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Abstract

A new Kernel Invarance Algorithm(KIA) is introduced to determine both the
significant model terms and estimate the unknown parameters in non-linear continuous
time differential equation models of unknown systems.

1. Introduction

Although most physical systems are continuous in nature the input-output data from
these systems is usually sampled and a discrete time model is identified. But in some
cases a continuous time model, which is often easier to relate to the physical operation
of the underlying system, is required. Identification of linear continuous time models
has been studied by several authors and can be classified into direct and indirect
approaches(Young, 1981). The direct approach is based on the output error or
equation error methods(Unbehauen and Ra0,1990). The equation error method has
been widely employed and is based on converting the differential equations into a linear
algebraic form. Modulating functions, orthogonal polynomials and linear integral filters
have been used in the literature( Pearson and Lee, 1985a, 1985b; Hwang and Shih,
1982; Paraskevopoulos, 1985; Horng and Chou, 1985; Zhao, et al. ,1991). The
indirect approach consists of fitting either a non-parametric model(step, impulse or
frequency response) or a discrete parametric ARMAX model initially and then
constructing a continuous time model of the system from this(Sanathanan and Koerner,
1963:Whitefield, 1986, Unbehauen and Rao, 1990).

In the linear time-invariant case, the ‘impulse invariance method’ (IIM) (Oppenheim
and Schafer,1975) is based upon the equivalence between the linear time-invariant
differential and difference equations. Zhao and Marmarelis(1997) recently extended
this basic concept to non-linear time-invariant models and called the new approach the
“Kernel Invariance Method’(KIM). The method exploits the equivalence between the
high order kernels associated with non-linear differential and difference equation
models. The great advantage is that this approach avoids the direct computation of
derivatives which can induce severe numerical problems and the non-linear model can
be constructed sequentially by building in the linear model terms, followed by the
quadratic terms and so on.

Identification of continuous time non-linear differential equation models from sampled
data is an important problem that has only been studied by a few authors(Tsang and
Billings, 1992; Swain and Billings, 1995). The Kernel Invariance Method offers one
possible solution to this problem and in the present study the method is developed into
a practical identification procedure. In the original formulation by Zhao and




Marmarelis all the calculations were done by hand, the authors noted that the analysis
‘can be a rather unwieldy task in general as demonstrated by two relatively simple
examples’, and no account was taken of noise effects and bias. But in the identification
of practical non-linear systems almost all these restrictions will be violated because the
discrete time non-linear model that is identified from the input-output data is often
complex and can involve many terms. A new practical procedure is therefore
introduced below which uses a new orthorgonalised version of the generalised least
squares algorithm(Clarke, 1967) to select the significant model terms and to yield
unbiased estimates of the parameters in continuous time non-linear differential equation
models. The new method will be refered to as the Kernel Invariance Algorithm(KIA).

The paper is organised as follows. In section 2, the basic concepts of non-linear
system representations and the Kernel Invariance Method are introduced. In section 3,
the reconstruction formulation for linear and non-linear continuous time models from
difference equation models is described, and an orthogonal least squares procedure is
introduced to determine the model structure. In section 4, a simulation example is used
to illustrate the identification procedure, and in section 5 a real application of an
electromagnet suspension control system is described. Finally conclusions are given in
section 6.

2. The Kernel Invariance Method (KIM)

A wide class of continuous time non-linear systems can be represented by the Volterra
functional series (Schetzen, 1980)

y(1)= y.(t) (1)

where y, () is the n-th order output of the system

Y (1) = f:---J:-hn(Ti,---;cn)]ju(r —1,)dt, n>0 )

u(t)is the mput and A, (t,,--,7,) is called the nth-order Volterra kernel or impulse
response function. If n=1, this reduces to the familiar linear impulse response function.

