This is an author produced version of *Continuous Time System Identification Using Shifted Chebyshev Polynomials*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/83923/

Monograph:

[Link to White Rose University Consortium]

promoting access to

White Rose research papers

eprints@whiterose.ac.uk
http://eprints.whiterose.ac.uk/
Continuous time system identification using shifted Chebyshev polynomials

Research Report No. 748 (?). 1999

L.M. Li and S.A. Billings

A new instrumental variables based identification procedure is introduced to estimate linear and nonlinear continuous time models using a shifted Chebyshev basis in the presence of noise.

Introduction: Orthogonal polynomials have been used by many authors in continuous time system analysis, identification, and control. By introducing an operational matrix continuous time differential equations can be transferred to algebraic forms, from which the parameters can be estimated using least squares. In the system identification problem, however, the application of most of these approaches in the literature have ignored noise or assumed that the noise level is unrealistically low.

In this letter shifted Chebyshev polynomials will be applied to the identification of continuous time linear and nonlinear systems. If the noise contained in the measured output were ignored the estimates would be biased. An Instrumental Variable method is introduced to overcome the bias problem.

Chebyshev polynomials: The shifted Chebyshev polynomials are defined in $0 \leq t \leq t_f$ as [1]

$$T_i(t) = \cos[t \cos^{-1}(1-2t/t_f)]$$ \hspace{1cm} \text{for } i = 1, 2, \ldots \hspace{1cm} (1)$$

In general, a time function $f(t) \in L^2$ in the time interval $0 \leq t \leq t_f$ can be expanded

$$f(t) \equiv \sum_{i=0}^{N-1} f_i T_i(t) = f^r T(t)$$ \hspace{1cm} (2)$$

where
\[f = [f_1, f_2, \ldots, f_{m-1}] \] is the Chebyshev coefficient vector, and
\[T(t) = [T_0(t), T_1(t), \ldots, T_{m-1}(t)]' \] is the Chebyshev vector.

The integration of the Chebyshev vector can be approximated [2] as
\[\int_0^t T(t)\,dt \equiv PT(t) \quad (3) \]
where \(P \) is called the operational matrix of integration.

The product of vectors \(T(t) \) and \(T'(t) \) with the shifted Chebyshev coefficient vector \(f \) can be expressed as
\[T(t)T'(t)f = \tilde{P}T(t) \quad (4) \]
where \(\tilde{P} \) is called the product operational matrix.

Continuous time identification: Consider a linear time-invariant continuous system as
\[\frac{d^n x}{dt^n} + a_1 \frac{d^{n-1} x}{dt^{n-1}} + \ldots + a_{n-1} \frac{d x}{dt} + a_n x = b_1 \frac{d^{n-1} u}{dt^{n-1}} + \ldots + b_n \frac{d u}{dt} + b_{n+1} u \quad (5) \]
with \(\frac{d^i x}{dt^i} = 0, \frac{d^i y}{dt^i} = 0, i = 0, 1, \ldots, n-1 \)
where \(u(t) \) and \(x(t) \) are the input and the output respectively.

If it is assumed that the output measurement is corrupted with a zero-mean white noise signal \(e(t) \) with variance \(\sigma^2_e \) which is independent of \(u(t) \), then
\[y(t) = x(t) + e(t) \quad (6) \]
with
\[y(t) \equiv \sum_{i=0}^{m-1} y_i T_i(t) = y' T(t) \]
\[u(t) \equiv \sum_{i=0}^{m-1} u_i T_i(t) = u' T(t) \quad (7) \]

Substituting (6) into (5), Integrating \(n \) times and applying property (3) yields
\[y'T(t) + a_1 y' PT(t) + \ldots + a_n y' P^n T(t) = b_1 u' PT(t) + \ldots + b_n u' P^n T(t) + b_{n+1} T(t) \quad (8) \]
Equating coefficients of \(T(t) \) in eqn (8) yields
\[y' + a_1 y' P + \ldots + a_n y' P^n = b_1 u' P + \ldots + b_m u' P^m + v \] \hspace{1cm} (9)

Denote

\[\theta_{\text{mod}} = [a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_m] \]
\[\Psi_{\text{mod}} = [P^0 y P^m y, P^0 y P, \ldots, u P^m u] \]

the least square estimates (LS): \(\theta_{\text{LS}} = (\Psi^T \Psi)^{-1} \Psi^T y \) will be biased because \(v \) is not white.

An instrumental variable matrix \(Z' \) can then be introduced to overcome this problem[3][4] if \(Z' \) satisfies the condition that \(Z' \Psi \) is nonsingular and \(E(Z' v) = 0 \).

