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Abstract 

Safe, clean drinking water is a foundation of society and water quality monitoring can contribute to ensuring this. A 

case study application of CANARY to historic data from a UK drinking water distribution system is described. 

Sensitivity studies explored appropriate choice of algorithmic parameter settings for a baseline site, performance was 

evaluated with artificial events and the system then transferred to all sites. Results are presented for analysis of 9 water 

quality sensors measuring six parameters and deployed in three connected District Meter Areas, fed from a single water 

source (service reservoir), for a one year period and evaluated using comprehensive water utility records with 86% of 

event clusters successfully correlated to causes (spatially limited to DMA level). False negatives, defined by temporal 

clusters of water quality complaints in the pilot area not corresponding to detections, were only approximately 25%. It 

was demonstrated that the software could be configured and applied retrospectively (with potential for future near real 

time application) to detect various water quality event types (with a wider remit than contamination alone) for further 

interpretation.  
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INTRODUCTION 

Customers regard a reliable supply of water as one of the most important aspects of the water 

supply service. Although treatment works are closely monitored and controlled in the developed 

world, this is not the case for Water Distribution Systems (WDS) which carry a much higher degree 

of uncertainty. High quality water leaving treatment facilities generally deteriorates as it travels 

through extensive, often convoluted, distribution networks, via a number of mechanisms associated 

with distribution network materials, hydraulic conditions, chemical and biological reactions, or 

ingress of polluting materials. Detection of water quality events before customers are affected is 

paramount to prevent possible public health impacts and even regulatory action, ranging from fines, 

to loss of operating license if the breach is of sufficient gravity. 

 

There are three types of contamination event which can threaten water quality in WDS: natural, 

accidental and deliberate. Security concerns regarding intentional contamination of water supplies 

have been heightened following the 9/11 terrorist attack on the World Trade Center, however 

natural disasters and accidental contamination can be just as damaging. Minor local incidents are 

also of (possibly greater) concern, and are most definitely more uncertain - for example pipeline 

deterioration leading to intrusion of pathogens and contaminants. Figure 1 illustrates the trade-off 

between impact and likelihood when considering events. Minor events are more likely, but mainly 

go undocumented. The most serious events have very significant impact but occur rarely. It is 

events in between these which are fairly likely but also have a significant level of impact (denoted 

as ‘outbreaks’) that are of particular interest.  

 

A variety of water quality sampling is conducted both to meet regulatory requirements and to 

inform decisions about operations. The traditional sampling method has been the collection of 

discrete spot samples followed by laboratory based analysis. Various products are now available for 
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application in WDS to continually measure parameters such as temperature, turbidity, colour, 

conductivity, pH, DO, free and total chlorine (Aisopou et al. 2012).  

 

 
 

Figure 1. Impact vs. likelihood for WDS incidents (adapted from Block 2010) 

 

Problem definition 

The need to efficiently manage WDS has highlighted the need to develop asset management tools to 

assist operators to evaluate the condition of the water distribution area, potential risk of failure, 

visualize those areas of high risk and propose repair strategies and prioritize work based on impact 

and cost. Automated software can provide an intelligent communication interface between the 

monitoring stations and central control. An Event Detection System (EDS) is an automated system 

for analysing data collected from online monitors and alerting operators to unusual conditions based 

on anomalous readings taken by sensors relative to background normal data. EDSs analysing 

hydraulic data have been explored by water utilities, for example for burst detection (e.g. Mounce et 

al. 2010). A project called NEPTUNE developed a Decision Support System (DSS) pilot for 

hydraulic network management (Morley et al. 2009) incorporating online data analysis of sensor 

signals to generate alerts (Mounce and Boxall 2010). The next generation of DSS will benefit from 

water quality and other sensor types, as well as decentralised intelligence within sensors. 

 

Research has shown that many contaminants of possible concern will cause detectable changes in 

measurable water quality parameters and hence they can act as indicator (surrogate) measurements. 

