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Histopathology in 3D: From 3D Reconstruction to 

Multi-stain and Multi-modal Analysis 

 

Abstract 

Light Microscopy applied to the domain of histopathology has traditionally been a two 

dimensional imaging modality. Several authors, including the authors of this work, 

have extended the use of Digital Microscopy to three dimensions by stacking digital 

images of serial sections using image based registration. In this paper we give an 

overview of our approach, and of extensions to the approach to register multi-modal 

data sets such as sets of interleaved histopathology sections with different stains, 

and sets of histopathology images to Radiology volumes with very different 

appearance. Our approach involves transforming dissimilar images into a multi-

channel representation derived from co-occurrence statistics between roughly 

aligned images.  

1. Introduction 

A number of authors have addressed the problem of reconstruction of volumetric 

data from serial histopathology sections. These approaches may divided into those 

approaches that rely on the tissue only (e.g. [11]), and those that use a form of 3D 

imaging  (radiology, or blockface imaging) to aid the reconstruction (e.g. [10,12]). 

Within both groups image based registration is usually based on either an iterative 

optimisation of a similarity metric [13], or feature detection and matching [5]. Either 

approach has drawbacks. Optimisation based approaches can find local optima of 

the similarity function. With volumetric reconstruction it is necessary to either perform 

a large number of registrations (one per section) (e.g. [5]), or optimisation in a very 

high dimensional space [13], either increasing the likelihood of failure. With feature 

detection based methods the features must be appropriate to the data, and thus a 

truly generic method is not possible. We have previously presented an alternative 

approach based on combining multiple local rigid registrations into a single non-rigid 

transform using a robust statistical estimator [1]. We use a closed form method of 

rigid registration based on Phase Correlation [14,15] to perform local rigid 

registration. This was selected as it is computationally efficient (four Fourier 

transforms, and a fixed set of multiplies and adds), and is guaranteed to find the 

maxima of similarity as it is equivalent to an exhaustive search. The drawback of this 

method when applied to multi-modal data is that it is based on greyscale similarity. 

The conventional approach to multi-modal registration is to use mutual information 

as a similarity metric [6]. However, this implies an iterative method – with associated 

computational complexity and risk of local optima. Our alternative approach is to 

transform pairs of multi-modal images into pairs of multi-channel “tissue class 



probability” images based on co-occurrence statistics of roughly aligned images. 

Mutual Information is used within the process of forming these emergent tissue 

classes from the image pair (a rather different use of MI than the conventional 

similarity metric in registration). Once the multi-channel tissue class probability 

images have been formed, registration proceeds as with the single stain registration, 

excepting for the fact that there are N sets of local registrations (one per emergent 

tissue class). These are combined as before within our multi-level robust statistics 

framework to form a single B-spline based registration. The remainder of this paper 

is as follows: Section 2 details the basic robust statistical framework used in both the 

single-stain and Multi-modal registrations; Section 3 details the formation of the 

multi-channel “tissue class probability” images from roughly aligned images; Section 

4 presents some case studies of applications of the technology; and Section 5 

presents a discussion and conclusion. 

2. Volumetric Reconstruction from Serial Sections Using Robust 

Statistics 

The main idea behind our method is that a single non-rigid registration for a pair of 

large images may be performed as a set of rigid registrations on sub-images, which 

are subsequently combined. This has the dual advantage of computational efficiency 

(memory and processor usage) and robustness (a single registration failure is not 

catastrophic as there is redundancy).  In order to implement this idea, images are 

and padded to the same size and pre-aligned rigidly, in order that (roughly) 

corresponding regions may be extracted by dividing the images into regular grids. 

The basic workflow of our robust statistical framework is: 

For images n=1:N-1 

1. Pad images to the same size. 

2. Rigidly align images n and n+1 using Greyscale Phase Correlation (Image 

n=static image, image n+1=moving image) 

3. Divide each image pair into equal sized 50% overlapping patches, and rigidly 

align corresponding patches using a form of phase correlation that recovers 

rotation (see [1] for details). 

4. For each local registration construct 5 transform vectors (one at each corner, 

and one in the middle) from each registration. 

5.  Approximate the set of vectors by a rigid transform using a least squares 

minimising method, and subtract this transform from each vector. 

6. Approximate the “residual transform vector” set using a B-spline  using a 

robust least squares minimising method [2]. 

7. Use transformed image n+1 as static image for image n+2 

In practice steps 3-6 are repeated at multiple scales (from coarse to fine) and 

increasing degrees of freedom of the B-spline. The reference image is selected 

by hand as an image with minimal distortion (to avoid propagating distortions to 

subsequent images). This approach has been applied successfully to reconstruct 



several hundred volumes of different tissue types and chemical stains. A number 

of examples are visualised in Figures 1 and 3. 

3. Multi-stain and Multi-modal Registration 

In this section the generation of mapping functions to map images of different 

appearance to multi-channel images of more similar appearance is described. The 

outline of the method is as follows: 

1. Represent each pixel of each image by a feature vector derived from local 

intensity, colour and texture. These features in include the output of Gaussian 

filters on colour and greyscale channels, and a novel derivative based texture 

feature (see [16] for details). 

2. Quantise the set of features separately for each image such that each pixel is 

represented by a prototype label (L1x,y , L2x,y). Clustering is performed using 

a binary PCA-tree method (see [16] for details). This method was selected for 

its computational efficiency, and ability to work with variation of different 

scales. 

3. Consider a pair of hypothesised mapping functions that map the prototypes to 

a finite set of common tissue classes: 

C1x,y = M1(L1x,y) 

C2x,y = M2(L2x,y) 

4. For a given pair of mapping functions it is possible to generate a tissue class 

co-occurrence matrix. The Mutual information calculated from this matrix is a 

measure of the similarity between the two images under that pair of mapping 

functions (and that feature set). A greedy search of potential mapping 

functions is performed in order to maximise mutual information, and select the 

best mapping functions.  

