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ABSTRACT

In this paper, we present a Bayesian approach to accurately track

multiple objects based on Received Signal Strength (RSS) measure-

ments. This work shows that taking into account the spatial correla-

tions of the observations caused by the random shadowing effect can

induce significant tracking performance improvements, especially in

very noisy scenarios. Additionally, the superiority of the proposed

Sequential Markov Chain Monte Carlo (SMCMC) method over the

more common Sequential Importance Resampling (SIR) technique

is empirically demonstrated through numerical simulations in which

multiple targets have to be tracked.

Index Terms— Tracking, Correlated shadowing, Bayesian

inference, Sequential MCMC.

1. INTRODUCTION

Mobile multi-target tracking is one the primary challenges of a num-

ber of fields, including that of wireless cellular communication net-

works. In this area, the main structure of a system will feature target

nodes whose kinematic states are unknown and need to be estimated;

and sensor nodes receiving some type of noisy information about the

target nodes, from which an estimation of their states can be inferred.

A variety of methods have been developed in order to solve this

localization problem. The more common range-based methods (as

opposed to range-free methods) depend on the distances between

nodes, through measurements of received signal strengths (RSS),

signal time-of-arrivals (ToA) [1] or angle-of-arrivals (AoA) [2] orig-

inating from the targets. Both ToA and AoA approaches allow for

accurate distance estimations leading to good localization, however

ToA requires synchronized clocks on the target nodes, while AoA re-

quires an array of antennas and is still sensitive to errors due to mul-

tipath, making them costly solutions. The received signal strength

technique [3] is a much more direct and simple approach, with low

implementation costs ; as such, it is a recurrent subject of perfor-

mance optimization attempts. Taking into account the shadowing

correlation ( [4] ; Gudmunson’s model [5]) between different nodes

(targets or sensors), which capitalizes on the fact that in a given en-

vironment, closeby areas present more or less similar behaviors with

regard to shadowing, and may thus be modeled as highly correlated,

is one such way of improving this technique. A few examples of

research include [6] which studies the combination of measurement

correlation and shrinkage estimation of the covariance matrix for sig-

nificant performance improvements, but is limited to the static case.

In [7–10] the measurement correlations are taken into account and

refined particle filtering (or Sequential Importance Resampling) al-

gorithms are implemented, resulting in high accuracy localization,

however they inherently suffer from the limitations of the particle

filtering approach, which, although known to be an effective way of

solving non-linear problems, performs poorly in high-dimensional

state-spaces [11].

In this paper, we design a Bayesian solution to this problem

based on a Sequential Markov Chain Monte Carlo (SMCMC) algo-

rithm, allowing for more robust and overall better performance than

particle filtering. Additionally, we take into account the shadowing

correlations both spatially and in time, that is, between either cur-

rent or past positions of any targets. This allows for performance

improvements both due to the correlations in time between positions

of a single target, and due to the correlations between trajectories of

different targets which may cross at some point in time. The com-

bination of these two features thus has a good potential for overall

robustness in tracking performance in a wide range of scenarios.

The paper is structured as follows. Section 2 details the choice of

the target and observation models. Section 3 explains the Bayesian

framework used and the proposed SMCMC solution. Simulation

results using synthetic data are presented and analyzed in Section 4,

while Section 5 highlights the main conclusions of this work.

2. TARGET AND OBSERVATION MODELS

2.1. Target state and motion models

In a 2-dimensional (2-D) network, the kinematic state of a single

target at discrete time step t may be defined as a vector of posi-

tions and velocities xt = [xt, yt, ẋt, ẏt], although it could also con-

tain accelerations or other variables of interest. The kinematic state

{xt,1:N}t∈N∗ = {[(xt,1)
T , (xt,2)

T , . . . , (xt,N )T ]}t∈N∗ of a set of

N targets is considered to be a stochastic Markov process such that

at any time step t, the transition probability density function (pdf)

p(xt,1:N |x1:t−1,1:N ) = p(xt,1:N |xt−1,1:N ) is known and can ei-

ther be evaluated point-wise or sampled from.