In the Kernel Invariance Method(KIM) introduced by Zhao and Marmarelis(1997)
non-linear systems described by nonlinearities of only second degree were considered.
This was presumably because of the complexity associated with higher order non-linear
effects. However, results are available in the literature which can be applied
immediately to extend these ideas to the much more realistic and general non-linear
case. These results form the basis of the new Kernel Invariance Algorithm and are
reviewed below.

Many continuous time systems can also be characterised by a non-linear differential
equation(NDE) model
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The polynomial form of (3) is given by the model
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where g and p are the number of input and output terms respectively with p+¢g=n,
L is the maximum derivative of the input-output and ¢,,(-) represent the model
parameters. The operator D is defined by

d'x(1)
dr!

The nth-order Volterra kernel can be related to the parameters of the NDE model. In
fact, the multidimensional Laplace transform of the nth-order kernel can be shown to
be a function of the NDE model parameters (Billings and Peyton Jones, 1990)
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and without loss of generality, we assume €,0(0) =-1;

A commonly used non-linear discrete time system model is the NARX model

yk)=Flyk=1),...y(k=d,)ulk-1),...,u(k —d,)] (7)
where F[]  represents some non-linear function of the lagged inputs
u(k=1),...,u(k —d,)and outputs y(k - 1),..,y(k—d,). Selecting F[-] to be a
polynomial expression yields

y(k) =3y, (k) | ®)

where A  is the order of the nonlinearity and y,_ (k), the mth-order output of the
system, 1s given by
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where g and p are the number of mput and output terms respectively and x is the
maximum lag of the input-output terms.

V5]




For the NARX model the multidimensional Z transform of the nth-order kernel can be
shown to be a function of the NARX model parameters (Billings and Peyton Jones,
1950)
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The n-th order transfer functions of equation (5) and (11) are not necessarily unique
because changing the order of any two arguments generates a new function without
changing the value of y,(#) in equation (1) and (8). However the symmetric version of
these functions are unique and these are given as

H,;"”"‘(.'f,...,:;n):l ZH:’-”’"(SU..,,S”) (13)

* all permutations
of W ,...0,

and

m - 1 '
;i (::l,...,zn)=—1 ZH;”” [Bnss®, ) (14)
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af w,...w,
The Kernel Invariance Method is based on the fact that the discrete high-order kernels
are the sampled versions of their continuous counterparts provided that the sampling
interval is sufficiently short to avoid aliasing. This irnplies that

F””'(S S )= H P2y )i (15)

where T is the sampling interval. If n=1 in equation (15) this reduces to the well-
known Impulse Invariance Method(IIM) introduced by Oppenheim and Schafer(1975).
Zhao and Marmarelis extended this to include both the linear model terms and the
quadratic terms and called the new method the Kernel Invariance Method. But the
restriction to quadratic systems can be avoid and the results can be generalised to all
analytic non-linear systems using the analysis introduced above. This follows because
the left hand side of equation (15) can be related by equation (5) to the NDE model
and the coefficients ¢,,(-) and the right hand side can be related by equation(11) to

the NARX model and the coefficients b,.(-) . Therefore if either set of coefficients is

known, the other set can be determined. However, in system identification we are
more likely to obtain the NARX model coefficients b,, from sampled measurements




of the input-output data. Once these coefficients have been estimated the equivalence
in equation (15) can be used to construct the NDE model sequentizlly by building in
the linear model terms followed by the quadratic terms and so on. In real applications
the identified model is likely to be complex and the effects of noise or nonperfect
estimates of the Kernel functions should be accommodated. Both these problems can
be addressed by introducing the new Kernel Invariance Algorithm described below.

3. Reconstruction Formulations

From equations (5) to (15) it is clear that the first order kernel is only related to the set
of linear coefficients, the second order kernel is related to the linear and quadratic
coefficients, the third order kernel is related to the linear, quadratic and cubic
coefficients and so on. This suggests that the continuous time model reconstruction
procedure can be split and can be applied sequentially to reconstruct just the linear
terms, followed by the quadratic terms etc. An important problem at each construction
stage is how to determine which of the many possible terms should be included in the
continuous time model. These issues will be investigated in the following sections.