Hall et al. (2007) tested the response of several commercially available water quality sensors in the 

presence of nine different contaminants introduced to a pipe loop in an experimental facility at 

different concentrations and found that at least one of the surrogate parameters changed in response 

to the presence of every contaminant. Although security concerns have been a key motivation, 

water utilities are also seeking additional benefits through improved operational information for 

other event types (including treatment failures, service reservoir issues, bursts, and sensor 

malfunctions).  

 

This paper describes a case study application of the CANARY software to historic data from a UK 

distribution system. The emphasis has been on using the EDS in a wider context than contamination 

detection alone and on full event evaluation using water company information sources. The research 

presented here is part of the UK multidisciplinary “Pipe Dreams” project 

(http://www.sheffield.ac.uk/pipedreams). 

 

CANARY  

Contamination warning systems (CWSs) have been proposed as a promising approach for reducing 

the risks associated with contamination of drinking water by early detection and management 

http://www.sheffield.ac.uk/pipedreams
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(AWWA 2005). A CWS can include various approaches to monitoring including water quality 

sensor deployment in the distribution system, spot sampling and laboratory analysis and customer 

complaint (contact) monitoring programmes (it could be argued that customers are in one sense the 

best sensors but this is no longer acceptable). The U.S. Environmental Protection Agency (EPA) 

has been deploying and evaluating CWSs at a series of drinking water utilities since 2006 (Skadsen 

et al. 2008). Outputs of this have been tools and strategies for applying EDS as part of a CWS and 

one of these is CANARY (Hart et al. 2009).  

 

CANARY is an open source software platforms for EDSs which can be used online to monitor and 

analyse data from available water quality sensors. CANARY can read in Supervisory Control and 

Data Acquisition (SCADA) data (water quality signals and possibly operations data), perform an 

analysis in near real-time and then return the evaluated probability of a water quality event 

occurring at the current time step. CANARY uses statistical and mathematical algorithms to 

identify the onset of periods of anomalous water quality data, while at the same time limiting the 

number of false alarms that occur. The software does not seek to provide an indication of the cause 

of the anomaly. A two step process is adopted: state estimation for future water quality value 

prediction (using established traditional time series and multivariate statistical processes by default 

but which could alternatively be an Artificial Neural Network) and a second stage of residual 

classification for determination of expected or anomalous value (an outlier). It implements several 

change detection algorithms, one of these being a multivariate nearest-neighbour (MVNN) 

algorithm (Klise and McKenna, 2006). A binomial event discriminator (BED) examines multiple 

outliers within a prescribed time window to determine the onset of either an anomalous event  or a 

water quality baseline change as determined by an Event Time Out (ETO) configuration parameter 

(McKenna et al., 2007). An alternative approach would be to consider using, for example, a Fuzzy 

Inference System for classification.  

 

CANARY can operate in both on-line (operations) and offline (historic analysis, but simulated 

online by processing in time series order one step at a time) modes, and it is the latter which is 

utilised for the study presented in this paper. Each monitoring station is analysed independently 

using CANARY. The values of the configuration parameters for each station might vary from one 

utility to the next and could vary across monitoring stations within a utility (EPA 2010).  

 

 

CASE STUDY 

In this section, one sensor is selected for use in determining appropriate algorithmic parameter 

values through sensitivity studies. The performance is then assessed via the addition of artificial 

events to the baseline file. Finally, the system is transferred to all available sensors to perform a full 

evaluation using additional information sources. This is based on the assumption that for the same 

make of sensor, measuring the same parameters in a relatively close geographical proximity, with a 

single water source, that the use of one set of parameters derived by sensitivity analysis should be 

reasonable. MVNN was selected for this study as EPA (2010) concluded from extensive testing that 

the difference between it and other statistical algorithms is minimal. 