2.2. Correlated observation model

Consider a set of N targets evolving from time 1 to time T , x1:T,1:N ,

and a set of M immobile sensors s = [s1, · · · , sM ]T where si =
[six, s

i
y]

T is the position of the i-th sensor for i ∈ {1, . . . ,M}. At

time t ∈ {1, · · · , T}, a target j ∈ {1, · · · , N} transmitting a signal

with power pt,j causes a sensor i to receive a signal with power pit,j
(the data association problem is assumed to be resolved, for example

it could be assumed that the targets emit during preassigned epochs)

; the corresponding path-loss can be expressed as

Li
t,j = 10 log10 pt,j − 10 log10 p

i
t,j



The observed path-loss yi
t,j at the sensor can empirically be modeled

[12, 13] as

yi
t,j = Li

t,j − L0 = 10α log10 d(xt,j , s
i) + wi

t,j

where

d(xt,j , s
i) =

√

(xt,j − six)2 + (yt,j − siy)2 (1)

corresponds to the Euclidean distance between the position of the

j-th target at time t and the i-th sensor. L0 is the path-loss at a

reference distance of usually 1 meter away from the sensor ; α is the

path-loss exponent (PLE) assumed known (or previously estimated

in a real application) ; and wi
t,j ∼ N (0, (σi

j)
2) is the realization of a

random variable modeling the log-normal shadowing effect, with σi
j

the shadowing standard deviation associated with the link between

the i-th sensor and the j-th target. σi
j is assumed to be constant over

time.

In order to account for the spatio-temporal shadowing correla-

tions between two positions within the network, we use the Gud-

munson model [5]. Thus the correlation between the j-th target at

time r and the k-th target at time s, for (j, k) ∈ {1, . . . , N} and

(r, t) ∈ {1, . . . , T}, is:

ρ(xr,j ,xt,k) = exp

(

−
d(xr,j ,xt,k)

Dc

)

where Dc is the decorrelation distance used in the Gudmundson

model, which depends on the environment and is assumed to be

known or previously estimated.

By defining :

- f i(xt,j) = 10α log10(d(xt,j , s
i)) the exact path-loss between

the position of xt,j and that of si.

- ρi(xr,1:N ,xt,1:N ) a N×N matrix whose (j, k) term [ρi(xr,1:N ,

xt,1:N )]j,k = σi
jσ

i
k exp

(

−
d(xr,j ,xt,k)

Dc

)

represents the co-

variance between the positions of xr,j and xt,k.

the collection of all the path-loss measurements observed at the i-th
sensor until time t is therefore distributed according to the following

multivariate Gaussian density p(yi
1:t,1:N |x1:t,1:N ):

yi
1:t,1:N =





































yi
1,1

...

yi
1,N

...

yi
t,1

...

yi
t,N





































∼ N









































































f i(x1,1)
...

f i(x1,N )

...

f i(xt,1)
...

f i(xt,N )





































,Ri
t





































(2)

with Ri
t the (N × t,N × t) observation covariance matrix which

introduces correlations in the measurements due to the close prox-

imity of target positions, both “spatially” at a given time step and

“spatio-temporally” between positions of different targets from dif-

ferent time steps, and can be expressed in blocks as:

R
i
t =























ρi(x1,1:N ,x1,1:N ) · · · ρi(x1,1:N ,xt,1:N )

...
. . .

...

ρi(xt,1:N ,x1,1:N ) · · · ρi(xt,1:N ,xt,1:N )























(3)

Finally, each sensor is supposed independent from all other sen-

sors regarding measurement correlations - this is justified by consid-

ering scenarios where the sensor positions are immobile and suffi-

ciently far apart from each other. Thus the joint pdf of the measure-

ments from several sensors can be calculated as the product of the

pdfs of the measurements from each one of these sensors:

p(y1:M
1:t,1:N |x1:t,1:N ) =

M
∏

i=1

p(yi
1:t,1:N |x1:t,1:N )

3. PROPOSED BAYESIAN SOLUTION

3.1. Recursive inference

The aim of the Bayesian inference is to recursively estimate the

states of the sequence of targets by computing the expectation of

its joint posterior density. At time t, this posterior density can be

deduced recursively as a function of its expression from the previous

time step t− 1:

p(x1:t,1:N |y1:M
1:t,1:N ) ∝

∏M

i=1 p(y
i
t,1:N |yi

1:t−1,1:N ,x1:t,1:N )p(xt,1:N |xt−1,1:N )

×p(x1:t−1,1:N |y1:M
1:t−1,1:N )

(4)

However, this density is intractable mainly due to the nonlinear rela-

tionship of the hidden state in the observations and therefore needs

to be approximated. In this posterior distribution of interest, the like-

lihood is obtained from Eq. (2) using classical conditional properties

of the multivariate Gaussian distribution:

p(yi
t,1:N |yi

1:t−1,1:N ,x1:t,1:N ) = N
(

µ
i
t,Σ

i
t

)

