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Abstract6

This article describes a method to model roof geometries from widely available low-resolution (2 m7

horizontal) Light Detection and Ranging (LiDAR) datasets for application on a city wide scale. The8

model provides roof area, orientation, and slope, appropriate for predictions of solar technology9

performance, being of value to national and regional policy makers in addition to investors and10

individuals appraising the viability of specific sites. Where present, similar buildings are grouped11

together based on proximity and building footprint dimensions. LiDAR data from all the buildings in a12

group is combined to construct a shared high-resolution LiDAR dataset. The best-fit roof shape is13

then selected from a catalogue of common roof shapes and assigned to all buildings in that group.14

Method validation was completed by comparing the model output to a ground-based survey of 16915

buildings and aerial photographs of 536 buildings, all located in Leeds, UK. The method correctly16

identifies roof shape in 87% of cases and the modelled roof slope has a mean absolute error of 3.76°.17

These performance figures are only possible when segmentation, similar building grouping and ridge18

repositioning algorithms are used.19

Highlights20

 Automated modelling of roof geometries from low-resolution LiDAR data21

 87% success rate in recognition of roof shape22

 Roof slope estimated with 3.76° mean absolute error23

 City-scale applicability24

 Improves accuracy of solar photovoltaic installation performance predictions25
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1 Introduction28

Photovoltaics (PV) and solar water heating are two climate change mitigation technologies that can29

be installed on the rooftops of individual properties and offer substantial emission savings [1, 2]. The30

sector has experienced tremendous growth in recent years [3-5] but its expansion remains mostly31

dependent on a very large number of decisions to invest in separate projects [6]. The absence of32

reliable performance projections has been identified as a major barrier to the uptake of low carbon33

technologies among individuals [7], landlords and local governments [8]. The roll-out of solar34

technologies on a city wide scale could be supported by mapping the feasibility of solar installations35

[7] to influence not only individual property owners but also those responsible for entire portfolios.36



This process must be supported by accurate installation performance projections [9, 10] not on a37

case-by-case basis, but at the city scale where many thousands of potential investment decisions38

require information.39

The city wide approach has further advantages beyond influencing small-scale investment as policy40

makers would have access to estimations of the regional and national potential of the technologies41

underpinned by locally accurate appraisals from the city-scale. This could move decision making42

away from top-down studies based on generalised socio-economic trends that, by their nature,43

cannot be inspected to the individual property level.44

The accurate appraisal of a proposed solar installation’s performance requires detailed knowledge of45

the property’s geometry and positioning [11]. Height above sea level LiDAR data aggregated into a46

digital surface model (DSM) is a data source that can be used to estimate this information for47

buildings across an entire city as various sources demonstrate [12-15]. Resolution is critically48

important when attempting to model the slope, orientation and available area of roofs as it controls49

the amount of height data available for the appraisal of each building. Currently in the UK, the50

availability of DSMs with a horizontal resolution finer than 2 m is limited to small areas of cities at51

prohibitively high costs. We previously reported that more widely available low-resolution 2 m data52

is too coarse to provide an accurate reflection of the number of roof planes and their angles when53

the plan area of a building is less than approximately 200 m
2
[16]. This is particularly problematic for54

city-scale roof shape modelling given that building footprint data for Sheffield, a typical UK city,55

shows that over 70% of properties fall below this threshold [17]. This is a fundamental problem56

because it is at these properties where the greatest interest in microgeneration investment lies.57

DSM data collection processes detect overhanging trees, chimneys and dormer windows which lead58

to inaccuracy in the assessment of building height and is exacerbated by the incumbent vertical error59

of the measurements that can be as great as 0.15 m [18]. This is significant as small property roofs60

are typically less than 3.5 m in height from eave to ridge. In addition, the datasets are also prone to61

noise and poor geospatial referencing. These issues mean that small property roof shapes and the62

angles of their facets are inaccurately appraised using low-resolution DSM data and basic63

interpolation. Due to these problems the most suitable approaches to roof reconstruction from low-64

resolution DSM data are model-driven methodologies as opposed to data-driven ones. The two65

types of methodology have been defined by Maas and Vosselman [19]. Data-driven methodologies66

establish planes directly from the DSM or following a small degree of alteration. By contrast, model-67

driven approaches compare DSM data to a series of common roof shapes, or ‘templates’, with the68

quality of fit quantified, and the best performing template accepted as the modelled roof shape.69

