The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of The Lie Algebra of a Nonlinear Dynamical System and its
Application to Control.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/83851/

Monograph:

Banks, S.P. (1999) The Lie Algebra of a Nonlinear Dynamical System and its Application to
Control. Research Report. ACSE Research Report 744 . Department of Automatic Control
and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

The Lie Algebra of a Nonlinear Dynamical System and its
Application to Control

S.P.Banks
Department of Automatic Control and Systems Engineering,
University of Sheffield,Mappin Street,
Sheffield S1 3JD.

e-mail: s.banks@sheffield.ac.uk
Research Report Number T44
Keywords: Lie Algebras, Nonlinear Systems, Modal Control.

ABSTRACT

Using a recently introduced Lie algebra associated with a nonlinear system, several new
results in dynamical systems and control theory are obtained. In particular, we show that the
solutions carry the structure of the associated Lie group. A number of stability and boundedness
results are given and a generalisation of classical modal control is developed.

1. Introduction

In a recent series of papers (Banks and Al-Jurani, 1994, 1996, Banks and McCaffrey, 1998,
Banks, 1999) nonlinear systems of the form

= A(z)z (L)

have been considered, the arguments being based on the introduction of a Lie algebra L4
generated by the matrices {A(z) : z € R"}. Using the classical Levi and Cartan decompositions
of a finite-dimensional matrix Lie algebra, we can write

Lr=s+g
where s is solvable and g is semisimple, and
g=ha Zga (direct sum)
acA

where b is a Cartan subalgebra and g, is a one-dimensional root space. Hence the system (1.1)
can be written in the form

$=S8@)z+H(z)z+ Y ealz)Eaz.
acA

Using this decomposition, a number of stability results and a general approach to higher-
dimensional chaotic systems have been obtained (Banks and McCaffrey, 1998, Banks, 1999).
However, we have not answered the question of how the Lie algebra g = L4 of the system
and the corresponding Lie group G of L, are related to the solutions of the system. The main
result of section 3 shows that the solutions of the system (1.1) can be written in the form

z(t) = g(t; zg)zo
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where g(t;z0) € G, so that G acts as a transformation group on R™ (considered as a set of
initial states). Since

exp:g=Las— G

is the usual exponential map, we have
x(t) = etz

This is useful since the solutions can be seen to carry the structural properties of the group.
Thus, for example, if the system
oo
g = Z Azl
i=0

where i = (41, - +,4,) is a multi-index and the matrices A; all belong to an infinitesimal rotation
algebra, then the solutions are all rotations, so that ||z|| is invariant.
In section 4 we consider the notion of equivalent Lie algebras. If we write the system

1 = T1T

has the representations

(2)=( o)) ()-(02)(2)

and also an infinite number of ‘degenerate’ ones, e.g.

:I*Jl _ 0 I T
(ig _(0 Iy — T .’L'g).
It is therefore important to know which represent equivalent Lie algebras. Of course, different
representations may be useful, since the solutions then carry the structural properties of several
different Lie groups. '

In this paper we study various types of Lie algebras and there applications to stability and
invariance. In particular, the compact part of a Cartan decomposition is important here. Since
a compact Lie algebra generates a compact group, the results of section 3 immediately shows
that such systems have bounded (stable) solutions.

In the final section we shall consider the entire approach of using the Lie algebra L, for
control systems as a wdie-ranging generalisation of the classical modal control of a linear dy-
namical system. Diagonalising the Cartan subalgebra gives a direct extension of the classical
method and we obtain a new control technique for nonlinear systems.

In the next section we shall outline the main results of Lie algebras which we shall need. For
proofs of the results, see Helagson, 1962, Jacobson, 1962, Sagle and Walde, 1973, Varadarahan,
1976.
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2. Lie Algebras

Definition 2.1 A Lie algebra g is a vector space which has a bilinear product map [, -] :
g X g — g satisfying

Q) [X,Y]=-[V,X]foral X,Y €g.

(i) [X, [V, Z]|+ [V, [Z, X))+ [Z,[X,Y]]=0forall X,Y,Z € g .
(If [X,Y] =0 for all X,Y € g, we say that g is an abelian Lie algebra.)

The simplest (nontrivial) example is the space gl(n) of all (complex) n x n matrices with
commutator as Lie algebra product:

[X,Y] = XY —YX ,forall X,Y € gi(n).

The conditions (i) and (ii) in definition (2.1) are trivial to check in this case. It turns out
that every Lie algebra is isomorphic to (i.e. has the same algebraic structure as) a Lie algebra
of linear transformations contained in gl(n). Subalgebras of a Lie algebra are defined in the
obvious way and subalgebras of gl(n) are called linear Lie algebras.

Example 2.2 An important example in physics (because it is the generator of the angular
momentum group) is the three-dimensional subalgebra g3 of gi(3) generated by the matrices

00 O 0 01 0 -1 0
Mi=| 00 -1 , My = 0 00| ,Ms=(1 0 O
01 0 -1 00 0 0 O

Since [M;, M;] = My, where 1,4,k is an even permutation of {1,2,3} it is clear that this is a
three-dimensional Lie algebra and consists of all skew-symmetric (complex) matrices:

0 —XI3 I9 .
I3 0 —I = ElMl + SEQMQ + .’133M3. a (21)
—T9 I 0

Example 2.3 The set A,,_; of all trace zero complex matrices in gl(n) is a Lie algebra since
tr[X,Y] =0 for all XY

Example 2.4 Another important class of Lie algebras is the class of orthogonal Lie algebras.
Let M be a complex n x n matrix and consider the set of all n x n matrices X such that
XM = —MXT. It is easy to check that this set of matrices is a linear Lie algebra (depending

onM). If n =2miseven and M = ( IO IE)” ) we obtain the Lie algebra D,, and if n = 2m+1
1 0 0

isoddand M= | 0 0 I, |, we obtain the Lie algebra B,,. Finally, if n = 2m is even
0 -I, 0

and M = _(} I(')” ), we obtain the Lie algebra C,, (the symplectic Lie algebra).O

The algebras A,, B, Cy, D,, are called the classical Lie algebras. As we shall see, they
form (together with the exceptional Lie algebras introduced below) essential building blocks
for many types of Lie algebras.

