for the following variables:

• hours worked (see `input-data/small-area-eg/hrs-worked.csv', which consists of 7 categories from `1-5'
to `49+' hours per week)

• marital status (see `marital-status.csv', containing 5 categories)

• tenancy type (`tenancy.csv', containing 7 categories).

The individual-level table that complements these geographically aggregated count constraints for the
`small area' example is taken from Understanding Society wave 1. These have been randomised to ensure
anonymity but they are still roughly representative of real data. The table consists of 1768 rows of data
and is stored in R's own space-e�cient �le-type (see �ind.RData�, which must be opened in R). This and
all other data �les are contained within the `input-data' folder of the online repository (see the `input-data'
sub-directory of the Supplementary Information).

The largest example dataset is `She�eld', which represents geographically aggregated from the UK city
of the same name, provided by the 2001 Census. The constraint variables used in the baseline version of
this model can be seen in the folder `input-data/she�eld' of the Supplementary Information. They are:

• A cross-tabulation of 12 age/sex categories

• Mode of travel to work (11 variables)

• Distance travelled to work(8 variables)

• Socio-economic group (9 variables)

3The individual level survey tables are anonymous and have been `scrambled' to enable their publication online and can
be downloaded by anyone from http://tinyurl.com/lgw6zev tinyurl.com/lgw6zev. This enables the results to be replicated by
others, without breaching the user licenses of the data.
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As with `small-area', the individual-level dataset associated with this example is a scrambled and
anonymised sample from the Understanding Society. In addition to those listed above at the aggregate
level, `input-data/she�eld/ind.RData' contains columns on whether their home location is urban/rural
(variable `urb'), employment status (`stat') and home region (`GOR`).

5 Method: model experiments

5.1 Baseline conditions

Using the three di�erent datasets, the e�ects of �ve model settings were assessed: number of constraints
and iterations; initial weights; empty cell procedures; and integerisation. In order to perform a wide range
of experiments, in which only one factor is altered at a time, baseline scenarios were created. These are
model runs with sensible defaults and act as reference points against which alternative runs are compared.
The baseline scenarios consist of 3 iterations. In the `simple' scenario (with 2 constraints), there are 6
constraint-iteration permutations. The �t improves with each step. The exception is p5, which reaches zero
in the second iteration. pcor continues to improve however, even though the printed value, to 6 decimal
places, is indistinguishable from 1 after two complete iterations.

The main characteristics of the baseline model for each scenario are presented in Table 9. The meaning
of the row names of Table 9 should become clear throughout this section.

Table 9: Characteristics of the baseline model run for each scenario.

Scenario Simple Small area She�eld

N. constraints 2 3 4
N. zones 6 24 71
Av. individuals/zone 10 184 3225
Microdataset size 5 1768 4933
Average weight 1.3 0.1 0.65
% empty cells 0% 21% 85%

5.2 Constraints and iterations

The number of constraints refers to the number of separate categorical variables (e.g. age bands, income
bands). The number of iterations is the number of times IPF adjusts the weights according to all available
constraints. Both are known to be important determinants of the �nal output, but there has been little
work to identify the optimal number of either variable. Norman (1999) suggested including the �maximum
amount of information in the constraints�, implying that more is better. Harland et al. (2012), by contrast,
notes that the weight matrix can become overly sparse if the model is over-constrained. Regarding the
number of iterations, there is no clear consensus on a suitable number, creating a clear need for testing in
this area.

Number of constraints and iterations were the simplest model experiments. These required altering the
number of iterations or rearranging of the order in which constraints were applied. 1, 3 and 10 iterations
were tested and all combinations of constraint orders were tested.4

To alter the number of iterations used in each model, one simply changes the number in the following
line of code (the default is 3):

num.its <- 3

The code for running the constraints in a di�erent order is saved in `etsim-reordered.R'. In this script
�le, the order in which constraints ran was systematically altered. The order with the greatest impact on
the results for each example is reported in Table 11.