Tarsha-Kurdi et al. [20] provide analysis and comparison of both approaches to further aid70

distinction between the two, stating that data-driven methods have a fundamental assumption that71

buildings are an aggregation of several segmented roof planes. Model-driven methodologies72

however, test the quality of fit when matching raw data to the most similar roof shape from a library73

of pre-defined shapes. This means that a model-driven methodology will always return a logical roof74

shape whereas data-driven methods have been found to misinterpret low-resolution data and75

suggest a large number of nonsensical roof facets on each property [21].76



2 Method77

Here we describe a methodology that builds on previous model-driven approaches by incorporating78

a number of novel elements. We first apply segmentation processes to building footprint data in79

order to remove peripheral building components, thus disregarding small building protrusions (<2080

m
2
) that are unsuitable for solar technologies. The resulting segmented building footprints are81

assumed to define locations within the DSM containing roof-space potentially suitable for solar82

technologies. They are also used to estimate orientation and to provide a basis for identifying83

similarities in the roof shapes of neighbouring properties. Buildings within the same 250 m x 250 m84

areas are then grouped together if their segmented building footprint dimensions are similar. There85

is then a process to combine the DSM data from properties of the same group, thus creating a pool86

of DSM data of a finer resolution than from the original individual properties. The combined data is87

then compared to a series of common roof shapes in a model-driven approach, with the best fit88

selected as the modelled roof shape in a similar method to that of Huang et al. [22], Lafarge et al.89

[23] and Henn et al. [24]. Where there are no similar buildings to a particular property, outliers from90

the segmented individual building’s data are removed before the ridge repositioning and template91

comparison proceed.92

The outputs of the methodology are the shape, slope, orientation and plan and sloped area of roofs93

in a study area. As such, the methodology can also better inform three-dimensional city models94

which have a wide variety of applications including solar resource estimation. The modelled data are95

validated against measured data from a large number of buildings within the city of Leeds, UK. The96

method has been designed for application on a city wide scale meaning it can be implemented for a97

large number of buildings using only moderate computing power. Furthermore, its use of commonly98

available low-resolution DSM and building footprint data mean its application may be viable in more99

locations than those requiring finer resolution data.100

2.1 Footprint Segmentation101

This process aims to establish the largest rectangle that can be inscribed in the original building102

footprint. Since the DSM only provides height above sea-level information, the boundaries of each103

property are established using building footprint data sourced from Digimap [25]. The footprint data104

is of sufficient detail to include conservatories, porches and other protrusions on small properties105

which are unlikely to be suitable for solar installations. In addition, such building features can106

confuse template matching processes as they lead to a wide variety of height measurements across107

a building which are not representative of the main roof shape.108

Segmenting polygons into simple shapes is a basic problem in computational geometry with a body109

of literature describing potential solutions for specific conditions. A first level of complexity was110

explored by Fischer and Höffgen [26] who examined inscribing axis-parallel polygons to convex111

polygons. Daniels et al. [27] and Boland and Urrutia [28] presented methodologies of greater112

complexity that consider polygons containing both concave and convex angles but still only accept113

axis-parallel inscribed rectangles which may not define the largest possible rectangle. Conversely,114

Knauer et al. [29] and Molano et al. [30] have recently explored the problem of computing the115

largest rectangle of any orientation but only with regard to convex polygons. Hence despite the116

range of approaches, no single methodology provides a definitive solution to the particular problem117

faced in this work. However, the building footprint data consists of polygons with characteristics that118

can be exploited to create a relatively simple and computationally efficient solution. For instance,119



the small property polygons never feature internal holes, a large (>16) number of vertices or more120

curved than straight lines which all increase computational time [30]. There also tends to be a right-121

angled vertex of the original building footprint that forms part of the largest rectangle that could be122

inscribed. Utilising these traits, the processes described in the following sections were developed for123

polygon types of differing complexity.124

2.1.1 Polygon Type 1125

Polygons with internal angles that are all approximately 90 or 270° are segmented by proposing126

locations for a fourth vertex of a protrusion in the original building footprint outline. Concave angles127

in the footprint outline are identified (Figure 1A) as starting points for two intersection lines (Figure128

1B), the first of which runs from the vertex preceding the concave angle, through the concave angle129

itself and on to its intersection with the polygon outline (Figure 1B grey line). The second line130

proceeds from the vertex following the concave angle through the concave angle and on to its131

intersection with the polygon outline (Figure 1B black line). The intersection point of the shorter line132

defines the fourth vertex of a smaller shape within the building footprint (marked with a cross in133

Figure 1B).134

135
Figure 1 Segmentation process from concave angles. A: Two concave angles circled. B: Creation of intersection lines from136
a concave angle and identification of an intersection point (denoted by cross) on the shortest. C: Final segmented shape137

after intersection process repeated for the second concave angle138

Figure 1C shows a polygon with two segmented protrusions and a large rectangle that is assumed to139

define the location of the building’s main roof part in the DSM.140

2.1.2 Polygon Type 2141

The process described above fails on polygons with internal angles that are not 90 or 270° (Figure142

2A). For such polygons a second process is presented in which a rectangle is expanded from an143

internal right-angle of the footprint outline. First, the longest pair of lines to form a right angle in the144

original building footprint (Figure 2B bold line) are identified and used to project a fourth vertex of a145

new rectangle (Figure 2C dotted lines) that will be referred to as the ‘large rectangle’.146



147
Figure 2 A: Original footprint. B: Longest pair of lines to form a right angle (bold line). C: Large rectangle (dotted lines)148

formed from the longest right-angled lines. Also shows iterative expansion of a new, inner rectangle along width of large149
rectangle. D: Second expansion along length of large rectangle. E & F: Repetition of expansion process (length first). G:150