3.1 Linear continuous terms reconstruction
Consider initially the case n=1 in equation (15) to yield the linear equivalence
H] (z)iz:e’r

zL:CO.l(ll)(S)ll (16) |
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The well-known map between the s and the z -plane is illustrated in Table 1

s -plane z -plane
s = jo (frequency axis) | =1 Unit circle
s=o020 z=rz21
=g 50 g=rOEPE]
§=0+ jw z=re’® wherer=¢"", 0 =7

Table 1. Mapping the s plane to the z plane

Conventionally the s-data is extracted along the imaginary(frequency) axis, that is,
s() = jo(),52)=jo2),...,s(N)=jo(N), where H (s) is now called the
frequency response, and this leads to algorithms solely in the frequency domain
(Whitefield, 1986). However during the application of this approach to some real
examples it was found that sometimes the results under this s -data selection criterion
do not satisfy the mapping in the whole of the s-plane. In this paper therefore the s -
data will be selected randomly along both the imaginary and the.real axis of the s -
plane to guarantee the mapping on both axes.



Assuming that a NARMAX model has been identified from sampled data records the
linear transfer function can be computed from equation (11) to yield

H,(z) = H,(z) + N,(2) (17)

where f-], (2)is obtained from the identified NARX model and N,(z) represents any
Inaccuracies or noise on ﬁl (=)

Thus
3 e, ()s)
H(2)y o =B (s) == +N,(e7)
1+ Y 6 (h)(s)"

N (18)
3 ey, ()(s)!

4=0

1+ ﬁ ¢4 (4)(5)"

I=1

+ N, (5)

Equation (18) is a rational form with respect to 5. As far as the estimation of
Cou(+) and ¢,4(-) isconcemed, s can be regarded as an input signal and H, (z)lw,, or

ﬁl (s) from the NARX model as a known output. So the problem is to estimate the’
unknown coefficients ¢, ,(:),¢, ,(-) from a noisy rational process.

Assume that the noise process can be represented by the transfer function

| 3 ok )
M) =528 () = 2t (5 (19)
YOS gt

where &, (s) is a zero mean white noise process. Multiplying out (18) and re-arranging
gives

() ==Y o)X B, () + Y ¢, 1)) + B, (5) (20)

1=0

where £, (5) = A_(é)_(_jo)(_S)E”(S).
O(s

Further arranging equation (20) yields

2L+1

z(s)= Y.0,P(s)+ E,(s) (21)

where




2(s)=H,(5)
el:co.l(o)a . P=1
82:00,1(1)= Pzzs

g, = Con (L), Fa= (S)L
B =¢,(1), P i :_(S)lgl (s)
B,0m = Cioll), b :—(‘S‘)Lﬁl (s)

If ‘N’ data points of z(s) and P(s) are available, at s(i) = [R(7), JIHD), 1 = LtV
where R(i) and /(i) are random points, then (21) can be expressed as

Z=Pd += (22)
—Z(S(.U) 0, E, (s(1))
o LSO N P L =B
L_Z(S(N)) Nx 1 92L+l QI+ 1 El (S(N)) Nx 1
where _
B(s()) B(s() - Py (s(1)
P B (s(2)) P(s(2)) -+ P, (s(2))
LH(S(N)) Pz (S(N)) "'P2L+1 (S(N)) Nx (2L+1)

Finally since s(i) =[R@),jI()], i=1,...,N, are complex numbers, equation (22)
should be partitioned into real and imaginary parts as

[Re(Z):l _ {Re(P):lq_’ s I:Re(E)} 23)
Im(Z) | | Im(P) Im(Z)

This basic procedure will be applied to all the model reconstructions.

Although equation (23) is a linear-in-parameters expression, if least squares is applied
directly the estimates would be biased because E,(s) is not white.