Definition 2.5 An ideal  in a Lie algebra g is a (vector) subspace such that [h, g] C b (where
[h, 8] denotes the subspace spanned by the set of all elements of the form (X,Y],X €h,Y €g)
An ideal b in g is minimal if {0} is the only ideal of g contained in b.
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We denote by the b1 + ho the subspace spanned by all elements of the form X +Y,X €
b1, Y € by for any subsets hi,h Cg. IlfhCgisan ideal, then g/b denotes the quotient Lie
algebra which is the quotient of the vector spaces g and b with bracket

[-)_(3?] = [X'JY] 3 X')Y E g
where X is the coset of X. Clearly the projection map

g—g/b

is a homomorphism of Lie algebras with kernel h. (A homomorphism of Lie algebras is a
homomorphism of the underlying vector spaces which preserves the bracket.)

Definition 2.6 A Lie algebra g is said to be simple if g and {0} are the only ideals of g.
Theorem 2.7 The one-dimensional Lie algebra is abelian and simple and any abelian Lie
algebra of dimension >1 is not simple. The algebras A,,B,,Cn (n>1) and Dy, (n > 3) are
simple.0

Definition 2.8 Ifg=g.®--- D gk (vector space direct sum) and each g; is an ideal, then g is
called the direct sum of g, -, g Clearly, g: 18; = [9i,8;] = {0} for i o o,

Definition 2.9 The ideal g = [g,0] of a Lie algebra g is called the derived algebra of g.
We have the obvious derived series of g

g2Dg2 D2 29092

where D'g = D(D*1g ). Each term in the series is clearly an ideal. If D*g = {0} for some
k > 0, we say that g is a solvable Lie algebra.

Definition 2.10 If g does not contain any solvable ideal apart from {0} (or equivalently does
not contain any non-zero abelian ideal), then g is said to be semisimple. If we exclude the
trivial one-dimensional Lie algebra, then all simple Lie algebras are semisimple.

Theorem 2.11 Every semisimple Lie algebra is the direct sum of all its minimal ideals. U

Since each minimal ideal of a semisimple Lie algebra is simple, this theorem reduces the
study of semisimple Lie algebras to simple ones. The latter can be classified, as we shall see
later.O)

Theorem 2.12 Every Lie algebra g has a unique mazimal solvable ideal t called the radical of
g. Then is g/t semisimple.l]

Hence any Lie algebra g can be written in the form g = t +s where ¢ is solvable and s 18
semisimple. This is called a Levi decomposition of g. Note, however, that this decomposition
is not a direct sum, so it is not unique. Each Lie algebra has many Levi decompositions.t

Another important class of Lie algebras is the nilpotent class. If g is a Lie algebra, let
COg =g, Clg = [g,C(O)g],---,C(E“)g = [g,C®g],---. Then C®g is an ideal of g and we
obtain the descending central series:

0(0)920(1)92...20@)92..._

1f C®Wg = 0 for some k > 0, then g is called nilpotent. Note that D‘g C C®g for each £ so

that if g is nilpotent then it is solvable. In fact, g is solvable if and only if ©g is nilpotent.

Example 2.13 The subset of gl(n) consisting of all upper triangular matrices is a solvable Lie

algebra. It turns out that any solvable linear Lie algebra is isomorphic to this algebra. (This
4




is based on Lie’s theorem, which states that all elements of a solvable linear Lie algebra have a

common eigenvector.)
The subset of gl(n) consisting of all upper triangular matrices with equal diagonal terms,
i.e. matrices of the form

A %k ees X
0 X =

0

O 0 --- 0 A

is a nilpotent Lie algebra. Moreover, any nilpotent linear Lie algebra is isomorphic to a direct
sum of such algebras.O

One of the most important linear operators acting on any Lie algebra g is the adjoint map
ad. It is defined for each X € g by

(ad X)Y = [X,Y].

Using this map we can define a geometric structure on a Lie algebra (different from the usual
one on the underlying vector space) in terms of a symmetric bilinear form (-,-) called the
Killing form and defined by

(X,Y)=trad X adY.

(i.e. the trace of the operator ad X o adY’).
Example 2.14 Let us calculate the Killing form for the Lie algebra g3 defined in example (2.2).
For any X € g3 we have X = 21 M; + £2M3 + z3M3 (as in (2.1)). Then

(adX )M1 = {merl + 2o My + $3M3,M1] = —xo M3 + z3M>
and similarly,

(GdX)Mz = 331M3 = £L‘3M1 ; (adX)Mg = —I‘le + IL'QMl.

Hence,
0 —Z3 i)
X = T3 0 -z
—I9 I 0

is actually the matrix representation of ad X in the basis { My, My, Ms}. Y = y1 My +y. Mo +
y3 M3 is another such element, then clearly,

0 —z3 29 0 -ys
tradXadY = tr| =3 0 -z Y3 0 -wum
—Ty I 0 -y 0
= —2(z1y1 + Tay2 + z3y3).0 (2.2)

Cartan proved the following important criterion for solvability:
Theorem 2.15 A Lie algebra g is solvable if and only if (X,X) =0 for all X € Dg.0
Remarkably, semisimplicity is also characterised by the Killing form:
5




Theorem 2.16 (Cartan’s criterion) A Lie algebra g 15 semisimple if and only if the Killing
form of @ is nondegenerate (i.e. (X,Y) =0 for all Y € g implies that X =0).0

Just as a vector space can be decomposed into the generalised eigenspaces of any given linear
operator (or matrix), any nilpotent linear Lie algebra b acting on a vector space V defines a
decomposition of V' in the following way:

For any given linear function o: h — C define the set

V“={UEV:(H-a(H)I)kU=O,forsomek>OandallH€b}

ie. V® is the generalised eigenspace for all H € b with eigenvalue a(H). If V* # @ we say
that a is a weight or a root of h in V and V* is a weight (root) subspace of V. Then we
have

V= GBQEAVCC (23)

where A is the set of all weights of h in V.
Now, if g is a Lie algebra and b is a nilpotent subalgebra, then

adb2 {ad H - H € b}

is a nilpotent linear Lie algebra acting on g, s0 if we apply (2.3) with V =gand b replaced by
adh, we obtain the following decomposition of g:

g= @QEAQQ (24)

where
g*={Geg:(adH— a(H)I)*G =0 , for some k >0 and all H € b}

and we have written a(H) for a(ad H).