Larger shape created by the two expansions (in grey) accepted as main roof part of original footprint.151

A 0.5 by 0.5 m rectangle is constructed at the intersection of the two longest lines to intersect at a152

right-angle (Figure 2B, grey square) that will be referred to hereafter as the ‘new rectangle’. The new153

rectangle is expanded in increments of 0.1 m along the width of the large rectangle until it no longer154

fits inside the original building footprint (Figure 2C). The enlarged new rectangle is then expanded in155

increments of 0.1 m along the length of the large rectangle again until it no longer fits inside the156

original building footprint (Figure 2D) which defines a first inscribed rectangle. The double expansion157

process is then repeated but with extension by length preceding the enlargement in width (Figure 2E158

& F) to create a second inscribed rectangle. The larger of the two inscribed rectangles is selected as159

the best approximation for the location of the property’s main roof structure from within the160

original building footprint (Figure 2G, grey rectangle).161

2.1.3 Polygon Type 3162

A small proportion of polygons fail the criteria of the processes described above, an example of163

which has been provided in Figure 3.164

165
Figure 3 Polygon (black outline) containing interior angles not approximately 90 or 270° and without right-angled166

vertices in common with the final desired segmented polygon (grey rectangle)167

Here the interior angles are not all approximately 90 or 270° and do not share right angles in168

common with the final segmented polygon. A brute force method is implemented for these polygons169

whereby a small rectangle is expanded and rotated incrementally from the centre of the original170

building footprint until it occupies the largest space of the original building footprint. There is no171

prior information to deduce if a building footprint shares any vertices in common with its final172

segmented building footprint so if the polygon is not type 1, the processes for polygon types 2 and 3173



must both be executed. The larger inscribed polygon resulting from the two processes is accepted as174

the segmented building footprint.175

The solutions for polygon types 2 and 3 are iterative procedures that reflect the lack of an elegant176

mathematical solution for this problem. The resulting modified building footprints are more suitable177

for identifying the location of roof shapes suitable for solar technologies within the DSM for178

extraction. Figure 4 shows an example of the outcome of the segmentation process when applied179

across a neighbourhood.180

181
Figure 4 Segmentation of building footprint data (left) across a neighbourhood to extract major roof parts (right) in182

neighbourhood 690183

The segmented polygons also provide a way to assess the size and orientation of roof structures,184

saving significant computational time compared to Huang et al. [22] who use only DSM data and find185

building locations by ‘blob detection’ and size and orientation by localised iteration.186

2.2 Data Combination Procedures187

It is important to note here that the combination of data is limited to neighbourhoods where there188

are similar buildings. The DSM data from buildings that do not share a similar neighbour still undergo189

the processing steps outlined below and are then compared to a series of roof templates without190

any combination of data and thus remain at low resolution.191

2.2.1 Similarity Identification192

The dimensions of the segmented building footprints are used to identify similar shapes within193

62,500 m
2
neighbourhoods. The buildings are categorised using bins of 1.1 m for length and 1.2 m194

for width which were empirically found to be robust thresholds to group similar buildings together.195

Buildings within the same bins for both dimensions are assigned to the same similarity group to have196

their DSM data combined following further processing.197

The following paragraphs describe how the tightly constrained plan dimensional thresholds enable198

the grouping of buildings with identical roof shape. For example buildings 1, 2 and 3 in Figure 5 are199

within the same 62,500 m
2
neighbourhood and have plan dimensions that are alike, but building 3200

has a different roof type (hipped) to 1 and 2 (both gabled).201



202
Figure 5 Similarity thresholds. The small, solid white rectangles have the shortest length and width of the bin to which203
the building footprint (dotted white line) is a member. The larger, solid white-lined rectangle has the longest length and204

width of this bin.205

The bin sizes used to assign similarity grouping are based on increments of 1.1 m for width and 1.2 m206

for length. For example, building 1 has a length of 13.05 m and width of 8.28 m and falls in to a bin207

of 12.58 m to 13.78 m for length and a 7.98 m to 9.08 m bin for width. Figure 5A shows two208

rectangles constructed around the segmented footprint of building 1 (dotted outline). The smaller209

white outline has the dimensions of a rectangle with the smallest width and length of their210

respective bins creating a rectangle 12.58 m in length and 7.98 m in width. The larger white211

rectangle has dimensions equal to the longest edges of each bin, meaning a length of 13.78 m and a212

width of 9.08 m. For buildings 2 or 3 to be considered similar to building 1 they must have a213

segmented footprint that fits between the solid white lines.214

Figure 5B shows that the footprint of building 2 fits between the solid white lines meaning it would215

be considered a similar building. The footprint for building 3 extends out of the two solid lines and so216

would not be grouped as similar to buildings 1 and 2. The method detects small differences in plan217

dimensions that reflect differences in building construction and roof shape.218

2.2.2 Outlier Identification and Height Normalisation219

Building footprint and DSM data are often misaligned which can result in ground height data220

appearing inside a building footprint or conversely, roof data falling outside and being mistakenly221

disregarded. DSM data also tends to contain many outliers that must be identified and removed.222