(5)

where

µ
i
t = µ2 +Σ2,1Σ

−1
1,1(z− µ1)

Σ
i
t = Σ2,2 −Σ2,1Σ

−1
1,1Σ1,2

(6)

with

z = yi
1:t−1,1:N

µ1 = [f i(x1,1), · · · , f
i(x1,N ), · · · , f i(xt−1,1), · · · , f

i(xt−1,N )]T

µ2 = [f i(xt,1), · · · , f
i(xt,N )]T

Σ1,1 = R
i
t−1

Σ2,1 = [ρi(xt,1:N ,x1,1:N ), · · · , ρi(xt,1:N ,xt−1,1:N )]

Σ1,2 = [ρi(x1,1:N ,xt,1:N ), · · · , ρi(xt−1,1:N ,xt,1:N )]T

Σ2,2 = ρi(xt,1:N ,xt,1:N )

Given that any measurement is dependent on all of the other

measurements at any time step, the sizes of the mean vector and co-

variance matrix of the observation defined in Eq. (2) grow with time.



As a consequence, the cost of the computation of the likelihood in

Eq. (6) that will be required in the filtering algorithm increases with

time. In this paper, we therefore propose to use a strategy in or-

der to have a constant computational cost by using a restriction of

the size of the used history of positions, for instance through a slid-

ing time window. One drawback of such an approximation is that it

could imply the loss of interesting correlation information in cases

where some targets approach past trajectories of some other targets

(or themselves). Indeed, although the most significant correlations

may often intuitively be the ones between positions of a same tar-

get at close time steps, simply due to their inherent proximity com-

pared to the proximity of positions from different targets, this still

depends on the chosen target motion model. It is likely to be the

case if the targets move completely independently, which is clearly

not always a correct assumption in real scenarios. However, the slid-

ing time window approximation may also help in avoiding possi-

ble numerical problems in the evaluation of the likelihood (due to

the inversion of a large covariance matrix). By defining the size of

this sliding time window as twindow, the computation of the likeli-

hood in Eq. (6) will involve a modified covariance matrix of size

(N × (twindow + 1), N × (twindow + 1)) since ∀j ̸= k, we will

consider ρ(xr,j ,xt,k) = 0 if |r − t| > twindow.

In a single target scenario, the authors in [10] propose to use a se-

quential Monte-Carlo method, known as particle filter, in order to in-

fer the single target characteristics given the observations. However,

this method suffers from intrinsic limitations in high-dimensional

systems [11]. In order to obtain a more efficient algorithm for mul-

tiple target tracking, we thus propose an alternative based on a more

advanced methodology known as Sequential Markov Chain Monte

Carlo [14].

3.2. Proposed SMCMC algorithm

Traditionally, Markov chain Monte Carlo (MCMC) methods are

used to draw samples from probability distributions in a non-

sequential setting. The advantages of MCMC over Importance

Sampling (IS, which is the main principle used in particle filters) are

that it is generally more effective in high-dimensional systems, and

also easier to design for complex distributions. Recently, sequential

MCMC schemes were proposed in the literature - see [14] for a

review. The sequential MCMC (SMCMC) is a powerful sequential

methodology for filtering that targets the joint posterior distribution

defined in our case by Eq. (4). A MCMC procedure is used to make

inference from this complex distribution. However, since we do

not have a closed form representation of the posterior distribution

p(x1:t−1,1:N |y1:M
1:t−1,1:N ) at time t − 1, it will be approximated by

an empirical distribution based on the current particle set:

p(x1:t−1,1:N |y1:M
1:t−1,1:N ) ≈

1

Np

Np
∑

j=1

δ
x
(j)
1:t−1,1:N

(x1:t−1,1:N ) (7)

where Np is the number of particles and (j) the particle index. Then,

by plugging this particle approximation into Eq. (4),

p(x1:t,1:N |y1:M
1:t,1:N ) ∝

1

Np

M
∏

i=1

p(yi
t,1:N |yi

1:t−1,1:N ,x1:t,1:N )

×

Np
∑

j=1

p(xt,1:N |x(j)
t−1,1:N )δ

x
(j)
1:t−1,1:N

(x1:t−1,1:N )

(8)

Then, having made many joint draws from Eq. (8) using an ap-

propriate MCMC scheme, the converged MCMC output for variable

x1:t,1:N can be extracted to give an updated particle approximation

of p(x1:t,1:N |y1:M
1:t,1:N ) to be used at next time iteration. More specif-

ically, after a burn-in period of Nburn , keep every MCMC output

x
(j)
k = xn

k as the new particle set for the posterior distribution. In

this way, sequential inference can be achieved. At time t and at the

n-th MCMC iteration, the following procedure is performed to ob-

tain samples from p(x1:t,1:N |y1:M
1:t,1:N ) :

• Make a joint draw for x1:t,1:N using a Metropolis-Hastings

step,

• Refine the hidden state at current time t, xt,1:N , using a series

of Metropolis-Hastings-within-Gibbs steps.