A particularly important summand in (2.4) is the one for which a(H) =0 for all H € b,
i.e. g°, corresponding to the subspace of the zero eigenvalue. Clearly, h C o’

Definition 2.17 If h = g°, then b is called a Cartan subalgebra of g.

It can be shown that every Lie algebra has a Cartan subalgebra and each such subalgebra
is a maximal nilpotent subalgebra. Any two Cartan subalgebras are conjugate under a certain
group of automorphisms of the algebra.

In the case of a semisimple Lie algebra, the root space decomposition (2.4) takes the
form

g= h @ ®a€29a

where ¥ is the set of nonzero roots of h in g, and the Cartan subalgebra b is.a maximal abelian
subalgebra of g. The Killing form (,-) is nondegenerate on b, each g* is one-dimensional for
o # 0 and there are (dim b) linearly independent roots. Moreover, if o, § and o + B3 are roots,
the [g*,of] = g°*~.

3. The Lie Algebra of a Differential Equation
We shall be concerned with nonlinear differential equations which can be written in the form

i = A(z)z , z(0) = 20 € R” | (3.1)
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where A : R* — R" is a continuously differentiable matrix-valued function (in fact, usually
analytic). Such equations are common; for example the analytic system

& = f(z)

for which f(0) = 0 can be written in this form. The representation (3.1) is not unique, however.
For example, if

To —x; 0 0
Aw=a@+| % 0 % Y
0 0 0 0
then the equation )
= Alz)g , z(0) = 1o (3.2)

is identical to (3.1). For each representation of the form (3.1) we introduce a Lie algebra
associated with the system:
Definition 3.1 For the system of equations (3.1), we denote by L4 the Lie algebra generated
by the set

{A(z) : z e R"},

and call it the Lie algebra associated with the representation (3.1).
Remark If A(z) is analytic, we may write

) Az) = Z A
lij=0
where i = (i1, +,4,) and 2! = 2z - 2%, We could then introduce the Lie algebra L

generated by the matrices A;. However, it is shown in (Banks and McCaffrey, 1998) that
L4 = L4,y and so we may consider either as equivalent definitions of the Lie algebra associated
with (3.1). O
Example 3.2 In the following we present some examples to illustrate the kinds of Lie algebras
which can arise in the above way.

(1) Consider the system

T1 = 9Ty — T1Z3
Ii?g = —I1I3 + Tolg
533 = LE% — 112% S
It can be written
Iq 0 T3 —I T " ]
Ty | =| —z3 0 Ty zo | = Az) | zo
T3 Tq —x5 0 T3 3

and so L4 = so(3), the infinitesimal rotation algebra generated by the matrices

000 0 01 0 -1 0

00 -1),{0o ool},[10 o

010 ~10 0 00 0
7




Note that the solutions are invariant on spheres, i.e. z3 + =3 + 23 = const.
(2) The Lie algebra of a system is not uniquely defined as noted above. For example, the
trivial linear system

1 = Iy

(2)-(3 ) (2)
(2)=(=)(2)

among infinitely many others. In the first case, the Lie algebra L is the trivial one-dimensional
(abelian) Lie algebra {\I : A € R} and in the second case it is the three dimensional Lie algebra

{(g f) :a,ﬁ,’YeR}:

Hence a careful choice of appropriate representation may be necessary. However, in many cases,
systems have a ‘natural’ representation in the form (3.1), as in the first example. The main
result of this section is that the solution of (3.1) is given by

has the representations

and

w{tixn) = eAltzo) g

where A(t; o) € Ly for each t, o, i.e. the solution can be regarded as an operation of the Lie
group of L4 as a transformation group on R™, since

eA(t';IO)mO _ eA(tE}eA(H;m))eA(tl;EG)SCD (33)

fort = tl + fig.
Theorem 3.3 Given a differential equation of the form

g=A(z)x ; 2(0) =25 e R”

where A : R* — R™ s locally Lipschitz, then the solution for each t (for which the solution
ezists) can be written in the form

z(t; zo) = eAlti=)gy (3.4)

where A(t; o) € La for each t,zq, and, moreover, (8.3) holds for all ty,t2,t such that t = t1+t,.
Proof Since (3.3) is obvious from the group property of solutions, we only need to prove.(3.4).
To do this we first note that it is sufficient to prove it on some finite interval [0,7]. We proceed
by introducing a sequence of linear, time-varying approximations:

#(t) = Azo)a?(t) , 29(0) = zo

i) = AFY@e)2(@), 2¥(0) =20, i > 1. (3.5)
8
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We shall prove that this sequence converges (m C([0, T): R™)). In fact, note that if ®E~(z, ¢)
denotes the transition matrix generated by A(zl~1(2)), then we have (see F.Brauer, 1967) that

|26, t0) || < exp [ f W) dr (3.6)

0

where p(A) is the logarithmic norm of A. The local Lipschitz continuity of A implies that the
solutions z!! of the system (3.5) are bounded, independently of ¢, for sufficiently small ¢. In
fact, let B(K,zo) be the ball with centre zo and radius K, for any fixed K. Then

IA(z) = Al < a(K) llz =yl

for all z,y € B(K,zo), for some a(K), by local Lipschitz continuity. Now,
i
zll(t) — 2o = eAEVgy — 3o + / eA@)=9)(A(zli~Y(s5)) — A(zq))ds
0

and so

Hﬂ?[i](t) - xo“ < Sup ”eA(wo)t - I|| N|zo|| + sup ellA(zo)tila(K).
t€[0,7] t€[0,T]
T sup Hx”‘”(t) — $0||
te(0,T]

so if zl=1(t) € B(K, ), then zll(t) € B(K,z) for ¢t € [0,7] when T is small enough. Since
21%(¢) clearly belongs to B(K,xg) for small enough T', we see that all solutions zll(t) of (3.5)
are bounded for ¢ > 0, t € [0,7T]. Note also that

| A@E (@) < a(K) [|2571 () — zo| + [l Alzo)

by local Lipschitz continuity of A and since
1
pu(A) = 5 max o(A+ AT)

is the standard matrix norm, we have that u(A(z~1(¢))) is bounded for all 4, say
W(AEE()) < p, Vit € [0,T).
Hence we have from (3.5) that
#(t) () = AEFI0)a(0) — A e)a e