In real-world applications, there is generally a 'more the merrier' attitude towards additional constraints.
However, Harland et al. (2012) warn of the issues associated with over-�tting microsimulation models with

4Up to 100 iterations are used in the literature (Norman, 1999). We found no di�erence in the results beyond 10 iterations
so a maximum of 10 iterations is reported. For an explanation of how to modify model parameters including the number of
iterations, see the `README.md' text �le in the root directory of the Supplementary Information.
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too many constraints. To test the impact of additional constraints we added a new constraint to the small-
area and She�eld examples. A cross-tabulated age/sex constraint was added for the small-area example; a
binary urban/rural constraint was added for the She�eld example. In both cases the scripts that implement
IPF with these additional constraint variables are denoted by the text string "extra-con", short for "extra
constraint" and include 'etsim-extra-con.R' and 'categorise-extra-con.R'.

5.3 Initial weights

The mathematics of IPF show that it converges towards a single solution of `maximum likelihood' (Jirou²ek
et al., 1995) yet initial weights can impact the results of the model result when a �nite number of iterations
is used. The persistence of the impact of initial weights has received little attention. The impact of initial
weights was tested in two ways: �rst, the impact of changing a sample of one or more initial weight values
by a set amount was explored. Second, the impact of gradually increasing the size of the initial weights was
tested, by running the same model experiment several times, but with incrementally larger initial weights
applied to a pre-determined set of individuals.

In the simplest scenario, the initial weight of a single individual was altered repeatedly, in a controlled
manner. To observe the impacts of altering the weights in this way the usual tests of model �t were
conducted. In addition, the capacity of initial weights to in�uence an individual's �nal weight/probability
of selection was tested by tracing its weight into the future after each successive constraint and iteration.
This enabled plotting original vs simulated weights under a range of conditions (Section 6).

In the �nal results, extreme cases of setting initial weights are reported: setting a 10% sample to 100
and 1000 times the default initial weight of 1. In the baseline scenario there are only 3 iterations, allowing
the impacts of the initial weights to linger. This in�uence was found to continue to drop, tending towards
zero in�uence after 10 iterations even in the extreme examples.

5.4 Empty cells

Empty cells refer to combinations of individual-level attributes that are not represented by any single
individual in the survey input data. An example of this would be if no female in the 16 to 49 year age
bracket were present in Table 2. Formalising the de�nition, survey dataset that contains empty cells may be
said to be incomplete; a survey dataset with no empty cells is complete. Wong (1992) was the �rst to describe
the problem of empty cells in the context of spatial microsimulation, and observed that the procedure did
not converge if there were too many in the input microdata. However, no methods for identifying their
presence were discussed, motivating the exploration of empty cells in this paper.

No method for identifying whether or not empty cells exist in the individual-level dataset for spatial
microsimulation has been previously published to the authors' knowledge. We therefore start from �rst
principles. The number of di�erent constraint variable permutations (Nperm) is de�ned by Eq. (5), where
n.cons is the total number of constraints and n.cati is the number of categories within constraint i:

Nperm =

n.cons
∏

i=1

n.cati (5)

To exemplify this equation, the number of permutations of constraints in the `simple' example is 4: 2
categories in the sex variables multiplied by 2 categories in the age variable. Clearly, Nperm depends on
how continuous variables are binned, the number of constraints and diversity within each constraint. Once
we know the number of unique individuals (in terms of the constraint variables) in the survey (Nuniq), the
test to check a dataset for empty cells is straightforward, based on Eq. (5):

is.complete =

{

TRUE if Nuniq = Nperm
FALSE if Nuniq < Nperm

}

(6)

Once the presence of empty cells is determined in the baseline scenarios, the next stage is to identify
which individuals are missing from the individual-level input dataset (Ind) � the combination of attributes
that no individual in Ind has. To do this, we created an algorithm to generate the complete input dataset
(Ind.complete). The `missing' individuals, needed to be added to make Ind complete can be de�ned in
terms of set theory (Goldrei, 1996) by Eq. (7):

Ind.missing = Ind.complete \ Ind = {x ∈ Ind.complete : x 6∈ Ind} (7)

This means simply that the missing cells are de�ned as individuals with constraint categories that are
present in the complete dataset but absent from the input data. The theory to test for and identify empty
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cells described above is straightforward to implement in practice with R, using the commands unique and
%in% respectively (see the `empty-cells.R' script in the `model' folder of the code repository).