To overcome this problem, postulate a filter F(s) and multiply both sides of (21) with
F(s) to give
2L+1

F(s)z(s) = 2 0,F(s)P(s) + F(S)[ A P()Q™ (9] (5) (23)

If F(s) 1s selectfed as
F(s) = 4(s)” P7(9)0(s)

then equation (23) becomes

2L+1

F(s)z(s) = ZE}IF(S)P(S) +E,(5) (24)

or in matrix form




Zp= P +c¢ (25)
F(s(1)z(s(1)) 6, &, (s(1)
_| Fs@z(s2) 5|8 _|&6e)
F(s(N)z(s(N)) |, CETST P Ei(s(V) ]
where
F(s()A(s(1)) F(s(D) B (s(D)) - F(s(1) Py, (s(1))
_| F@NA(s(2)) F(s2)P(s(2)) -+ F(5(2)) Py (5(2))

F(s(N)E(S(N)) F(S(N)P,(s(N)) - F(s(N) By, (S(V))

Nx (2L

and the noise E|(s) is reduced to a white signal & (s) and unbiased estimates of the
system parameters will be obtained using least squares. This is essentially a modified
version of the generalised least squares(GLS) algorithm developed by Clarke (1967).

The practical implementation of the above idea can be summarised in the following
steps.

1). Randomly select s(i)=[R(7),jI()], i=1,...,N in the s-plane and form
Z and Pin equation (22). Apply the standard linear least squares to obtain the initial
estimates of @ in equation (22). These estimates will be biased if the noise is coloured.

2). Analyse the residual from equation (21)

2L+l

E(s) =z(s)= X,8,P(s)

G
3).Set the filter F'(s) = Zf,csk,fo =1, where G is the order. Estimate the filter F(s)

k=0

from ﬁ(f)él (s) =&, (s) using least squares. In matrix form this gives,

I'=Y0+A4A,
(E(s() | 5 &, (s(0)
- :E(S(Z)) . f A = :E;l(s(?-))
E(s(N)) |, Jo Joxi SIC PN
where P et . -
SE(s(1)) SE(s()) -+ sCE(s(1))
w | SEG@) SE(s(2) -+ sPE(s(V))
[SE(S(N)) SEGS(N)) -+sPE(S(N)) |4
Thus E(s) = i fost = A(s)™ P ()O(s)




4). Form Z, and P, in equation (25) using the filtered data and apply the least

squares estimator to obtain the estimates @ .

5). Go to step 2) and repeat until the estimates converge.

3.2. Quadratic non-linear continuous term reconstruction

Next consider just the quadratic terms, setting n=2 in (5) yields

HE(5,5) =——— (S e0a (b)) (5
‘[261,0(11 )(Sl+...+5n)[1] hk=0
+ Lch,i(lhlz)(S:)L' HU(S}) (26)

L
+ Ecm(ll,l:)H;“;’" (%.5)}

I =0
With the recursive relation
HI,I(S}) = Hl (51)(51)11
Hf,‘{m (Siwsz) = Hl (SI)HI,I (51)(51)E = H1(31)H1 (5:)(52)1\ (Si)Ll

where H,() is the noise- free part in equation (18). In a practical
implementation H, (-) is formed using the coefficients &o(") and &, () estimated in
the linear term identification.

Assuming that the kernel may be noisy and using the symmetrised formulation from
equation (13) and (14).gives

Hf" (z,, M)l o

'1=8

= H"(5,8,) % Nz(e“'r '“-T)

- 1 Zcm(l LYY (5,)" + (5)F ()% @7)

—[2 G, o(l )(51 +57) ]

L

2 1y 1(11=lz)[(52)é Hl,l(sl) + (Sl:)Ll HI,I(S?.)]

T

[y

—i ﬁo(ll,lg)[H PShs 5)+H“‘“’"(sg,sl)]}+N2(51,51)

l\.)

where H"(z,,z,) is computed from the NARX model parameters as described in
section 2 and

No(5,5) = g((S Plss)e (505

where &,(s,,$,) 1s 2 two dimensional independent, zero mean white noise.