Therefore, data points with an absolute height difference greater than 1.5 m compared to the223

average of their neighbours were removed.224

DSMs provide height above sea-level measurements which means that data from two buildings225

cannot be directly combined without first normalising the heights such that they are made relative226

to ground or eave level. Therefore, the lowest height measurement of each property following the227

removal of outliers is used to define the roof’s minimum height. The relative heights of the building’s228

data points are then established by subtracting this minimum height from each DSM data point229

contained by the relevant segmented building footprint.230



2.2.3 Rotation, Ridge Repositioning and Combination231

To enable the combination of similar buildings’ data, each segmented building footprint and the232

DSM data it contains are rotated until the lengths of the footprint are made axis-parallel. The233

processed DSM data of similar buildings from a neighbourhood are then combined and in doing so a234

dataset of far higher resolution than the original individual buildings is obtained. The following235

paragraphs explain how this and the outlier identification algorithm are executed using a gable roof236

shape template as an example because it is the clearest to visualise. The same approach is applied to237

the hipped, long hipped and pyramidal templates.238

The angle between the horizontal and the most southerly line in the building footprint outline is239

calculated as are the angle and distance of each DSM data point from the most southerly vertex of240

the building footprint (Figure 6A). This information is used to re-project the DSM data points into241

position when the building footprint is rotated to make its length axis-parallel (Figure 6B).242

243
Figure 6 Data rotation and combination procedure244

The rotated data is used to assess the true position of roof ridges in the data extracted from the245

DSM using each building footprint. Due to misalignment between the building footprint data and the246

DSM, the geometric centre of a segmented building footprint is often not the location of the tallest247

DSM data as would be expected for a symmetrical roof with accurate positioning. This problem is248

addressed to ensure that data from similar buildings are overlaid correctly. The data is split into 0.7249

m bins along the y-axis of rotated data from individual buildings with ridge location identified by the250

bin containing the highest average DSM data.251



252
Figure 7 A-C: Rotated DSM data for three similar gable buildings prior to combination viewed from the y, z perspective.253

D: Combined data following height normalisation, outlier identification and ridge repositioning processes254

Figure 7A-C show datasets with issues that must be addressed prior to data combination. Figure 7A255

has two outlier data points whilst B and C show the outcome of particularly poor alignments256

between building footprint and DSM data as two aligned datasets would lead to a peak near 5m on257

the y-axis. Consequently B contains little data for the left hand side of its roof whilst the data in C258

has no information regarding its lower right hand side. All three datasets must also have their259

heights normalised prior to combination. The result of the combination procedures is demonstrated260

in Figure 7D where there is a complete roof profile free of outliers at a far higher resolution than261

data for individual roofs could provide.262

2.3 Template Construction and Selection263

The combined data is then compared to the set of common roof shapes shown in Figure 8 with the264

best fitting selected as the most appropriate model of the similar buildings’ roofs.265



266
Figure 8 The roof template library267

2.3.1 Construction268

For a fair comparison the templates are constructed to achieve the best possible fit whilst269

maintaining the integrity of their shape. Therefore, templates are constructed using the combined270

data itself to establish eave and ridge heights from which the rest of the model shape is formed.271

The data is first divided between the facets of the particular template depending on its x, y position.272

Facet dimensions are defined by empirical evidence from aerial photography such that, for example,273

the ridge length is 35% of the footprint length for the hipped template and 68% for the long hipped274

template. Figure 9 shows a hipped template with four numbered facets.275

276
Figure 9 The four regions of a hipped template. 1 and 3: hip sections. 2 and 4: gable sections277

Owing to the directions of the template's slopes, the y-axis information is disregarded for sections 1278

and 3 of Figure 9 and regression is applied to the x, z data. By contrast, only the y, z data of sections279

2 and 4 is analysed. The MATLAB® robustfit function [31] is used to execute an iteratively reweighted280

least squares fit that reduces the effect of any remaining outliers that were not identified by the281

outlier identification criterion described in section 2.2.3. However, regression lines alone do not282

constitute a satisfactorily modelled roof shape because they fail to meet at the same ridge height283

and do not share a common eave height, which are two essential properties of a logical roof shape.284

Hence the regression lines are used to establish average eave and ridge heights. Returning to the285

hipped template example, the lowest and highest points of the four regression lines within the286



facets are averaged by weight of the number of data points in their respective facets, thus287

calculating the average minimum (eave) and maximum (ridge) heights of the prospective template.288

The eave and ridge heights are then used to define the template’s final shape by constructing facets289

between them appropriate to the template type of plan dimensions relative to the average plan area290

of all segmented building footprints in the relevant similarity group. At this stage, if the difference in291

height from eave to ridge is less than 2 m, all templates except flat and shed are rejected.292