To test the impact of empty cells on model results, an additional empty cell was added to the input
dataset in each example. In the `simple' scenario, this simply involves removing a single individual from the
input data, which equates to deleting a single line of code (see `empty-cells.R' in the `simple' folder to see
this). Experiments in which empty cells were removed through the addition of individuals with attributes
de�ned by Eq. (7) were also conducted, and the model �t was compared with the baseline scenarios. The
baseline scenarios were run using these modi�ed inputs.

5.5 Integerisation

Integerisation is the process of converting the fractional weights produced by IPF into whole numbers. It
is necessary for some applications, including the analysis of intra-zone variability and statistical analyses of
intra-zone variation such as the generation of Gini indices of income for each zone.

A number of methods for integerisation have been developed, including deterministic and probabilistic
approaches (Ballas et al., 2005). We used modi�ed R implementations of two probabilistic methods �
`truncate replicate sample' (TRS) and `proportional probabilities' � reported in (Lovelace & Ballas, 2013)
and the Supplementary Information associated with this paper (Lovelace, 2013), as these were found to
perform better in terms of �nal population counts and accuracy than the deterministic approaches.

5.6 Computational e�ciency

The code used for the model runs used throughout this paper is based on that provided in the Supplementary
Information of Lovelace & Ballas (2013). This implementation was written purely in R, a vector based
language, and contains many `for' loops, which are generally best avoided for speed-critical applications. R
was not designed for speed, but has interfaces to lower level languages (Wickham, 2014a). Another advantage
of R from the perspective of synthetic populations is that it has an interface to NetLogo, a framework for
agent-based modelling (Thiele, 2014). One potential use of the IPF methods outlined in this paper is to
generate realistic populations to be used for model experiments in other languages (see Thiele et al., 2014).

To increase the computational e�ciency of R, experiments were conducted using the ipfp package, a C
implementation of IPF (Blocker, 2013).

For each scenario in the Supplementary Information, there is a �le titled `etsim-ipfp.R', which performs
the same steps as the baseline `etsim.R' model run, but using the ipfp() function of the ipfp package.
The results of these experiments for di�erent scenarios and di�erent numbers of iterations are presented in
section Section 6.6.

6 Results

6.1 Baseline results

After only 3 complete iterations under the baseline conditions set out in Section 5.1, the �nal weights in
each scenario converged towards a �nal result. The baseline `She�eld' scenario consists of the same basic
set-up, but with 4 constraints. As before, the results show convergence towards better model �t, although
the �t did not always improve from one constraint to the next.

6.2 Constraints and iterations

As shown in Fig. 2, �t improved with each iteration. This improvement generally happened for each
constraint and always from one iteration to the next. Through the course of the �rst iteration in the
`simple' scenario, for example, R2 improved from 0.67 to 0.9981. There is a clear tendency for the rate
of improvement in model �t to drop with subsequent computation after the �rst iteration: at the end of
iteration 2 in the simple scenarios, R2 had improved to 0.999978.

The results for the �rst 6 constraint-iteration permutations of this baseline scenario are illustrated in
Fig. 3 and in the online `measures' table. These results show that IPF successfully took the simulated cell
counts in-line with the census after each constraint and that the �t improves with each iteration (only two
iterations are shown here, as the �t improves very little beyond two).