Notice that the coefficients ¢, ,(-) have been estimated in the previous step where the

linear terms were reconstructed, so equation (27) is  linear-in-the-parameters.
Unbiased least squares estimates of the unknown coefficients can therefore be obtained
by using a generalised least squares type algorithm as in the linear case. This consists
of the following steps. Note that s, and s, are vectors consisting of data points over

the s -plane. For simplicity, detailed expanded formulations are omitted here, but the
algorithm can be summarised as

1). Apply standard least squares to equation (27) to obtain estimates of
Co2 (), 6, () and &, (), which will be biased if &, (s,,s,) is not white.

2). Analyse the residual ]\72(51,52) from (27).

3). Estimate a filter 132(51,53) as ]52(5,,52)]\72(51,52) =E,(s,,5,) using least squares
so that

E(si.8) = B (5,5,)0,(5,;5,)

4). Multiply both sides of (27) by }:“ (s,s,) and apply least squares to get
estimates of the parameters C;,(:),¢,,(-), ¢, ().

5). Go to step 2) and repeat until the estimates converge.

This procedure can be continued for higher order nonlinearities, n=3, 4, ...etc.

3.3. Model Structure Determination

The sequential construction of the model starting with the linear terms, followed by the
quadratic terms, and so on as described in the previous subsections forms the basis of
the solution. But in practice only a few of the numerous possible candidate linear,
quadratic, cubic etc. terms will be relevant. It is therefore important , when no a priori
information is available regarding the continuous time model, to be able to select
significant model terms at each stage of the model reconstruction. This can be achieved
using a modification of the orthogonal least squares method (OLS) (Billings, et al.
1988).

Consider a system expressed by the linear-in-the-parameters model

z=29ipi+8 o : (28)

i=l
where 0,/ =1,...,M are unknown parameters.
Reformulating equation (28) in the form of an auxiliary model yields

M
z= Zg,.w,. +& (29)
i=1

where g.,i=1,...,M are auxiliary parameters and w,,i=1,...,M are constructed to
be orthogonal over the data record such that

N
Sow,Owe (D=0,  j=01...k 60
t=1

where N is the length of the data record.
Multiplying the auxiliary model (29) by itself, using the orthogonal property (30) and
taking the time average gives

10




1 & , 1 & (M , 1 X ) - R
32 (r)=7\,—§{2g,-w;<r>}+yge (t) (1)

=0

Finally define

M=

giwl(1)

ERR = !

3 2(0) —%{2 z(r)}

—x 100 (32)

=1 t=1
for i=12,...,M. The quantity ERR is called the Error Reduction Ratio and provides an

indication of which terms should be included in the model in accordance with the contribution
each term makes to the energy of the dependent variable. Terms with associated ERR values

which are less than a pre-defined threshold value (e.g., 0.01) can be considered to be
insignificant and negligible.

However, this idea cannot be applied directly to the iterative identification procedures
described in section 3. In general the result of the first iteration will be biased and this will not
give the correct significance of each term. Some modification must therefore be made when
implementing OLS in this particular application. Simulations suggest that the best solution to
this problem is to begin with an overparameterized model structure. When the parameters of
this model converge, the terms where the ERR values are below the threshold are then
eliminated. Finally re-estimate the parameters for this reduced model structure and hence
obtain the final coefficients. This idea is illustrated in the following simulation example.

The selection of the order of the filters F() and]*:z(-,-) is also important, and the OLS
algorithm can also be used to determine these orders.

4. Simulation Example

Consider the non-linear system
1y+0002 Dy+0.0001 D*y—=1u+0.1y*—0006 yDy =0 (33)

This model was simulated using MATLAB. The input signal was chosen to be a random
sequence with amplitude +1, and 1000 input-output data were collected after sampling at
400HZ. A white noise was then added to the output to give a SNR of 20dB.