The instrumental variable estimates \(\theta_{IV} = (Z' \Psi)^{-1} Z' y \) will be unbiased.

Select

\[Z = [P^0 y, P^0 y, P^0 y, \ldots, P^0 y, P^m y, P^m y, P^m u, P^m u] \] \hspace{1cm} (10)

where \(y \) represents the shifted Chebyshev coefficients of \(y(t) \) which is naturally formed from the filtered input signal [5]

\[y(t) = N(s)u(t) \] \hspace{1cm} (11)

using a Runge-Kutta approximation. Here \(N(s) \) is a pre-defined filter and \(s \) is the Laplace operator.

One option for \(N(s) \) is

\[N(s) = \frac{\hat{b}_n s^{n-1} + \hat{b}_{n-1} s^{n-2} + \ldots + \hat{b}_1}{s^n + \hat{a}_n s^{n-1} + \ldots + \hat{a}_2 s + \hat{a}_1} \] \hspace{1cm} (12)

where \(\hat{\theta} = [\hat{a}_1, \ldots, \hat{a}_n, \hat{b}_1, \ldots, \hat{b}_m] \) represents the estimates at the previous step. This will be referred to as IV method one or IV1.

Another option for \(N(s) \) is

\[N(s) = 1 \] \hspace{1cm} (13)

This will be referred to as IV method two or IV2.

The extension to the identification of continuous time nonlinear systems using shifted Chebyshev polynomials is not straightforward. Only bilinear and Hammerstein nonlinear systems can easily be handled by orthogonal polynomials. The latter case is illustrated by a
simulation example in this letter using the shifted Chebyshev polynomials based IV method. The procedure is very similar to that of linear systems.

Simulation examples: Consider a linear time invariant second-order differential equation

\[
\frac{d^2x}{dt^2} + a_1 \frac{dx}{dt} + a_2 x = b_2 u
\]

(14)

The input-output data were obtained by simulating the above eqn with \(a_1 = 1.8, \ a_2 = 1 \) and \(b_2 = 1 \) at a sampling frequency of 50Hz over the interval \(0 \leq t \leq 12 \). Two kinds of input signal were chosen, i.e., \(u(t) = 1 \) and \(u(t) = t^{0.8} \). The output signal was corrupted by an additive white noise sequence \(e(t) \) with the variance \(\sigma_e^2 = 0.0138 \) when \(u(t) = 1 \) and \(\sigma_e^2 = 0.0739 \) when \(u(t) = t^{0.8} \). The length of the shifted Chebyshev coefficients was chosen to be \(m=40 \).

Table 1 shows the results using the instrumental variable strategy based on equation (12) IV1 and (13) IV2 respectively.

<table>
<thead>
<tr>
<th>Table 1. IV estimation results for linear system model (14)</th>
</tr>
</thead>
</table>

Consider adding a second order nonlinear term \(u^2(t) \) to eqn (14)

\[
\frac{d^2x}{dt^2} + a_1 \frac{dx}{dt} + a_2 x = b_2 u + c_2 u^2, \quad c_2 = 8
\]

(15)

All the simulation parameters remain as in the linear example except that \(u(t) = e^{-0.2t} \). The length of the shifted Chebyshev polynomials was chosen as \(m=55 \). The results are listed in Table2.

| Table 2. IV estimation results for nonlinear system model (15) |
Conclusions: The property of the operational matrix makes it easy to convert an ordinary differential equation into an algebraic form which is suitable for digital computation.

For the identification of continuous time linear systems, it can be shown that when the noise is not negligible, the IV based approach introduced in this letter can be applied to obtain unbiased estimates.

For the identification of continuous time nonlinear systems only a restricted range of continuous time nonlinear terms can be treated by orthogonal polynomials. This means a greater computational overhead and the choice of the input signal becomes much more critical.

Acknowledgement: This work was supported in part by EPSRC.

L.M.Li and S.A.Billings (Dept of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD UK)

References:

<table>
<thead>
<tr>
<th>$u(t) = 1$</th>
<th>$u(t) = e^{0.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>LS</td>
</tr>
<tr>
<td>a_1</td>
<td>1.8</td>
</tr>
<tr>
<td>a_2</td>
<td>1.0</td>
</tr>
<tr>
<td>b_2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>$u(t) = e^{0.2}$, $\sigma^2 = 0.6811$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
</tr>
<tr>
<td>a_1</td>
</tr>
<tr>
<td>a_2</td>
</tr>
<tr>
<td>b_2</td>
</tr>
<tr>
<td>c_2</td>
</tr>
</tbody>
</table>

Table 2