A(z(2)) (29 (2) — 2¥1(1))
+ (A@P(@) - A1) 1)

and so, if

e(t) = sup [|2t(s) — 2F(s)]|




then ;
£il(t) < /0 |1<1>E*'-11(t,s)|[-||A(mf1'-11(s))—A(ﬂf-'-’-l(s))u.||mii—1l(s)|\ds.
Hence, :
£ilt) < [ et da(R)gt (o) K
so that

ATy < sup T a(K)TKEN(T)
s€[0,T)

< AT

where A = sup,cq e - a(K)TK. Thus, if T is small enough, A < 1 and {zll()} is a
Cauchy sequence in C([0, T]; R™).
- Next note that, for any nonautonomous system

#= Blt)z , o(0) =z
where B(-) : R — R™ is continuous, we have

J;(t) = lim eﬁB((nfl)%)e%B((n—Z)%) . B%B(%)B%B(O)ﬁo

n— 00

(see, for example, Taylor, 1991). Applying this to each term of the sequence zll(t) above and
" taking a diagonal subsequence, the result follows by the Campbell-Hausdorff formula. O
Remark This result says that the solution of equation (3.1) is given by

z(t; 20) = 9(t; o) zo

where g(t; 7o) = e4(%0) is a smooth curve in the Lie group G4 of Ls. O
Examples 3.4
(1) Any system of the form

aii (m) sui iy (1.1”(23)
e | see z ; ©(0) ==zp (3.7)
a1 () o Gpn(T) - .
where a;;(z) = —aj(z), i.e. A is skew-symmetric, has a solution of the form

z(t:zg) = O(L;29)20

where O(t; 7o) is an orthogonal matrix for each ¢. Thus, every system of this form generates
rotations of zy for each t. In this case, however, the result follows from the elementary fact
that ||z(¢; z)||” is invariant; for

d n n n
Tt lz(t; o)1 = Zﬂiiﬂﬁz = ZZ%G@(Q:):CJ-.

i=1 i=1 j=1
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(2) For any system of the form (3.7) where S* Lai(z) = 0, i.e. A has trace zero, the
solutions are of the form
IL’(t, SCD) — D(t;mg).’b‘g

where det D(¢; zo) = 1 for each ¢, since in this case the Lie algebra L4 is sl(n) and G4 is SL(n).
For example,
1\ _ (1 = T _ [ Zw
(2)-(2)(5) =0=()

2,(t) = el g,

$2(t) = E—t.'L'QO

m(t) _ et et e(l—e—t):nze _ 1) $10/$20 Z10 )
0 et Ty )

Note that (et Je20 — 1) /290 — 1 — €7 as zgy — 0, so this function is well-defined. (Of

course, as with A(z), this representation is not unique.)

(3) Let
J:<(1I g)

A symplectic matrix A is one which satisfies ATJA = J. Differentiating this gives the Lie
algebra sp(n) of infinitesimal symplectic matrices B which satisfy JB + BTJ = 0. Thus any
differential equation of the form

0 o A11($) A12($) _ n
s e ( A (z) —AT,(z) )x, z(0) = zg, = € R*™,

has solution

so that

where Ajp(z) € R, Ay (z) € R™ are symmetric, has solutions of the form

v _ ( Bul(t;zo) Baal(t;zo)
2(ti20) = ( 521(t;$2) Bzz(t;zﬁ) )3:0

where
BﬂBgl—Bngll = 0

BT By, — B3, By
—Bg;BlQ + B%;Bzz = 0.

I
—~

4. Equivalent Lie Algebras

We have seen that the Lie algebra associated with a system of equations

i = f(z) (4.1)
11




is not unique and, in fact, depends on the representation of the system in the form

i = Alz)e. (4.2)

In this section we shall consider the Lie algebras generated by the different representations of
the nonlinear system (4.1) in the form (4.2). First note the following simple result:
Proposition 4.1 If we change coordinates to y = P~z where P is an invertible (real) matriz,
then the system (4.2) and the system

=P A(Py)Py

have isomorphic Lie algebras.
Proof This follows from the facts that A(Py) ranges over the same matrices as A(z) and

[P~1AP,P~'BP| = P7'[A, B]P

for any A, B. O
~ Hence we have
Corollary 4.2 If we have two representations

of equation (4.1) and we write
Alr) =) Ad', Az) = > A,

then they generate isomorphic Lie algebras if A; = P7YAP for all i and for some invertible
matriz P. O
Example Consider the equations

i)l = .’E?Eg

Cbg = Sﬂlwg

We can write this system in the following forms:

Ci?l _ 3 10 I 2 00 I
(5) === o) (2)+=(15)(2)
3:'31 .22 01 I 7 0 0 I1

(2)=4(03) (2) == (5 1) (%)

We see that the change of coordinates
T — 01 i
10
maps one into the other. Moreover, we have

NI RIN!

12
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since

o) (R o))=-(3o)
o) G )=(os)

Note, however, that there are other representations giving nonisomorphic Lie algebras; for
example, the representation

il _ 3 10 I1 0 0 Iy
(2)-=2(58)(2)+==(52) (2)

gives the two-dimensional abelian Lie algebra, while the representation

.'.i}']_ 2.2 01 I 9 00 I
(5)==(00)(2)+=(10) (%)

gives the three-dimensional Lie algebra with basis

{(56)(10)-(6 %)y

We can therefore see that different Lie algebras represent the same system and, conversely,
different systems may have the same Lie algebra for some representation. To remove this
ambiguity, we will define the Lie structure of a system of equations of the form (4.2) to be
a pair (L4, p) consisting of an n x n matrix Lie algebra L4 together with a map p: Z" — Ly
which associates with the monomial z' an element of L 4. _
Definition 4.3 We say that two Lie structures (La,p) and (Lj,p) are equivalent if they
generate the same vector field.