4,1. NAMAX Identification

The first step in the identification procedure is to identify a NARMAX model of the system.
An enlarged model structure was used to represent the system, and after passing all the model
validation tests(Billings and Voon,1986) the final model was obtained as:

11




(k) = 0.22099)(k — 1) —0.28266y(k — 8) + 0.00073y(k —2) + 011415u(k - 2)
+0.13593u(k — 3) +0.16375u(k — 5) + 0.09909 y(k — 3) +0.13737u(k — 4)
+0.02375y(k — 3)y(k — 8) +0.08582y(k —9) +0.13896u(k — 7) +0.04719u(k — 1)
~0.34567y(k —12) +0.11822u(k ~ 6) - 0.0840y(k — T)y(t — 9) + 013378 y(k — D) y(k —2)
+0.09797u(k — 8) +0.08407u(k —9) - 0.06159y(k —13) + 0.0748%(k — 10) 34)
-0.09918y(k — 10)y(k —11) +0.03417u(k — 11) - 0.09156y(k —11) +0.1092y(k—5)
+0.08644y(k — 10) +0.10144y(k — 7)y(k —15) — 0.10199y(k — 9)y(k — 14)
+0.01344u(k — 12) - 0.02788(k - 16) -0.09730y(k - 2)y(k - 8) + ©; +E(k)
where ©, represents the noise model terms. Discarding the noise model terms ©, which
were included to ensure unbiased process model parametersand (k) in equation (34),
H,(z) and the asymmetric form of H,(z,,z,) can be computed directly from the parameters of
the NARX model as
[0.04719z" +0.1141527 +0.13593z~ +0.13737z +0.16375z~ +0.1182227°
+0.13896z7 +0.097974z™° +0.0840722° +0.074886z7"° +0.03417z™" +0.01344z72]
[1-0.22099z™ ~0.00073z > —0.09909z > —0.109162~° +0.282662* (35)
+0.08582z7 —0.0864427"° +0.09156z ™" +0.345672™" +0.06159z7" +0.027882 7]

H,(z) =

and
Hy"(21,2,) = H,(2)H,(z,)-
[002375z7273-0.0840z7 25 +01337827 25 —0.09918z 79271 +0.10144z 7z ™
-010199z7727'5-0.09730z 273 ]
[1-0.22099(z, +2z,)™ —0.00073(z, +2z,)~ — 0.09909(z, +2,)~> —0.10916(z, +z,)~
+0.28266(z, +2,)~ +0.08582(z, +z,)” — 0.08644(z, +2,)™° +0.09156(z, +2z,)™
+0.34567(z, +2,)™ +0.06159(z, +z,)™ +0.02788(z, +z,)™**]

(36)

The non-linear differential equation model can now be constructed sequentially. Just the linear
model terms are identified first, followed by the quadratic non-linear terms and so on. At each
step the algorithm determines the appropriate model terms and produced estimates of the
unknown parameters.

4.2 Linear Term Reconstruction

A total of 500 H,(z) data points with z = e’ were generated in equation (35) choosing
s=t,,jt,] where ¢ ,t, were selected as random points over 0~500.

An initial overparameterized structure was used with 5 linear input terms and 3 linear output
terms. The results using the iteration procedure in section 3.1 are listed in Table 1. The ERR

values obviously suggest that the extra terms D*y, D’y, Du and D’u can be removed from

the model structure. Eliminating these terms and re-applying the estimator provided the final
results in Table 2. A comparison of the results in Table 1 and 2 shows that the estimates from
the first iteration were biased as expected.