It should be noted that several sampling strategies in the refinement

step can be done in order to improve the algorithm. In this paper, we

sample successively each of the individual targets using a series of

Metropolis-within Gibbs steps. The complete proposed algorithm is

summarized in Algo. 1.

Following the acquisition of this non burn-in set of particles

asymptotically drawn according to the density p(x1:t,1:N |y1:M
1:t,1:N ),

the target state estimation at time t can be performed using the min-

imum mean square error citerion as the mean of the particles, which

corresponds to the empirical approximation of the expectation of the

marginalized posterior density p(xt,1:N |y1:M
1:t,1:N ) :

x̂t,1:N =

∫

xt,1:Np(xt,1:N |y1:M
1:t,1:N )dxt,1:N

≈
1

Np

Np
∑

j=1

x
(j)
t,1:N

(9)

4. SIMULATION RESULTS

In order to illustrate the performance of the proposed solution, we

assume that each target evolves independently from the others in

a field of 16 sensors as illustrated in Fig. 1, according to a Near

Constant Velocity model [15, 16] which is defined as follows for the

j-th target:

xt,j = Ftxt−1,j + ut,j (11)

where Ft would be a 4 × 4 transition matrix and ut,j a vector of

independent realizations of N (04,Qt) with Qt a 4 × 4 state noise

covariance matrix, both Ft and Qt depending only on the time gap

between t and t− 1. Here Ft and Qt are defined as:

Ft =

[

I2 τtI2
02 I2

]

,Qt = σtarget

[

(τ3
t /3)I2 (τ2

t /2)I2
(τ2

t /2)I2 τtI2

]

(12)

with τt the delta of time between two time steps, which is chosen

constant and equal to 1 second, and σ2
target = 10−2.

In order to assess the accuracy of the proposed solution, we com-

pute the root mean square error (RMSE) between the estimations and

the real positions of the target (the estimations of other variables such

as velocities or accelerations are not taken into account), averaged on

a number of Monte Carlo (MC) runs:

RMSEt =

√

√

√

√

1

NMCN

N
∑

j=1

NMC
∑

n=1

∥x̂n
t,j − xt,j∥ (13)

where x̂n
t,j is the estimated state of the j-th target from the n-th MC

run. The RMSE is also averaged on the different targets, in order to

present an average tracking performance for a single target.



At time t, to compute the n-th SMCMC particle x
n
t,1:N :

Joint Draw using Metropolis-Hastings
- Randomly select a joint trajectory particle x̃1:t−1,1:N by sampling

it from the empirical measure of p(x1:t−1,1:N |y1:M1:t−1,1:N )

obtained at the previous time iteration:

x̃1:t−1,1:N ∼
1

Np

Np
∑

j=1

δ
x
(j)
1:t−1,1:N

(x1:t−1,1:N )

- Draw a random sample for the current t-th time step:

x̃t,1:N ∼ p(·|x̃t−1,1:N )

- Calculate the acceptance ratio which compares the likelihood given

x̃1:t,1:N with the likelihood given x
n−1
1:t,1:N (which is the one from

the previous iteration n− 1):

α = min

(

1,

∏M
i=1 p(y

i
t,1:N |yi1:t−1,1:N , x̃1:t,1:N )

∏M
i=1 p(y

i
t,1:N |yi1:t−1,1:N ,xn−1

1:t,1:N )

)

(10)

- Accept this proposed particle or reject it:
draw a ∼ U [0, 1]
if (a < α) then

accept the particle, thus xn
1:t,1:N := x̃1:t,1:N

else

reject the particle, thus xn
1:t,1:N := x

n−1
1:t,1:N

end

Refinement using Metropolis-within-Gibbs
- Successively sample each target:
for b = 1 to N do

- Define x̃1:t,1:N := x
n
1:t,1:N

- Draw a new sample for the b-th target at current time t

x̃t,b ∼ p(·|x̃t−1,b)

- Calculate the acceptance ratio as in equation (10), with the
modified particle x̃1:t,1:N .