Rapid reductions in the accuracy improvement from additional computation were observed in each
scenario, as illustrated by the rapid alignment of zone/constraints to the 1:1 line in Fig. 3. After four
iterations, in the `simple' scenarios, the �t is near perfect, with an R2 value indistinguishable from one to 7
decimal places. The decay in the rate of improvement with additional iterations is super-exponential.
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Figure 2: Improvement in goodness of �t with additional constraints and iterations, as illustrated by R2

values.

Figure 3: IPF in action: simulated vs census zone counts for the small-area baseline scenario after each
constraint (columns) and iteration (rows).

It was found that additional constraints had a detrimental impact on overall model �t. The impact was
clearly heavily in�uenced by the nature of the new constraint, however, meaning we cannot draw strong
conclusions from this result. In any case, the results show that additional constraints have a negative impact
on model �t.

Interestingly, the addition of the urban/rural constraint variable in the She�eld example had the most
dramatic negative impact of all model experiments. This is probably because this is a binary variable even
at the aggregate level, whereby all residents are classi�ed as 'rural' or 'urban'. Only 17% (830 out of 4933)
of the respondents in the individual-level survey are classi�ed as rural dwellers, explaining why �t dropped
most dramatically for rural areas.

The order of constraints was found to have a strong impact on the overall model �t. It was found
that placing constraints with more categories towards the end of the iterative �tting process had the most
detrimental e�ect. The impact of placing the age/sex constraint last in the `She�eld' example, which had
12 variables, had the most damaging impact on model �t. This was due to the relative complexity of of
this constraint and its lack of correlation with the other constraints in the individual-level dataset. We note
that selection of constraint order introduces a degree of subjectivity into the results of IPF: the researcher
is unlikely to know at the outset which constraint variable will have the most detrimental impact on model
�t (and therefore which should not be used last).
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Figure 4: The impact of changing the initial weight of individual 228 on the simulated weights of two
individuals after 5 iterations. Each of the 24 coloured lines represents a single zone.

6.3 Initial weights

It was found that initial weights had little impact on the overall simulation. Taking the simplest case, a
random individual (id = 228) was selected from the `small area' data and his/her initial weight was set to 2
(instead of the default of 1). The impact of this change on the individual's simulated weight decayed rapidly,
tending to zero after only 5 iterations in the small-area scenario. It was found that altered initial weights
a�ect the simulated weights of all other individuals; this is illustrated in Fig. 4, which shows the impact on
individual 228 and a randomly selected individual whose initial weight was not altered, for all areas.

Fig. 4 shows that changing initial weights for individuals has a limited impact on the results that tends
to zero from one iteration to the next. After iteration one the impact of a 100% increase in the initial weight
of individual 228 had reduced to 0.3%; after 3 iterations the impact was negligible. The same pattern can
be observed in the control individual 570, although the impact is smaller and in the reverse direction. The
same pattern can be observed for other individuals, by altering the `analysis.min'.

To analyse the impacts of changing the initial weights of multiple individuals, the same experiment
was conducted, but this time the initial weights were applied to the �rst �ve individuals. The results
are illustrated in Fig. 5, which shows the relationship between initial and �nal weights for the �rst two
individuals and another two individuals (randomly selected to show the impact of altering weights on other
individual weights).

Fig. 5 shows that the vast majority of the impact of altered starting weights occurs in iteration-constraint
combinations 1.1 and 1.2, before a complete iteration has even occurred. After that, the initial weights
continue to have an in�uence, of a magnitude that cannot be seen. For individual 1, the impact of a 53%
di�erence in initial weights (from 0.7 to 1.5) shrinks to 2.0% by iteration 1.3 and to 1.1% by iteration 2.3.

These results suggest that initial weights have a limited impact on the results of IPF, that declines
rapidly with each iteration.

6.4 Empty cells

There were found to be 62 and 8,105 empty cells in the `small-area' and `She�eld' baseline scenarios,
respectively. Only the smallest input dataset was complete. Due to the multiplying e�ect of more variables
(Eq. (5)), Nperm was found to be much larger in the complex models, with values rising from 4 to 300 and
9504 for the increasingly complex test examples.