12




Terms | D*y D’y D%y Dy u Du D’y

Estim’s | 3.12e-10 | 2.885¢-9 | 1.03e-4 | 1.891e-3 | -0.961 |-7.23e-5 | -1.83e-6

ERR(%) | 2.9%e-3 | 2.23e-7 26.99 1.107 71.90 | 4.70e-5 | 5.63e-4

Table 1. Initial identification results based on an overparameterised model structure for
the linear term reconstruction

Terms Dy Dy u

Estim’s of Istitera | 7.5832e-05 1.8424e-3 -0.84392
Estim’s converged | 0.00009951 | 0.0019168 -0.96325

True value 0.0001 0.002 -1.00 _
ERR(%) 63.8562 1.7937 34,3461

Table 2. Final linear term identification

The order of the filter £ (s) was determined based on the ERR wvalues obtained when
estimating the filter £ (5)}21 (s)=E&,(s). When the order was set to be 10 , the sum of the
ERR values was 99.992% suggesting that the order of the filter was adequate and E (S)El (s)
should be white. Figure 1 shows a comparison of the autocorrelation of the true N, (s) and
the estimated ]\71 (s). Figure 2 shows the autocorrelation of the estimated El (s) and the

estimated é](s) =F (S)E?1 (s). It can be seen that El(s) has been reduced to white gl(s) by
the operation of the filter F'(s).

4.3 Non-linear Term Reconstruction

The data points were generated from equation (36) with z, =e" z, =e™ along
$,,8, =[¢,,,Jt,,] where £,,,,, are random points between 0~220. A total of 70 points were
chosen along both axes. Initially an overparameterised non-linear model with model terms -
, ¥Dy, DyDy and yu was used. Applying the iterative procedure in section 3.2 and
retaining the two most significant terms produced the results illustrated in Table 3. The sum of
ERR values of 99.655% implies that the terms y* and yDy are sufficient to represent the
non-linear phenomena.

Term Estim’s of 1st | Estim’s True value ERR(%)
itera converged

N 0.07%4 0.0990 0.1 17.184

yDy -0.0056 -0.0055 -0.006 82.471

SUM (ERR)% ) 99.655

Table 3. Final quadratic non-linear term identification
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5. Identification of an Electromagnetic Suspension System

The data used in this example was collected from a energy-store unit for an electrically-driven
car. The main component in this unit is the electromagnetic suspension system illustrated in
Figure 3. It is known that a quadratic nonlinearity usually relates the force F and the input

currents 7,, n=12 in Figure 3. A continuous time model is required for this system so that
the designers can relate the system components to the model and to produce more insight for
subsequent controller design studies. The block diagram of the experimental set up is
illustrated in Figure 4, where 7(f) is a random signal that was added for the purpose of

identification. The output x(¢) and the input i(¢) were measured, as shown in Figure 5, at the
sampling time interval 1.5e-4 seconds.

The input-output data was decimated to give an effective sampling time interval of 4.5e-4
seconds. A quadratic NARMAX model with only output non-linear terms was identified.

* The identified NARX and non-linear continuous time model contained many terms and will
not be listed to save space. But a comparison of the linear part of the reconstructed continuous
time model and the NARX model is illustrated in Figure 5 and this shows that the mapping on
the imaginary and the real axis are recovered with very little error. Figure 6 shows the
comparison of the quadratic non-linear frequency response of the reconstructed continuous
time model and the NARX model. Finally a comparison of the measured output and the
simulated output from the reconstructed continuous time model with the same input signal at
the original sampling interval of 1.5 e-4 seconds is illustrated in Figure 7. This comparison is
only possible because the continuous time model can be simulated for any sample interval.
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Fig 7. A comparison of the measured output and the simulated output from the reconstructed continuous time
model for the electromagnetic suspension system at the original sampling interval

6. Conclusions

A new algorithm for reconstructing linear and non-linear differential equation models from
sampled data by identifying a non-linear difference model has been proposed as a practical
~means of implementing the Kernel Invariance procedure. It has been shown that by combining
the procedures of Generalised Least Squares, with the orthogonal estimator and the error
reduction ratio that the parameters and the structure of non-linear differential equation models
can be identified without the need to compute higher order derivatives of noisy data.
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