Proposition 4.4 Two Lie structures (La,p) and (Lz,D) are equivalent if and only if

and

z Aia,lry8) = Zﬁ;_ls(’r,s) ,1<r<n (43)
s=1 s=1

where A; = p(i), A; = (i), i = (i1, ++,in) € Z" i — 1, = (41,92, , 45 — 14541, -+, 1) and
B(r, s) denotes the (r,s)-element of the matriz B.
Proof We simply note that each side of (4.3) is the coefficient of #' in the Taylor expansion of

Fa). 3

5. Solvable Systems

In this section we shall consider systems of the form

T = A(z)z (5.1)

13



where L is a solvable Lie algebra. We can change coordinates so that all the matrices A(z)
are upper triangular, so we can write the system (5.1) in the form

611(58) a.lz(ﬁ) am(m)
= wly) - vl g 2)
On (2)

From the results of section 3, we know that the solution of this system through zo at ¢ =0 1s
given by the limit of the sequence of systems

an1 (zF1(t))  ara(ztH(t)) - arn(21(t))
0 (f) = ag(z(t) - a(aH(E) #(), 2¥(0) =z  (5.3)

Qnn (E[F 1 (t))
We can solve each of these upper triangular time-varying equations explicitly to obtain

zt(t) = S(F1())@) | 2(t) = 2o,

where -
5
o i
se = | ¢
on(£(2))
and
on(E(t) = elo ann(€())ds
4 ¢ L
or(E(t)) = efocEDiigy, 4 f > a(€(s)oel€(s)) x
0 p=k+1
el € Ddrgs p 1> k> 1. (5.4)
Hence,

2l (t) = Si(z%) ().
Note also that we can obtain an explicit expression for A(¢;zo) in this case, since
o—n(E(t)) == eﬁ anﬂ(f{s))dsm()n == ann(g; 03 t)"EOn , Say

On—1 (f(t)) = QOnp-1p-1 (‘5, 07 t)a:(}n—l + -/0‘ an—ln(é(s))an—ln—l (65 S, t)ann(g; 0, S)mﬂnds
= an—ln—l(g; 09 t)x()n—l + a'n.—ln(g; 0} t)mﬂn. , say

and so we can write
S(E(-)(t) = A& t)zo
14 -




where an(€0,1) ca(60,8) - a1a(§;0,%)
Alg;t) = Cn-1n-1(6;0,2)  0n-1n(&;0,)
ann(g;g’t)
and so

A(t; o) = lim S*(z(-) A(z1; ).

We can use (5.1) to obtain the following stability result which generalises theorem 4.2 in
(Banks and McCaffrey, 1998):
Theorem 5.1 Let K > 0, M > 0 and suppose that

las(z)] < —6;<0,1<i<n
and put § = min;(g;/2), @ = min,(e; — 6) (>0). Moreover, suppose that
lare(z)| < L, k# 4, |zl < K.
Then, if
(i) 2k <1
(i1) |a:0k| <1£1——- )M, 1<k<n
(1) M <
the system (5 2) is asymptotically stable in the ball {z : ||z|| < K}.

Proof Assume that |o,(t)| < Me %, k+ 1 < £ < n. This is certainly true for £ = n; using the
above assumptions. By (5.4) we have

lok(®)] < E"tleOkH/ Z |ake(€)] - [oe(s)|e™ " ds

0 popa1

i
< e “*|zg| + LM(n — k)e_s"tf e %%e%k ds
0

A

L
e—ekt|$0k|+LMne—6te—t{ek—6)/ e(—5+5k).9d5
0

e—-rSt
< euEkt|.'L'0k,| + LM”T

& Me

by the above conditions. It follows from this that if we have | zl-1 (t) || < K, then ||3:[i] (t) |] <K

and, in fact,

|zf(8)|| < Ke™®.

However, the same argument as above shows that ||m[°](t)” < K and so the result follows by
induction and the convergence proof for the sequence (5.3). O
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6. The Killing Form and Invariant Spaces

Recall that the Killing form of a Lie algebra is defined as the symmetric blinear form
(X,Y) =tr(ad X,adY).

It is important in determining the structure of semisimple Lie algebras and so we shall first see
how to find the Killing form of the Lie algebra L, determined by the differential equation

e o]
T = E AiIl Z,

lij=0

1.e. La=Lg4y. Suppose that, as a vector space, dim L4 = M. The dimension of the vector
space spanned by {A;} is no larger than M; suppose it is K < M. Then there are K linearly
independent matrices in the set {4;}; denote them by C;, - -,Cx. If K = M we have a basis of
L 4- if not we can complete it to a basis of L4 with matrices Ck41, -, Cy where C; = [C},, C,]
for K+1 < j < M, for some ji,j, < j. Let dzﬁ ‘denote the structure constants of L4 with
respect to the basis C1,---, Cyy; Le.

[O&: C.@] = Z dl;acﬂx-
Y

Then we have
- Lemma 6.1 The Killing form is given by

X = LYY Y v, (61

where X =3 2,Cy, Y = > 4,Co.
Proof This is elementary manipulation:

D 2Ci [ 0eC, Gl = Z a;iC;

and the left hand side equals

S > wmlChlCuCll = 3y 3G Gl
: & ¢k ¥
- Zzzyﬂkdgizdivcj
£k 7 J

so that

= YN Y v,
£ kv

and the result follows. O
Corollary 6.2 L, is semisimple if and only if the form

((-‘131,' = :mM)) (yla' w2 )yM)) = Zzzzyfmkdgidiq,
% £ %k
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1§ nondegenerate.
Proof This follows from the above result and Cartan’s criterion theorem 2.16. O
Example 6.3 (See example 2.14.) Let

00 O 0 01 0 -1 0
Mi=1|1 00 -1 , My = 0 00| ,Ms=|1 0 O
01 0 -1 0 0 0 0 O

These are linearly independent and involutive in the sense that [M; M;] = M, where i,j,k is
an even permutation of {1,2,3}. Hence dim Ly, as,, Ms) = 3 and the structure constants dfj are
nonzero only if ¢, 7, k are distinct and hence a permutation of {1,2,3}. Clearly, then

(X,Y) = —2(z1y1 + 22y2 + T3y3)
and so L, m,, 05} IS semisimple (in fact, simple). Consider the system
z = fi(z)Miz + fo(z) Maz + f3(z) Msz.
By theorem 3.1, this has a solution of the form
z(t) = el gy

where
3

A(t,fE(}) = Zai(ta ‘TO)M = L{Ml,ME,MS}

=1

for some functions oy, ag, 3. In fact, the system generates rotations as can be seen directly:

d ) L

& lz@®)|I" = 2;5@%
2z1(fazs — f3%a) + 222(— fizs + faz1) + 223(f1z2 — foz1)
0.