 

Overview 

Solomat water quality Sondes (a self contained, submersible, multi-parameter measuring 

instrument) incorporating a Censar chip were deployed by the water utility for a pilot study. These 

were situated in an urban distribution system (in total comprising approximately 110 km of 

pipework) in three connected urban District Meter Areas (6200 properties approximately), fed from 

a single water source (service reservoir). The water mains vary in size from 50 mm to 400 mm and 

span a range of ages from circa 1900 to new mains.  The majority of the mains infrastructure is 
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comprised of iron pipes (approximately 70%).  The rest is a mixture of plastic including PVC and 

MDPE and a small number of steel pipes. Parameters measured were water temperature, pH, 

dissolved oxygen, conductivity, turbidity and pressure (the latest instrumentation now available has 

more comprehensive measurement possibilities). Historic data was collated from multiple files and 

formatted into CANARY format. Analysis was restricted to those instruments without any major 

gaps in data (discarding those with less than 20% data availability). Review of viable data sets 

resulted in 9 monitoring stations and an approximate one calendar year of logging at a five minute 

resolution (80% average data availability for any measurement at that time step). Information from 

the work management system (e.g. from mains repair records), from relevant customer contacts and 

DMA inlet flows was also obtained for cross correlation / detection confirmation. 

 

Parameter sensitivity studies for configuration 
A sensitivity study was conducted exploring the MVNN prediction algorithm (with BED used to 

provide event probability over a time window) investigating the key parameters (EPA 2010) of 

window length used for prediction (MVNN) and outlier threshold (measured in in units of standard 

deviation - sigma). Ranges selected were based on EPA findings and a complete enumeration was 

conducted for pairs of values. The parameters were otherwise: 

a) ETO=288 (5min) time steps (1 day) b) BED window=24 (5min) time steps (2 hrs) c) Probability 

of outlier 0.9 (CANARY default) d) BED event probability threshold =0.5 (CANARY default). 

 

The ETO parameter determines the point at which a baseline change can be concluded to have 

occurred due to continuous alarming over this period (because the early stages of a baseline change 

are the same as an event) and one day was judged a reasonable value. The size of the BED window 

was defined at 2 hours since the study was not focussed on short duration anomalies and instead 

significant events. Integrating results over greater numbers of time steps prior to increasing the 

probability of event detection generally results in fewer false positive detections, but at the expense 

of faster detection time, so for 5 minute sample data this value could be lower for an online system 

albeit with an expectation of a higher number of false positives. Figure 2a shows results for station 

71003 for 380 days for a varying MVNN window size (from 0.5 to 2 days) and the threshold (0.5 to 

2 sigma). Event clusters are defined by CANARY to be distinct contiguous sequences of event 

classifications bounded on either end by periods of normal background water quality data. It is 

evident that the lower the threshold value the greater the number of outliers that will be identified 

and hence the greater the number of event clusters. The majority of event clusters in Figure 2a are 

considered as false positives for the purposes of this benchmarking (several known events are 

actually present as verified in later evaluation). Figure 2b shows how average residual changes with 

MVNN window size indicating that the residual is minimised with a one day window. 
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Figure 2a. Station 71003 sensitivity analysis  

of window size and threshold for MVNN 

(event clusters) 

Figure 2b. Station 71003 varying window 

size with threshold one sigma for MVNN 

(average residual over parameters) 
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The EDS results were examined qualitatively to determine the best threshold value that resulted in 

event detection on obvious significant changes in water quality and which minimised events and 

outliers throughout the rest of the data set. A MVNN window length of one day, 288 time steps, and 

threshold value of two standard deviations was used within CANARY (resulting in 15 event 

clusters, see figure 2a). This is in agreement with the EPA who previously found that, across 

different types of monitoring station, a window size of between one and two days is enough to 

provide reasonably accurate and useful predictions of future water quality values. 

 

Performance evaluation with artificial events 

Contaminants may affect water quality signals, but their signals are difficult to distinguish from the 

background noise. Data quality over a one year period in a live system may be patchy and prone to 

hardware errors. Reliable and accurate reporting cannot be taken for granted, and complete 

operational information is often not available. To evaluate the performance of an EDS with respect 

to false negatives, it is necessary to have a water quality data set that contains actual events. Hence, 

simulated events with known lifetime were added to logged data in order to quantify performance. 