2.3.2 Selection293

The constructed templates are then compared to the combined data using a z-error (∆) metric294

similar to Huang et al. [22] such that,295 Δ௭ = ∑|ି| (1)296

where ܼ is height above eave level suggested by the model, ܼௗ is the height above eave level of297

the combined data and ܭ the total number of data points in the combined data. The template with298

the smallest Δ௭ value defines the best fit and provides the modelled angles of facet slopes. The data299

is compared to each template unless its length is less than 15.9 m, in which case the long hipped300

template is not tested as in early investigations it was found to bare close similarity to the gable301

template when scaled for building lengths shorter than this threshold.302

3 Validation and Applications303

3.1 Data Sources and Test Area304

Building footprint data was sourced from EDINA [17], a centre that provides spatial data for UK305

research institutions [32]. It provides the location and two-dimensional plan view shape of buildings306

which were used in this study to establish areas of the DSM containing roof height information. The307

2 m resolution DSM and aerial photography used in the validation were sourced from Landmap [18],308

a service that provided UK academia with spatial data until December 2013 [33]. The methodology309

was applied to seven randomly selected 62,500 m
2
suburban neighbourhood zones in North West310

Leeds, UK containing a total of 536 buildings. Figure 10 shows four of the neighbourhoods selected.311



312
Figure 10 Four of the neighbourhoods tested using the methodology where the white lines represent the building313

footprint data prior to segmentation314

The accuracy of roof shape and orientation modelling was validated by comparison to aerial315

photography. Slope estimation accuracy was appraised from site surveys for which a tripod-316

mounted laser distance measuring device with an accuracy of +/- 20 mm over 150 m was used.317

Across the seven tested neighbourhoods, the number of buildings within each grouping ranged from318

2 to 68 and averaged 3.9. Typically 35% of buildings had to be regarded as individual for the tested319

neighbourhoods. It should be noted that this is highly specific to the test locations and that regional320

variations are to be expected. However, when the segmentation and similarity identification321

processes were applied to all neighbourhoods across the city of Leeds, a similar figure of 29.2% of322

buildings were defined as individual.323

The similarity grouping criteria proved to be robust as comparison to geo-referenced aerial324

photography showed only three buildings (0.6%) erroneously grouped with others that did not share325

the same roof shape despite having similar plan dimensions.326



3.2 Model Outputs327

An example of the model’s outputs is shown for neighbourhood 364 in Figure 11 where the buildings328

are labelled by their similarity grouping before the modelled shape, angle and areas of each group329

are described in Table 1. Facet 1 refers to the modelled slope of the gable section of each roof.330

Where appropriate, facet 2 refers to the angle modelled for a hip roof section.331

332
Figure 11 Neighbourhood 364 labelled by similarity grouping identification numbers333



G
ro
u
p

B
u
il
d
in
g
s
(n
o
.)

M
o
d
e
ll
e
d
S
h
a
p
e

A
ct
u
a
l
S
h
a
p
e

M
e
a
n
S
e
g
m
e
n
te
d

fo
o
tp
ri
n
t
P
la
n
A
re
a

(m
2
)

M
e
a
n
M
e
a
su
re
d
P
la
n

A
re
a
(m

2
)

D
if
fe
re
n
ce

(%
o
f

M
e
a
su
re
d
A
re
a
)

F
a
ce
t
1
M
o
d
e
ll
e
d

S
lo
p
e
(°
)

F
a
ce
t
1
M
e
a
su
re
d

S
lo
p
e
(°
)

F
a
ce
t
1
S
lo
p
e
%
E
rr
o
r

F
a
ce
t
2
M
o
d
e
ll
e
d

S
lo
p
e
(°
)

F
a
ce
t
2
M
e
a
su
re
d

S
lo
p
e
(°
)

F
a
ce
t
2
S
lo
p
e
%
E
rr
o
r

1 2 Flat Flat 40.56 41.54 -2.37 n/a n/a n/a n/a n/a n/a

2 1 Flat Flat 68.98 72.17 -4.42 n/a n/a n/a n/a n/a n/a

3 8 Hipped Hipped 78.60 89.74 -12.42 29.12 29.62 -1.69 26.69 29.82 -10.50

4 1 Flat Hipped 73.34 87.98 -16.64 n/a 32.5 n/a n/a 31.29 n/a

5 1 Flat Flat 46.07 43.59 5.69 n/a n/a n/a n/a n/a n/a

6 1 Flat Flat 199.00 186.5 6.70 n/a n/a n/a n/a n/a n/a

7 5 Long

Hipped

Long

Hipped

158.92 183.78 -13.53 27.76 28.90 -3.94 31.97 29.68 7.72

8 1 Gabled Long

Hipped

152.00 184.09 -17.43 33.49 28.90 -15.88 n/a 29.68 n/a

9 18 Long

Hipped

Long

Hipped

164.31 184.58 -10.98 28.13 28.90 -2.66 33.45 29.68 12.70

10 2 Long

Hipped

Long

Hipped

176.50 187.67 -5.95 31.15 30.00 3.83 36.84 32.00 15.13

11 1 Gabled Gabled 440.30 453.44 -2.90 11.71 11.40 2.72 n/a n/a n/a

Table 1 Model output for similarity groups of neighbourhood 364334



For neighbourhood 364, the method successfully modelled roof shape in 39/41 (95.1%) cases. In the335