As expected, it was found that adding additional empty cells resulted in worse model �t, but only slightly
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Figure 5: Initial vs simulated weight of four individuals for a single area (zone 1).

worse �t if few empty cells (one additional empty cell to 10% non-empty cells) were added. The addition of
new rows of data with attributes corresponding to the empty cells to the input dataset allowed the `small-
area' and `She�eld' models to be re-run without empty cells. This resulted in substantial improvements
in model �t that became relatively more important with each iteration: model runs with large numbers of
empty cells reached minimum error values quickly, beyond which there was no improvement.

6.5 Integerisation

After passing the �nal weights through the integerisation algorithms mentioned in Section 5.5, the weight
matrices were of identical dimension and total population as before. It was found that, compared with
the baseline scenarios, that integerisation had a negative impact on model �t. For the `simple' and `small
area' scenarios, the impact of integerisation was proportionally large, greater than the impact of any other
changes. For the more complex She�eld example, by contrast, the impact was moderate, increasing RMSE
by around 20%.

6.6 Computational e�ciency

The times taken to perform IPF in the original R code and the new low-level C implementation are compared
in Table 10. This shows that running the repetitive part of the modelling in a low-level language can have
substantial speed bene�ts � more than 10 fold improvements were found for all but the simplest model
runs with the fewest iterations. Table 10 shows that the computational e�ciency bene�ts of running IPF
in C are not linear: the relative speed improvements increase with the both the number of iterations and
the size of the input datasets.

This suggests two things:

• Other parts of the R code used in both the `pure R' and C implementations via ipfp could be optimised
for speed improvements.

• Greater speed improvements could be seen with larger and more complex model runs.

6.7 Summary of results

The impact of each model experiment on each of the three scenarios is summarised in Table 11. It is notable
that the variable with the greatest impact on model �t varied from one scenario to the next, implying
that the optimisation of IPF for spatial microsimulation is context-speci�c. Changes that had the greatest
positive impact on model �t were additional iterations for the simpler scenarios and the removal of empty
cells from the input microdata for the more complex `She�eld' scenario.

Likewise, the greatest negative impact on model �t for the `small area' example was due to integerisation.
For `She�eld', the addition of the unusual urban/rural binary variable had the greatest negative impact on
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Table 10: Time taken for di�erent spatial microsimulation models to run in microseconds, comparing R and
C implementations code. 3 (left hand columns) and 10 (right hand columns) iterations were tested for each.
`Improvement' represents the relative speed improvement of the C implementation, via the ipfp package.

3 iterations 10 iterations
Scenario R code C code (ipfp) Improvement R code C code (ipfp) Improvement

Simple 73 8 9.1 231 8 28.9
Small-area 3548 204 17.4 10760 288 37.4
She�eld 44051 1965 22.4 135633 2650 51.2

model �t. The use of only one complete iteration instead of 3 or more had more damaging impacts on the
larger and more complicated examples.

Substantial improvements in execution speed have been demonstrated using a lower-level implementation
of the IPF algorithm than has been used in previous research. If computational e�ciency continues to
increase, the code could run 100 times faster than current implementations on larger datasets (see Table 10).

Table 11: Summary results of root mean square error (RMSE) between simulated and constraint data.

Test scenario Simple Small area She�eld

Baseline 0.0001 0.018 25.5

Constraints and iterations

1 iteration 0.221 1.91 78.2
5 iterations <0.000001 0.00001 20.9
10 iterations <0.000001 0.000002 13.8
Reordered constraints 0.0001 0.018 14.5
Extra constraint � 1.57 283

Initial weights

10% sample set to 10 0.0001 0.034 25.5
10% sample set to 1000 0.0001 0.998 25.5

Empty cells

1 additional empty cell 0.852 0.018 25.5
10% additional empty cells � 0.050 25.6
No empty cells � 0.005 1.24

Integerisation

TRS integerisation 0.577 3.68 29.9
Proportional probabilities 1.29 3.91 30.0

The results presented in Table 11 were robust to the type of measure. We calculated values for the
six goodness of �t metrics described in Section 3 and illustrated in Fig. 6 for each of the three example
datasets. The results after 10 iterations of `baseline' scenario are saved in table �les titled `measures.csv' in
each of the model folders. The results for each metric in the She�eld model, for example, can be found in
`models/she�eld/measures.csv'. The calculation, storage and formatting of this array of results is performed
by the script `analysis.R' in the models folder.