Synthetic patterns were added to baseline normal data to assess and benchmark performance. The 

simulated events change the water quality by adding a deviation to the background. A similar 

technique was adopted to that used in EPA (2010): 

 

 ( ) ( ) ( ) zindE EetEtZtZ σ⋅⋅⋅+= max0       (1) 

where ( )tZ E  is the event modified water quality value at time t, ( )tZ0  is the original background 

water quality at that time step, indE  is an event indicator between zero and one during an event or 

zero otherwise, e defines a decrease/increase in the  parameter in response to some event and maxE is 

a coefficient applied to zσ (standard deviation of the data stream). Simulated events represented 

some (theoretical) changes in parameters over variable time periods in response to possible events. 

Two synthetic patterns were used: square wave and sinusoidal wave (which determines indE ). The 

simulated events were added to the baseline data, into periods of stable measurements, and 

CANARY applied as previously. The overall performance was evaluated as summarized in Table 1. 

The penultimate column describes the percentage of the actual known event time periods (real or 

simulated) that are classified as an event. The final column provides the average delay from the start 

of the event to the alarm state due to the BED classification window. 

 

Table 1. CANARY results on training and testing data (before/after addition of events) 

 

Data set Event 

clusters 

(ETO) 

Average 

event 

cluster 

length 

Proportion of 

true events 

with an event 

cluster 

Proportion of 

total time of 

overlap (true 

vs. estimated) 

Average 

delay in 

detection 

(2h BED) 

Station A base data 

(1 known real event) 

15 (6) 799.7 mins 100% (1/1) 76% 2h 40 

mins 

Station A base data 

with 9 added 

artificial events 

24 (6) 662.7 mins 100% (10/10) 72% 1h 34 

mins 

 

Results of transferability to full evaluation 
The parameters derived in the sensitivity studies for the MVNN with BED algorithm were applied 

to analysis of all available sensors. It was decided to increase the MVNN window size to two days 
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(576) since this further reduced the event clusters for the base data from 15 to 9 (removing 6 

detections with (drifting) temperature as the principle contributing signal) – see figure 2a. 

Consequently, parameters were selected based on the intention to analyse a relatively long period of 

historical data and detect reasonably dominant events which could be correlated with network 

information, while reducing false positives. In practical operational use, it is likely that these 

parameters would be set more sensitively to bias the trade-off towards faster detection times. A pilot 

conducted in the U.S. city of Cincinatti with 15 online sensors determined that 50 alarms per month 

were manageable for the water utility at this scale (Allgeier 2010). 

 

Sources of information for the evaluation when correlating with events included the following: 

• Customer Contact (CC) database (customer reports of discolouration, milky water or 

taste/odour problems) 

• Work Management System (WMS) record of main repairs database 

• DMA inlet flows where available for confirmation of bursts 

 

Figure 3 shows an example detection of a known burst with principal contributing signals being a 

pressure decrease and turbidity increase. CANARY provides details of the major contributing 

signals (parameters) associated with each event cluster. It was anticipated that turbidity and pressure 

would be strongly contributing in the case of abnormal flow based events (such as bursts or repairs), 

and turbidity and possibly pH in the case of discolouration or taste and odour issues. Actual 

responses are configuration dependent as it is known that system hydraulics are significant in 

determining the magnitude of potential discolouration (Husband and Boxall 2011). 

 
Figure 3: One week sensor 71039 data with known burst 

 

Event clusters for all nine sensors were evaluated using the additional information sources. 