two erroneous results, the buildings concerned were regarded as individual buildings and so could336

only be modelled using the resolution of the input DSM.337

The average error in the modelling of plan area for neighbourhood 364 was -6.75% and Table 1338

shows that there was a slight underestimation in the majority of cases. This is due to both the339

inherent inaccuracy of building footprint sizes and the adjustments made to polygons that were not340

completely rectangular during the segmentation process. Slope was modelled with an average error341

of 2.36% for facet 1 slopes in neighbourhood 364 whilst facet 2 slopes were modelled with an342

average error of 6.26%. The greater error in the modelling of facet 2 slopes arises from the reduced343

amount of data available because of the smaller size of facet 2 compared to facet 1 for the long344

hipped template.345

Figure 12 Modelled and observed346
orientation for neighbourhood 364. Line denotes a 1:1 relationship347

Figure 12 shows that for neighbourhood 364, there was an average absolute error of 0.82° (0.39%) in348

orientation modelling which may result from slight inaccuracies in the positioning of the input349

building footprint data or slight changes that result from the segmentation process.350

3.3 Shape Accuracy351

Across all seven tested neighbourhoods, the methodology found the correct shape for 87% of roofs,352

as shown in Table 2.353



Neighbourhood Total Buildings Success (No.) Success (%)

406 83 76 92

759 64 47 73

209 128 110 86

690 84 82 98

867 49 40 80

364 40 38 95

447 88 75 85

Total 536 468

Average 87
Table 2 Shape matching success in seven tested neighbourhoods354

This compares favourably with the one other existing methodology to use low-resolution DSM data355

by Jacques et al. [21] who achieved a shape matching success rate of 81% based on a study of 242356

buildings using a more limited roof template library.357 Δ௭ was found to decrease when the correct template was compared to data from an increasing358

number of buildings. Figure 13 provides Δ௭ values for five templates as data from an increasing359

number of hipped roof buildings of a similarity group with eight buildings were combined and360

compared.361

362
Figure 13 Changes in ઢࢠ when data from an increasing number of buildings is combined. The correct template is hipped.363

The initial trend for pyramidal, hipped and gabled templates is for Δ௭to decrease as data from more364

buildings are considered in the comparison which signifies an improving fit. It is interesting to note365

that the correct template (hipped) only scored the lowest Δ௭ (and therefore best fit) after the DSM366

data of more than four buildings were combined. With fewer than five buildings’ data, a pyramidal367



roof shape would have been incorrectly modelled, demonstrating the key advantage of using368

multiple similar buildings.369

3.4 Slope Accuracy370

The facet 1 slopes of the modelled buildings were compared to the angles observed when 169371

building roofs were surveyed. The mean absolute error (MAE) of each similarity group between the372

modelled and surveyed roofs has been calculated using the equation:373 ܧܣܯ = ଵ∑ | ݂ − |ୀଵݕ (2)374

where ݊ represents the number of slope estimations in each neighbourhood, ݂ the modelled slope375

and ݕ the observed slope. Table 3 shows that the MAE when averaged across all of the similarity376

groups in all of the neighbourhoods was 3.76°.377

Neighbourhood Surveyed Angle (°) Total Buildings MAE (°)

406 42.0 19 11.07

209 29.5 49 9.50

690 27.6 68 2.29

867 27.5 5 2.22

364 28.9 18 2.66

364 27.5 5 3.94

364 29.62 8 1.69

364 30.10 2 3.83

447 27.04 5 0.09

447 21.65 3 0.26

Total 182

Average 3.76
Table 3 MAE in slope prediction of 169 buildings from a range of test neighbourhoods378

The worst performing group of buildings (neighbourhood 406) had steep roofs of 42°. This could379

result in an increased probability of outlier identification failure due to the greater difference in380

height from one data point to the next on a steeper roof. For this reason the outlier identification381

process may have incorrectly removed data relating to the ridge of the steep roofs leading to a382

shallower modelled angle than that surveyed.383

3.4.1 Comparison to Footprint-Defined Regression384

The simplest method to estimate roof slope would be to fit a regression line to the data points385

provided by each facet of a single building using, for example, the MATLAB® [31] robustfit tool. The386

expected geometry of the roof would be defined purely from the building footprint such that, for387

example, the ridge of a gable roof would occur exactly halfway along the width of the building. In388

this section we compare the slopes predicted for similar individual gabled facets under this more389

basic method ,መିୖߚ) where g refers to gable facets and RB signifies the use of robustfit) and the390

angle modelled when the multiple buildings methodology described in the present paper was391

applied ,መିߚ) where MB denotes the use of multiple buildings). A further comparison is made by392

applying መିୖߚ to the combined data of the buildings to assess the importance of the features in393 መିߚ other than the combination of DSM data from similar buildings, such as the ridge394



repositioning process. The buildings below were from a randomly selected similarity group of gable-395

roofed buildings and had a slope (ߚ) of 37° when surveyed, 3.06° greater than መି.396ߚ