- Accept this proposal particle or reject it:
draw a ∼ U [0, 1]
if (a < α) then

accept the particle, xn
t,b

= x̃t,b

else
reject the particle, do not update the b-th block in x

n
t,1:N

end

end

Output: Sample x
n
1:t,1:N

Algorithm 1: Proposed SMCMC for multi-target tracking.

Fig. 1. Example of trajectories for 2 targets (in blue lines, �/△ rep-

resent the starting and stopping points) and 16 sensors (in orange

circles), over 100 time steps (100 seconds).

4.1. Shadowing correlation performance improvements

In order for the assumption of independence between sensors to

be acceptable, we use a decorrelation distance for the Gudmunson

model of Dc = 10 meters, where the distance between sensors for a

grid of M = 16 sensors is about 33 meters ; the trajectory scenario

from Fig. 1 with N = 2 targets is used, and the SMCMC algorithm

has Np = 500 particles with a burn-in period of Nburn = 1
10
Np.

Fig. 2. Example of RMSE performance between a SMCMC algo-

rithm without correlation and with correlation (with increasing time

window). These algorithms are compared over the same set of ob-

servations for each MC run, in addition to being compared over the

same set of target trajectories.

Fig. 2 shows the gain of performance induced by the use of

spatio-temporal correlations, compared to no use of correlation at

all, as well as the gain of performance for an increasing time window

twindow. However, if the time window is increased too much, the

estimation of the covariance matrix may become problematic as the



dimension of the state-space taken into account becomes too large.

Simulations show that with large time windows, the RMSE may start

diverging. Thus the time window should remain small, still allow-

ing to benefit from the correlations between close time steps of a

single target as well as different targets, but preventing the use of

potentially strong correlations from far apart time steps between tar-

gets whose trajectories have crossed or ventured close to each other.

However, the correlations between close time steps of a single target

still remain the most important due to the proximity of the corre-

sponding positions, at least in the type of scenarios considered here

(it would no longer be true for instance for scenarios with very close

targets, moving together, and a large delta of time between two mea-

surements) ; a side-effect of this is the smallness of the performance

improvement between twindow = 10 and twindow = 20, as most

of the relevant correlation information is already taken into account

with twindow = 10. Additionally and not surprisingly, the compu-

tational time increases with the time window ; thus an intermediate

value is probably the best compromise overall.

Fig. 3. Example of RMSE performance between algorithms with

and without correlation, for different shadowing variances σ2. The

purple curves are with correlation, the cyan curves are without cor-

relation.

Fig. 3 reveals how taking into account the correlation allows for

greater performance improvements when the shadowing variance in-

creases. Smaller noise implies more informative observations, thus

diminishing the usefulness of additional information such as the cor-

relation. The time window used for the correlated algorithm in this

figure is twindow = 10.

4.2. SMCMC versus SIR

Now, we compare the proposed SMCMC algorithm with the parti-

cle filter that was proposed in [10] in a similar context for single

target tracking. The particle filter used in this section is the Sequen-

tial Importance Resampling (SIR) [17] in which a resample move

strategy after the resampling stage is employed in order to diversify

the set of particles [18]. This strategy uses exactly the same step

described as the refinement step in our proposed SMCMC and thus

allows for a fair comparison between the two algorithms. Fig. 4

shows the RMSE obtained with both algorithms in which Np = 200
particles are used to do the inference. In this simulation, the shad-

owing variance is σ2 = 1, and different numbers of targets are used

Fig. 4. SIR RMSE performance versus SMCMC RMSE perfor-

mance for an increasing number of targets N .

(N = 5, 10, 15). Indeed, the SIR algorithm’s main weakness comes

from the degeneration of the importance weights in situations where

either the likelihood becomes too informative (with a too tight vari-

ance) and no longer covers the regions of the proposal distribution,

or more interestingly in difficult situations where the state-space is

high-dimensional. In these difficult high-dimensional scenarios, the

results show the significant superiority of the proposed SMCMC

against the SIR, with computational times of the same order.

5. CONCLUSIONS

In this paper, we have established that the use of spatio-temporal ob-

servation correlations, in the framework of Bayesian multiple target

tracking based on RSS measurements, allows for significant perfor-

mance improvements in difficult, very noisy scenarios. The imple-

mentation of a sliding time window, allowing to forget correlations

from too old time steps, has illustrated how taking into account more

information in the Bayesian process, thus with a greater time win-

dow, allows for gradually better performance ; although this does

have drawbacks when the time window becomes too large. Finally,

the overall superiority of the SMCMC approach over the SIR method

for the complex problem of high-dimensional state-spaces was con-

firmed through appropriate simulations.
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