Hence, spheres are invariant for this dynamical system. Now suppose that f = (fi, f2, f3) is of
the form f = ( c%, gz%, %) = grad V for some function V. Then the equation is

and the level curves of V are also invariant, i.e. % = 0 as can easily be checked. Hence for

this system, the trajectory starting at zo lies in {z : ||z|| = ||zo||, V(2) = V (20)}.
Consider now any system of the form

7= hi(y)Ey (6.2)

i=1

LF



where [E; E;] = Ej for any even permutation 4,7,k of 1,2,3. Then L{g, g, 5} = Lirn .Mz}
and so there exists P such that

Hence, if we put z = Py, we have
3
&= hi(P'z)Mz
i=1
and if there exists a function V(z) such that

(hi(P'z), he(P'x), h3(P'z)) = (BV ov BV)

0z, Oz, Bxy
the system will be invariant on the level curves V(z) = V(z). For this we require

Ohy(P~'z) _ Oh;(P'z)

0z; dz; 17
e Ohi( ). 0h;(y)
i\Y ' jy il g . y
= == . 6.
wllp = TR it (6.4

where P/ is the i*" column of P~!. Hence we have proved

Theorem 6.4 Given a system of the form (6.2) where [E; E;] = Ey for an even permutation
i3,k of 1,2,8, if the functions h; satisfy (6.4) for each y, where P is given by (6.3), then
there exists a function W (y) such that the trajectories of the system with initial state yo lie on

{v: 1Pyl = [1Pyoll, W(y) = W(wo)}- O
Example 6.5 Consider a system of the form

’ 0 -2 -1 0
= [hl(y) (0 =l )+h2(y)(—%
0 -2 -3 0

2 (h1(y)Er + ha(y) Bz + hs(y)Es) v.
It is easy to find a matrix P such that
PE,P'=M,;,1<i<3.

— = ol
o
| ol 1 WL 6]
+
P
w
—
L
e
/-———-\
| lan)
plw
O Owin
Owl= |
o=
e

In fact,
30 -1 : 0 -%—
P: 0 —2 1 ,Pg]': 0 —-% 5
0 0 1 0 0 1
Conditions (6.4) become
_10m _ 1ok
25‘y2 N 38’{.}1

10m  10h Ok _ 10k
30y1 20y Oys 3 0y
10hy | 10hy  Ohy 1 Ohs
301 20y lgys 20y,




These equations are satisfied by the functions
hi(y) = 61 — 2ys , ha(y) = —12y2 + 6ys , ha(y) = 643,

and substituting in x = Py we get

from which we conclude that
V(z) = 22 + 3z3 + 223

1.e.
W(y) = V(z) = V(Py) = (3y1 — y3)% + 203 + 3(—2y + 13)?

and so for the system

0 -2 1 -1 0 2 g 2 -4
i ¢ 3 3 % 2 3 3 1 3
y= [(6y1—2ys) | 0 -1 1 |+ (-12ypp+6ys)| —3 0 5 | +6yz| -2 0 3 Y
0 -2 1 -3 0 1 0 0 0
le.
g1 = 8yiys — 4yrys — (20/3)yays + dyoyd + (10/3)yF — 243
g2 = 120192 — 3y1ys — 91y — 4yoys + ¥3 + 3¢5
Ys = 24y1y2 — 12y1y3 — Byays + 49’%
the sets
{y: By —y)?+ ys + (=44 y3)t = const. }
and

{y: By —y3)® + 23 + 3(—2y2 + 13)° = const. }

are mvariant.

7. Compact Lie Algebras

In this section we shall study systems which define compact Lie algebras. First we recall the
general theory of such algebras (see Helgason, 1962).

Definition 7.1 A real Lie algebra g is compact if one can define a symmetric, negative-
definite blinear form B(X,Y’) on it for which

B(adA-X,Y)+ B(X,adA-Y) =0,V Ac g,

It can be shown that the Lie group of a compact Lie algebra is compact in the topological sense.
If g is a complex Lie algebra, we let g® denote the real Lie algebra obtained from the vector
space g by restricting to real scalars and with bracket which satisfies
(XY =4[ X, Y].
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Note that, on g®, J = i is an isomorphism for which J? = i = —I. Such a map is called a
complex structure. Then g is said to have a real form g, if

=008 Jgo

(vector space direct sum). (Of course, g and g®* are identical as sets.) Every element Z € g can
be written

Z=X+JY=X+1iY , X,Y € gy,

and so g is isomorphic to the complexification of gg. The map
c: X+iY - X—-1iY, X,Y €gp
is called the conjugation of g with respect to go. A direct decomposition

go=t+ po

where t; is a subalgebra and pg is a vector subspace is called a Cartan decomposition if the
complexification g of gy has a compact real form g, such that

o 0k C gk, to=00N0gk, Po= 90N (igk)-

Cartan decompositions are conjugate under inner automorphisms of gg. The two main results
we require concerning compact Lie algebras and Cartan decompositions are the following:
Lemma 7.2 (i) A real Lie algebra is compact if and only if its Killing form is strictly negative
definite (and so the Lie algebra is necessarily semisimple).

(ii) Every compact Lie algebra g is a direct sum

g=3+g,9]|

where 3 is the centre g of and the ideal [g,g] is compact (and semisimple). O
Lemma 7.3 Let go be a real semisimple Lie algebra which is a direct sum to + po where g is
a subalgebra and pq is a vector subspace. Then the following statements are equivalent:

(1) g0 = to + po is a Cartan decomposition of go.