Building ID መିୖߚ (°) หߚመିୖ − หߚ
(°)

2 25.51 11.49

34 8.44 28.56

41 29.07 7.93

44 33.44 3.56

48 35.40 1.60

49 31.03 5.97

Average 27.15 መିୖߚ9.85 Combined 28.50 8.50

397 መିߚ (°) หߚመି − หߚ መିߚ(°) Combined 33.94 3.06

Table 4 Comparison of modelling gabled roof slopes using building footprint defined MATLAB® robustfit regression on398
individual and combined data (top) against ۰ۻିࢼ (bottom)399

From table 4, the average หߚመିୖ − หߚ value for individual buildings was 9.85° which is greater400

than the value for using combined data (8.5°) and substantially larger than the 3.06° value401

for หߚመି − .หߚ This shows that the application of the robustfit MATLAB® tool in evaluating402

geometry derived from building footprints is a less accurate than the methodology presented here,403

even when the buildings are combined. Whilst a possible cause of the disparity between the two404

methods is the approach to identifying outliers, the main reason for the improved performance of405 መିߚ is the correction to the misalignment of the two datasets. መିߚ compensates for this406

misalignment by repositioning individual building DSM data prior to combination, enabling a fairer407

calculation of template suitability.408

3.4.2 Benefits of Considering Multiple BuildingsWhen Modelling Slope409

Table 5 shows the modelled angles for the gabled (መି୍ୈߚ) and hipped (መ୦ି୍ୈߚ) facets from a410

randomly selected group of similar buildings with long hipped roof shapes when processed through411

the methodology individually (IND denotes the use of individual buildings). This means the412

segmented buildings’ DSM data were each passed through the ridge centring, height normalisation413

and outlier removal processes, but not the rotation and combination procedures. When surveyed,414

the buildings were found to have gable (ߚ) and hip (୦ߚ) section facets of 27.5°. The final row shows415

the angles modelled when the data for the five similar buildings was combined and the complete416

methodology presented here (መିߚ) was applied.417



Building ID መߚ (°) หߚመି୍ୈ − หߚ (°) መ୦ߚ (°) หߚመ୦ି୍ୈ − ୦หߚ (°)
6 22.63 4.87 * *

13 29.5 2.00 21.99 5.51

18 32.24 4.74 42.07 14.57

19 34.85 7.35 41.27 13.77

28 15.46 12.04 * *

Average N/A 6.20 N/A 11.28

418 መߚ (°) หߚመି − หߚ (°) መ୦ߚ (°) หߚመ୦ି − ୦หߚ መିߚ(°) 29.72 2.22 33.53 6.03

Table 5 Comparison of slope modelling when buildings were considered individually and when combined. * denotes419
instances where building shape was incorrectly modelled and did not return an angle for the hipped section of the long-420

hipped roof template421

The average หߚመ − หߚ error in slope estimation is 6.2° which is significantly greater than the 2.22°422

achieved using .መିߚ Buildings 6 and 28 of Table 5 are instances in which roof shape was423

incorrectly modelled as gabled when treated as individual buildings, meaning that no መ୦ି୍ୈߚ value424

was returned, re-illustrating the benefit of using multiple buildings to model shape. Due to their size,425

the hip sections contain less data than gabled so it is unsurprising that the error in slope estimation426

is greatest for these parts.427

As with roof shape modelling, considering an increasing number of buildings’ data for the appraisal428

of roof slope led to more accurate results. In the following example, the roof slope angle predicted429

by the model was compared to the angles surveyed on 35 buildings from a range of neighbourhoods430

with a variety of roof shapes. The key result illustrated by Figure 14 is the general pattern of431

decreasing errors in modelled slope as data from an increasing number of buildings are combined.432



433

Figure 14 Slope accuracy improvement when using combined DSM data from increasing numbers of buildings. Legend434
items refer to neighbourhood IDs.435

The largest error shown in Figure 14 relates to data from neighbourhood 406 which was436

characterized by steeper angled roofs. Although requiring further investigation on a larger sample of437

steep roofs, the results suggest that the method is less accurate on roofs with a slope greater than438

40°. Data from such properties have a greater difference in height between neighbouring points and439

the effect of alterations to the outlier identification criterion should be investigated in future work.440