Overall it was found that there was very good agreement between the di�erent measures of goodness-
of-�t. Despite often being seen as crude, the r measure of correlation was found to be very closely related
to the other measures. Unsurprisingly, the percentage of error metric (`E5' in Fig. 6) �tted worse with the
others, because this is a highly non-linear measure that rapidly tends to 0 even when there is still a large
amount of error.

The conclusion we draw from this is that although the absolute goodness-of-�t varies from one measure
to the next, the more important relative �t of di�erent scenarios remains unchanged. The choice of measure
becomes more important when we want to compare the performance of di�erent models which vary in terms
of their total population. To test this we looked at the variability between di�erent measures between each
scenario, the results of which are shown in table 12. It is clear that r, SAE and E5 metrics have the
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Figure 6: Correlation matrix comparing 6 goodness-of-�t measure for internal validation. The numbers to
the bottom-left of the diagonal line represent Pearson's r, the correlation between the di�erent measures.
The circles represent the same information in graphical form. The abbreviation are as follows. r: Pearson's
coe�cient of correlation; TAE: Total Absolute Error; SAE: Standardised Absolute Error; Zs: Z-score; E5:
Errors greater than 5% of the observed value.

advantage of providing a degree of cross-comparability between models of di�erent sizes. TAE, RMSE and
the sum of Z − squared scores, by contrast, are highly dependent on the total population.

Table 12: Summary statistics for the 6 goodness of �t measures for each iteration of each 'baseline' scenario.

Model (mean) r TAE SAE RMSE Zs E5

Simple 0.942 4.304 0.036 0.287 2.3640e+00 0.132
Small-area 0.964 968.934 0.073 4.195 1.1936e+07 0.160
She�eld 0.972 89531.053 0.098 68.703 6.8430e+04 0.355

Model (SD)
Simple 0.138 8.762 0.073 0.584 5.6490e+00 0.215
Small-area 0.074 1734.436 0.131 7.224 2.3784e+07 0.204
She�eld 0.046 89626.742 0.098 61.599 1.1313e+05 0.206
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7 Conclusions

In this paper we have systematically reviewed and tested modi�cations to the implementation of the IPF
algorithm for spatial microsimulation � i.e. the creation of spatial microdata. This is the �rst time to our
knowledge that such tests have been performed in a consistent and reproducible manner, that will allow
others to cross-check the results and facilitate further model testing. The model experiments conducted
involved changing one of the following variables at a time:

• The order and number of constraints and number of iterations.

• Modi�cation of initial weights.

• Addition and removal of `empty cells'.

• Integerisation of the fractional weights using a couple of probabilistic methods � `TRS' and `propor-
tional probabilities'.

• The language in which the main IPF algorithm is undertaken, from R to C via the ipfp package.

In every case, the direction of change was as expected, con�rming prior expectations about the in�uence
of model set-up on performance. The �nding that the initial weights have very little in�uence on the results,
particularly after multiple iterations of IPF, is new and relevant to the spatial microsimulation community.
This �nding all but precludes the modi�cation of initial weights as a method for altering IPF's performance
and suggests that research time would be best focused on other variables, notably empty cells.

A new contribution of this paper is its analysis of empty cells � individuals absent in the individual-level
dataset but implied by the geographically aggregated constraints. The methods presented in Section 5.4
should enable others to identify empty cells in their input datasets and use this knowledge to explain model
�t or to identify synthetic individuals to add. This is the �rst time, to our knowledge, that empty cells have
been shown to have large adverse e�ect on model �t compared with other variables in model design.