(it) B(T,T) <0, for T #0 in t,

B(X,X) <0, for X #0 in pg

and the mapping so: T+ X — T — X, T € ty, X € po is an automorphism. O

We can obtain a simple stability result from the assumption of compactness of the system
Lie algebra:
Lemma 7.4 If the system

& =Alz)z (7.1)

generates a compact Lie algebra Ly, then it is a stable system. Morever, the system

y=—ay+ Aly)y (7.2)

is asymptotically stable, if again A generates a compact Lie algebra L A
Proof The Lie group G 4 generated by L, is compact and the solution of (7.1) is of the form

z(t) = eAltmo)g,
20
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by theorem 3.1, where eA(%0) € G4 (and A(t;z0) € La). Since G4 is compact,

lz(t)|| < K [|zoll
for some K independent of zg, and hence we have stability.
In (7.2), put
z = ey,
Then, ~
2= Ale™*2)z

and A generates a compact Lie algebra, so the system is stable, by the first part. Hence,
y = e~z is asymptotically stable. O

We shall need the following simple result:
Lemma 7.5 Let A and B be two square matrices and let K = Ker B. Suppose that K; C K
18 the largest invariant subspace of K under A, i.e. AK, C K;. Then

exp(A+ B)z = (exp A)z

for all z € K.
Proof Use the power series expansion of exp(A+ B) and note that for any term in the expansion
containing at least one B must be zero when operating on z € K since K; is the invariant
under A. O

We can now state the main result of this section.
Theorem 7.6 Consider the nonlinear differential equation

& = Alz)x (7.3)

and suppose that {A(z)} generates a semisimple Lie algebra L, which has a Cartan decompo-
sition
L= ty+po. (7.4)
Let Kerpg denote the set
Kerpg =N{Ker B : B € pg}

and let K be the largest invariant subspace of Ker py under ty, i.e.
AK C K

for all A € tg. Then the solutions of (7.3) are stable on K and we can choose coordinates so
that the system can be written in the form

(5)-(0Y 28) (%) @5

where {A1(y)} generates a compact Lie algebra and gl parameterises K.

Proof By theorem 3.3 and the decomposition (7.4) we may write the solution in the form

Il’,‘(t) = (6A1(2;$0)+A2(t;mg)) 0
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where A; € ty and Ay € pg. If 7 € K then, by lemma 7.5, we have

z(t) = ef1t0) g,

and so stability follows from lemma 7.4. The decomposition (7.5) now follows by standard
linear algebra. O
Remark We can obtain a similar result if L4 is not semisimple, by writing L4 = g + s where
g is semisimple and s is solvable. If g has a Cartan decomposition g = t, + po then we replace
po by po + 5 in the theorem. O
Examples 7.7 (1) For the system in example 6.5, po = {0} and the space K is R3 so Ay, A3
are zero in this case.

(2) Consider the system

00 000 00 -100 00000
00 100 00 —-100 00010
i =2/ 1 -1000 |z+z%z[ 100 00 |z+23| 00000 |z+
00 000 000 00O 00000
00 100 000 00O 00010
00 00 O 00 00O
00 00 O 00 000
z975 | 1 -1 0 0 1 | +zz324| 0 O 0 0 O |z
00 0-10 1 -1 001
1 -1 @@ 1 00 010
A = (21410000 + 2274 Az0010 + 5 Ags000 + T2T5 Aot001 + T1Z3T4A10110)T , SBY. (7.6)
Then
LA = L{AIDDD{}: A20010: AO3OOO: A010{}1,A10110}
which has the basis
/00 000 00—100\(00000 00 00 O
0 100 00 -100 00010 00 00 0
1 -1000}|,]200 0o0|,JO0O000O0],]1-100 1],
oo o000 000 00 00000 00 0 —-10
\oo 100/ \ooo 00/ \ooo1o0 1 -100 1)
[0 0 000\/1—1000\/00000 00 000\
00 000 2 -1 00 0 0000 O 1 -1001
o0 ooo0o/,loo ooo0f,Jooo0o-10],]00 000/,
1 -100 1 00 000 0000 O 00 000
\00 010}\10 000)\00000 1 =100 1)
[-1 100 - 0 0000 0 0000 00010
-1 1 & f = 0 0000 0 0000 00010
00000 0o 0010 |,l-1100-1{f,]00000
0 0000 2200—2 0 0000 00000
\0 0000 0020 0 0000 00000

The Killing form is

K(&,m) = —6§1m; — 683my — 68 — 56810710 + 14€4m4 + 146575
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as can easily be checked using, for example, Maple. This is degenerate so we shall use the
remark after theorem 7.6. We note that, by examining the structure constants, we have a
compact Lie subalgebra generated by the basis elements

00 00O 00 -100 1 -1 000
00 100 00 -100 2 -1 000
1-1000{(,]100 O0O0],]00 O0OOO
00 O0O0O 000 0O 00 O0O0O
00 100 000 0O 10 00O

which is isomorphic to the Lie algebra {M;, My, M3} in example 2.2. By a change of coordinates
we can write these matrices in the form

0 10 0 01 00 O
-1 0 0 = 0 0 0 = 00 1 =
0 00 | -1 00 | 0 -1 0
* * * * * *
Such a map is given by y = P~'z where
00100
10100
P=gpt 149 04
00010
10001
The system (7.6) becomes
0 1 000 00 000 00010
-1 0 0 0 0 00 100 0 00.00
g = x| 0 0000 [z+2lz4] 0 -1 000 [z+23|] 00000 |z+
0O 0 0O0O0 00 00O 0 00O0O
0O 0 00O 00 00O 0 00O0O
00 0O0 O 00 0O0O
0000 1 0 00O0DO
zozs | 0 0 0 0 O | +zyz3z4| O O O O O |y
000 —-10 00001
0 00O 1 000T10Q0
0 0 (n+ys) 0
—y3 0 y3ys O (y1 +3)(y1 + u5)
= |0 -yy 0 O 0 y
0 0 0 —(y1+uys)yitys) yaysys
0 0 0 Y2Y3Y4 (1 + y3)(y1 + ¥s)

and so the sphere y7 + y5 + y2 = const , y4; = y5 = 0 is invariant under the dynamics of this
equation. Hence the sets

{(z1, 29, T3, T4, 5) : 222 — 221209 + i+ zi=const ,z,=0,7; — 23+ 25 = 0}
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are invariant for the system (7.6), i.e. the system

T, = —mfmgcml-

Ty = T123— .’17%.’1!3.’134 + :cgu

I3 = mf — 129 + m?ma‘ + T1T975 — :c§$5 + $293§

Ty = —IoTsTs+ a:fm3:z:4 — T1X9T3T4 + T1T3T4T5

Ts = T1Z3+ 332334 4+ 212975 — $§m5 + zgxg + :clscgaci

It is therefore seen that studying the Lie algebra generated by a differential equation and looking
for Cartan decompositions of this algebra can give some insight into the invariant subspaces of
the system dynamics.