3.5 Suitability to City-Scale Application and Implications for Installation441

Performance Projections442

Using only moderate computing resources, an Intel® Xeon® 3.1GHz processor and 4GB of RAM, the443

method executed in under three and a half minutes on each neighbourhood including one444

particularly dense area containing 128 buildings. This suggests it would be suitable for the estimation445

of potential PV capacity on a city scale. It would however be important to take account of errors in446

modelled shape and slope in such estimations and this section discusses the potential impact of such447

errors on the projection of PV installation performance. It is acknowledged that there will be many448

other factors that influence the performance of solar technologies including shading from449

surrounding objects and terrain that are beyond the scope of this article which is focused on450

increasing the accuracy with which area, orientation and slope of roof-spaces are determined from451

low resolution data.452

3.5.1 Slope Errors and Performance Projections453

On average over the test areas, the methodology modelled buildings to within 5° of the surveyed454

slope. Figure 15 shows annual electricity predicted by the EU-JRC PVGIS webtool [34] for a 2.2 kWp455

system with optimized azimuth for increasing slope, demonstrating a non-linear relationship456

between the two.457



458
Figure 15 EU JRC PVGIS estimated annual PV power output for a 2.2kWp installation with optimized azimuth under a459

range of slope conditions460

Table 6 shows the range of power output predictions at a range of slope angles for a slope error of461

±5° and ±10°.462

Roof

Slope

(°)

% change in

predicted

annual power

output for slope

error of ±5° (%)

% change in

predicted annual

power output for

slope error of

±10° (%)

25 3.14 4.71

30 2.06 3.61

35 0.51 2.05

40 0.51 1.03

45 1.03 3.09
Table 6 Difference in EU JRC annual PV power output estimations with changing slope463

This shows how sensitive annual power predictions are to errors in slope and in particular, how the464

sensitivity is greater for the extremes of slope compared to slopes close to the optimum value465

(approximately 39° for Leeds, UK). As discussed above, the MAE for the tested neighbourhoods using466

the current method is less than 5° and hence is sufficiently accurate to provide predictions of annual467

power output even for shallow roof slopes.468

3.5.2 Shape Errors and Performance Projections469

Available roof area is a function of modelled roof shape and orientation as PV panels are deployed470

on the most southerly facing roof facets of buildings. This emphasizes the importance of modelling471

the correct shape of roofs to estimate the performance of PV installations. Figure 16 takes a472

hypothetical building with a plan area typical of suburban properties (78 m
2
) and roof slope of 37.5 °473

and investigates the impact on available area if it were modelled as gabled, hipped or pyramidal.474

The figure is a scaled drawing in which the solar panels are 1 m by 1.6 m and rated at 0.25 kWp to475

reflect a common PV panel on the market. The darker grey regions on the periphery of the south476

facing slope represent the area that would be lost if the building were modelled as hipped instead of477

gabled. The lighter grey regions are the additional south facing area that would be lost if the building478

was modelled as pyramidal instead of hipped. The inset text states the south facing roof area under479

each of the templates.480



481
Figure 16 Effect of modelled roof shape on area available for solar technologies482

From the available area calculations of Figure 16, the impact of roof shape on annual power output483

predictions could be investigated. The predicted power outputs shown in Table 7 were again taken484

from the EU JRC PVGIS tool [34] for a south-facing, 37.5° sloped crystalline silicon panel type without485

any shading objects in the vicinity.486

Modelled

shape

Available

area (m
2
)

System size

(kWp)

Predicted Output

(kWh a
-1
)

Gable 49.16 5.25 4,560

Hipped 36.30 3.25 2,820

Pyramidal 24.58 2.25 1,950
Table 7 Effect of roof shape modelling on annual power output predictions487

Table 7 shows the importance of finding the correct roof shape as it defines the south-facing area488

available for a PV installation and therefore system size. Power output is clearly far more sensitive to489

system size than to slope. In the example provided, the reduction in predicted annual power output490

from a gabled to a hipped property is 37.35%. The reduction if a hipped property were to be491

modelled as pyramidal is 50.23%, whilst if a property was gabled but incorrectly modelled as492

pyramidal, there would be a 68.82% loss in predicted output. Hence, achieving 87% success in shape493

recognition and 3.76° error in slope estimation has been shown to be especially important when494

seeking to model the potential for PV at every property in a city or for estimating a maximum yield495

from PV technologies across an entire region.496



4 Conclusions497

A methodology is presented to model roof shapes using building footprint and low-resolution DSM498

data. With moderate computing resources the method executes rapidly and so demonstrates high499

suitability for application across a whole city region.500

In 87% of cases tested, the method identified the correct shape of the main roof part of buildings.501

This was validated using a total of 536 small buildings from different areas of the city of Leeds, UK.502

The MAE in roof slope was found to be ±3.76° when validated against 182 buildings. Both roof shape503

and slope were more accurately appraised as greater numbers of similar buildings were504

incorporated into the combined data set.505

Roof slope was defined with greater accuracy than by the application of regression techniques to506

areas of roofs defined by building footprint data alone. In the example provided, the error of roof507

slope calculation from the current method was 3.06° whereas using regression on areas of the DSM508

identified by building footprints led to an average error of 9.85°.509

The importance of increased accuracy in modelling roof slope and shape has been discussed in terms510

of predicted annual PV installation power output with the caveat that there are additional local511

factors, such as shading, that may affect the performance of solar installations beyond the factors512

modelled in this methodology. The discussion shows that outputs from the method could be used to513

calculate payback periods for PV installations on typical residential properties with greater accuracy514

than previous methodologies.515
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