Correlating these events to causes was achieved spatially (at DMA level only) and temporally (with 

at most one day proximity) with the DMA flow and pressure data providing further corroboration of 

cause timings. The system successfully detected real world incidents over the one year period 

including correlation with pipe bursts and repairs, abnormal flows, customer reports of 
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discolouration and sensor failure. A total of 139 event clusters were evaluated and classified using 

the following scheme: 

• Burst/repair or flow – correlates to burst main repair or large flow, sometimes with CCs 

• CCs (multiple) – correlates to more than one customer report of discolouration, milky water 

or taste/odour 

• Unknown event – a significant change across multiple parameters determined by visual 

inspection of time series but with no correlation by available information sources  

• Sensor failure – sensor problems and data corruption 

• Ghosts – no obvious defined change determined by visual inspection of time series, but can 

include drift and minor deviation. A WDS is a complex non-linear reactor subject to a large 

degree of uncertainty and additionally data quality can be limited for operational records 

that are generally available for this type of evaluation. 

 

Figure 4a provides a summary of classifications. Figure 4b shows which parameters were 

contributing factors to detections for particular categories; for example pressure and turbidity were 

predominant for burst/flow hydraulic events. Although figure 4a shows a good explanation of 

causes of event clusters, with only 14% unexplained, it does not provide any information on false 

negatives i.e. missed significant events. For evaluating this, customer contacts of discoloured water, 

milky water and taste/odour were judged to be the best indication of significant incidents. One call 

or email from a customer regarding an issue is not usually indicative of a major problem and quite 

possibly associated with domestic plumbing; instead (temporal) clustering of close contacts are 

more likely to be representative of noteworthy issues. DBSCAN (Density-Based Spatial Clustering 

of Applications with Noise) a density-based data clustering algorithm was utilised to cluster 

contacts temporally (Ester et al., 1996). The algorithm requires two parameters ε  (neighbourhood 

distance) and the minimum number of points to form a cluster minPts.  
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Figure 4a. Event cluster evaluation 

summary for one year period 

 

Figure 4b. Category of event with corresponding 

contributing factors to CANARY detection 

 

When clustering the contacts temporally, it was opted to do this as one group across the three 

DMAs. The DMAs were interconnected and served by one water source and studies have shown 

that over 40% of CCs are explained by clusters affecting multiple DMAs (Husband et al., 2010). 

The total individual customer contacts in the three DMAs for the one year period was 223. 

DBSCAN was applied in MATLAB on normalised date stamps with varying algorithmic parameter 

values (ε = 1-7 days and minPts= 2-7 contacts) and detections then correlated, where possible, to 

the CC clusters (detection at one sensor at some time in period of cluster) as summarised in Figure 

5. Over the range of DBSCAN parameters, approximately 75% of CC clusters could be linked to an 

event cluster produced by CANARY analysis (that is, a detection within the duration defined by the 

first and last contact, allowing one day prior to this).  
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Figure 5: Temporal correlation of event clusters and contact clusters using DBSCAN 

 

Further work could explore both temporal and spatial relationships through improved model and 

GIS integration. Furness et al. (2011) describe an integrated network model constructed from CC 

datasets regarding water quality, maintenance records and network hydraulics. 

 

CANARY detects anomalies from baseline data and does not attempt to provide an indication of the 

cause of the anomaly; however, relative contributing parameters for a particular detection could be 

formalised into fuzzy system inputs to provide indicative event type classification. Future work will 

explore online application of CANARY for state of the art sensors. In particular, the combination of 

a wider range of water quality parameters as well as hydraulic parameters on a single sensor will 

facilitate incorporation of pattern matching and development of a fuzzy logic ‘event fingerprint’ 

interpretation system over multiple parameters. 

 

 

CONCLUSIONS 

There is increasing interest in the use of online water quality monitoring and quality alert generation 

as indicators of contamination events (intentional or accidental), as well as for helping to identify 

other types of network event. This study has investigated the use of the CANARY EDS within a 

sizeable historic water quality data set for a UK field validation case study. Parameters analysed 

were water temperature, pH, dissolved oxygen, conductivity, turbidity and pressure. Access to 

water utility records has allowed a comprehensive evaluation (spatially limited to DMA level) of 

detections, with a wider event remit than purely contamination, resulting in only 14% of event 

clusters unexplained (ghosts). False negatives, defined by temporal clusters of water quality CCs in 

the pilot area not corresponding to detections, were only approximately 25%. 
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