8. Modal Control

In the classical theory of control, an effective control design method for linear systems of the

form-
z=Az+ bu
is to diagonalise A (or reduce it to Jordan form if it is not diagonalisable) by changing coordi-
nates
y=Plg
and
g=A+ (P 'b)u

where

A=PlAP.

We then choose the control u in a simple way to stabilise the system (assuming this is possible).
In this section we shall generalise this approach to nonlinear systems of the form

= A(z)z + b(z)u (8.1)
by introducing the Lie algebra L4y of the system as in the previous sections. Let

Liaay=5+9

be a Levi decomposition of L4} into a solvable part (s) and a semisimple part (g); this is not
a direct sum so the decomposition is not unique. Next let

g=bh+) g°

ael

be a Cartan decomposition of g, where § is a Cartan subalgebra and the root spaces g are one
dimensional (X is the set of nonzero roots). Then we can write the system (8.1) in the form

& =S8(@)z+ H(z)z+ ) ea(z)Eaz + b(z)u (8.2)

agd
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where S(z) is upper triangularisable and H(z) is diagonalisable (simultaneously, of course,
independently of z). Let y = P~z be a change of coordinates which diagonalises the H(z)
matrices, i.e.

PAHs)\ P = Ax)
= diag (M(z), -+, An(2)).

Then (8.2) becomes
g = AMPy)y + R(y)y + P~b(Py)u (83)

where

R(y) =P~ (S (Py)+>_ ea(Py)Ea) P.

[s1=3M

Suppose that we can find a feedback control u = u(y) such that
- 2 Tp-1 2
> X(Py)y? + y"Pb(Py)uly) < —plly] (8.4)
i=1
for some p > 0. From (8.3) we have

1d ‘
52 WI° =475 = —ullyl® + y"R(y)y

SO
-
W2 = e 2 lyoll? + / 262000y T R(y)yds
1]

i
R R PO L OTES
0

Assume that
R <A

for y € Boa = {z : ||z|| < A}, and so, by Gronwall’s lemma we have
llyll* < €726 |lyo |®
and we have stability if A < p. The original system (8.2) will be stable in the set
{2 " (PEY ULy £ AT

Hence we have proved
Theorem 8.1 Consider the control system

= A(z)z + b(z)u
and suppose that Liay =s+g=5+bh+ > a5 8% Then we can write -

t=H(z)x+ R(z)z + b(z)u
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where H(z) € b, R(z) € 5+ )0z 8™ Suppose that P is a nonsingular matriz which diag-
onalises H(z) (independently of ) and that the pair (P~1H(z)P, P~'b(z)) is exponentially
stabilisable in the sense that (8.4) holds for some p > 0. Moreover, if

up—lR(Py)PH <A

for y € Boa and X < p, then the system 1s exponentially stabilisable in {z : a:jj(PT)'lP'la: <
A} and ’
2| < PPe 2| Pl [lzoll

where ||Pz|* > o*||z|*. O
Example 8.2 Consider the system

) 322 —4+az3 3 T 1/3
T = %S —1—af =2 2y | +(1+xisin’zs) | —1/6 |u
T3 —5—xz2 4-— g2 —Femd ol z3 -2/3
= 0 —l=a 0 o, | +z3( 1 0 1 )
-5 4 —2-.’.12‘% I3 -1 -1 -1 I3
1/3
+(1+z?sin’zs) | —1/6 | u
—2/3
The matrix
1 01
P=|1 00
-1 1 -1

diagonalises the first matrix in the right hand side of the equation, so that, if y = P~'z we
have

—~1—-22 0 0 010 1/3

g=1| 0 —2—-2z2 0 y+a2| 00 0 |y+(L+aisin’zg)P7' | —1/6 |u.
0 0 3—x% 1 00 —2/3
. 0 0O

The Lie algebra of this system is £{4} = 5+8 where g = A; and s is generatedby [ 0 0 0 e
003

However, in this case it is better to combine this part with the Cartan subalgebra generated by

—1-z} 0 0
0 —2—1} 0 since the combined system is stable everywhere. If we choose
0 0 3 + 2z}
the control
u = ——1_—(—12 12 0)z
1+ z?sin® x4
12

= TToadas 1 A
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then we obtain the equation

—1—-z% 0 0 010
g=10 —2—-22 0 y+z31 0 0 0 |y
0 0 -3 — g2 100

In this case we have p =1 and
010
31 0 0 0 = g2
1 00

and we have stability for z satisfying ||z||> < § < 1 (for some 6). Of course, we can do better
by choosing a crntrol to move the poles of the Cartan subalgebra part further to the left.

9. Conculsions

In this paper we have studied in some detail the Lie algebra generated by a differential equation,
which was introduced in an earlier paper. It was first shown that the Lie algebra generates a
finite-dimensional Lie group which acts as a transformation group on the state space, giving
the solutions of the system as a continuous curve in the Lie group operating on the initial value.
This showed that the solutions carry the properties of the Lie group, generalising the linear
theory. Next the nonuniqueness of the Lie algebra was discussed and conditions for different
Lie algebras to generate the same system were derived. The stability theory of solvable systems
was given in the following section, using the fact that the system could be triangularised and
then applying the convergence theory for-an approximating system of triangular time-varying
systems which can be solved explicitly. The Killing form and invariance were discussed and
applied in the case of compact Lie algebras using the Cartan decomposition. This allowed us
to isolate certain invariant subsets of the dynamics by splitting off the compact part of the Lie
algebra and transforming to suitable coordinates. Finally, the whole theory of the classical root
space decomposition of semisimple Lie algebras was shown to generalise directly the classical
modal control theory to nonlinear systems.

It is hoped that this theory demonstrates that the Lie algebra associated with a differential
equation in the above way has many applications to dynamical systems theory. Other aspects
of the classical theory of Lie algebras and Lie groups should also have applications in this field.
For example, the Iwasawa decomposition and the theory of representations of the Lie algebras
and Lie groups invovled (see, for example, Helgason, 1962, Knapp and Vogan, 1995). These
issues will be examined in a future paper.
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