The removal of empty cells greatly improved �t, especially for complex scenarios. This straightforward
change had the single greatest positive impact on the results, leading to the conclusion that removing
empty cells can substantially enhance the performance of spatial microsimulation models, especially those
with many constraint variables and relatively small input input datasets. On the other hand, a potential
downside of removing empty cells is that it involves adding �ctitious new individuals to the input microdata.
This could potentially cause problems if the purpose of spatial microsimulation is small area estimation,
where the value of target variables (e.g. income) must be set. Another potential problem caused by removal
of empty cells that must be avoided is the creation of impossible combinations of variables such as car drivers
under the age of 16.

A useful practical �nding is that IPF implemented using the ipfp package yields execution much faster
than the R code described in (Lovelace, 2013). The speed bene�t of this low-level implementation rose with
additional iterations and model complexity, suggesting that the method of implementation may be more
in�uential than the number of iterations. Regarding the optimal number of iterations, there is no magic
number identi�ed in this research. However, it is clear that the marginal bene�ts of additional iterations
decline rapidly: we conclude that 10 iterations should be su�cient for complete convergence in most cases.

Many opportunities for further research emerge from this paper on the speci�c topic of IPF and in
relation to the �eld of spatial microsimulation more generally.

Questions raised relating to IPF include:

• What are the impacts of constraining by additional variables a�ecting the performance of IPF?

• What are the interactions between di�erent variables � e.g. what is the combined impact of altering
the number of empty cells and number of iterations simultaneously?

• Can change in one variable reduce the need for change in another?

• What are the opportunities for further improvements in computational e�ciency of the code?

• How does IPF respond to unusual constraints, such as cross-tabulated contingency tables with shared
variables (e.g. age/sex and age/class)?

• How are the results of IPF (and other reweighting methods) a�ected by correlations between the
individual-level variables?
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There is clearly a need for further testing in the area of spatial microsimulation overall, beyond the speci�c
example of IPF in R used here. The generation of synthetic populations allocated to speci�c geographic
zones can be accomplished using a variety of other techniques, including:

• The Flexible Modelling Framework (FMF), open source software written in Java for spatial modelling.
The FMF can perform spatial microsimulation using simulated annealing and has a graphical interface
(Harland, 2013).

• Generalised regression weighting (GREGWT), an alternative to IPF written in SAS (Tanton et al.,
2011).

• SimSALUD, a spatial microsimulation application written in Java, which has an online interface
(Tomintz et al., 2013).

• CO, a spatial microsimulation package written in Fortran and SPSS (Williamson, 2007).

A research priority emerging from this research is to set-up a framework for systematically testing and
evaluating the relative performance of each of these approaches. This is a challenging task beyond the scope
of this paper, but an important one, providing new users of spatial microsimulation a better idea of which
options are most suitable for their particular application.

Moreover, there are broader questions raised by this research concerning the validation of models that are
used for policy making. Scarborough et al. (2009) highlight the paucity of evaluation studies of model-based
local estimates of heart disease, even when these estimates were being widely used by the medical profession
for decision making. We contend that such issues, with real-world consequences, are exacerbated by a lack
of reproducibility, model evaluation and testing across spatial microsimulation research. The underlying
data and code are supplied in Supplementary Information to be maintained as an open source project on
GitHub: github.com/Robinlovelace/IPF-performance-testing. This will allow others to experiment with the
procedure to shed new insight into the factors a�ecting IPF. There is much scope for further research in this
area including further work on external validation, synthesis of large spatial microdatasets, the grouping
of spatial microdata into household units and the integration of methods of spatial microsimulation into
ABM.5 In this wider context, the model experiments presented in this paper can be seen as part of a wider
program of systematic testing, validation and bench-marking. This program will help provide much-needed
rigour and reproducibility in the �eld of spatial microsimulation within social science.
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