5. The method is repeated with different feature sub-sets in order to perform 

feature selection. The feature sub-set with highest mutual information is 

selected. 

Once the mapping functions for each image have been determined the construction 

of probability images for each tissue class for each image is simply a matter of 

considering the co-occurrence of prototype labels in one image with tissue classes in 

the other. Counting these co-occurrences, and normalising gives P(Tissue 

Class|Prototype), which is mapped to a pixel value by multiplying by 255. Figure 2 

illustrates results of applying this process for both multi-stain histopathology pairs 

and histopathology:MRI pairs. Once the images have been constructed registration 

is applied as described in section 2, with 5 x Nc vectors per block (where Nc is the 

number of tissue classes). Initial rigid alignment is using the same greyscale phase 

correlation method as described previously, which works on such multi-modal data 

(at low resolution) because of the clear distinction between foreground and 

background at low resolution in histopathology images. Full details may be found in 

[16]. 



Application to Volumetric Radiology Data 

For multi-stain histopathology data sets the 3D correspondence (slice to slice) is 

explicit in the data set. For Histopathology to radiology registration a 2D oblique slice 

needs to be determined in order to compute tissue class probability images and 

subsequently perform 2D:2D non-rigid registration. Initially this is performed 

manually for a single histopathology image using an interactive tool (MIM Medical 

Image Manager, HeteroGenius Ltd, Leeds, UK http://www.heterogenius.co.uk). Once 

one section is aligned it’s 3D location can be optimised locally by maximising mutual 
information between prototype labels ( MI(L1,L2) ) over a 3D rigid transform using 

Levenberg Marquart (LM) optimisation [17]. LM is an iterative gradient based 

optimisation method. Subsequent sections can be placed in 3D space with reference 

to their theoretical geometric relation to the initial slice(s) (i.e. parallel with known 

normal offset based on section thickness/separation). Again their location can be 

optimised by local optimisation. Once placed in 3D space registrations to slices 

above and below (as section 3) can be performed, in addition to registration to the 

volumetric radiology data. Accuracy of the method is demonstrated in figure 4b. 

Typically registration is accurate to within 200 microns (evaluated by measuring the 

distance between corresponding landmarks, such as blood vessels, in 2D), although 

larger deformations (such as tissue folds, and severe deformation) cannot be 

corrected for. 

4. Case Studies 

Liver Disease Quantification 

We used the original volumetric reconstruction algorithm (section 2) to generate 

volumes from liver tissue with 5 different types of liver disease (Alcoholic Liver 

Disease; Hepatitis C Virus; Primary Biliary Cirrhosis; Primary Sclerosing Cholangitis 

and Polycystic Liver Disease) plus a healthy control (figure 3). Two 1cm3 tissue 

samples were taken for each disease and sectioned with a microtome to give 

approximately 100 sections per tissue sample (separation 100µm). These were 

stained with picro-sirius red and scanned using an Aperio T2 or T3 scanner (Aperio 

Inc, San Diego) at 20x objective. Figure 3 shows liver nodules (stained brown/yellow) 

are surrounded by patterns of fibrotic tissue (stained red). The size, shape and 

connectivity of nodules was quantified by i) Interactively segmenting nodules from 

other pixels using our in house Volume Viewer software with inplane resolution 1/64 

native resolution, ii) Separating nearby nodules using a 3D sub-voxel anisotropic 

morphological opening procedure, and iii) assigning statistics to connected 3D 

components (size, elongation, etc.) using c++ code based on the Insight Toolkit 

(Kitware Inc., NY). The number of connected components and size of connected 

components showed a statistically significant variation between diseases, which is 

an indication of the (loss of) liver function in different diseases. Full results will be 

presented elsewhere. 



Cardiac Collagen Quantification 

The purpose of this study was to quantify the effect of sub-sampling sections on 

collagen quantification in rat hearts. Previous works (e.g. [7])  had used small 

numbers of sections (1-3) to quantify collagen density in different parts of the heart. 

The problem with using very sparse sections is twofold; i) Accurate identification of 

the cardiac regions, and ii) The collagen density is heterogeneous and, as such, 

sampling by taking a single section could introduce an undersampling error. To 

quantify the degree of the undersampling error we took 1000 5µm serial sections 

from each of 2 rat hearts (a male normal Wistar rat and a male Wistar rat in right 

heart failure) and aligned them to high resolution MRI volumes of the same hearts 

pre-sectioning scanned using a FLASH (Fast Low Angle SHot) MRI sequence in a 

Bruker (Ettlingen, Germany) 9.4T spectroscope with resolution of 50x50x50µm. Each 

MRI volume was manually segmented into regions as defined by a modified 

American Heart Association model ([8], figure 4a), which enabled labelling of each 

co-registered histopathology image. Collagen quantification was carried out in 2D 

using a standard method [9], using all 1000 sections, and also subsets of 100, 50, 10 

sections. Results showed acceptable quantification down to 100 Sections (100 µm 

spaced sections), but thereafter sub-sampling resulted in increased variance over 

different data sub-sets. The lesson to be learned from this is that quantification using 

a single (or small numbers of) 2D section is potentially subject to sampling noise, 

even if the whole 2D sample is analysed. A more robust way of performing 

quantification is to take a larger number of samples of the tissue and aggregate the 

results. Full results are presented in [3]. 

Computational Modelling of Spinal Discs from Multiple Different Stains 

Data driven computational models are a tool that can help understand disease and 

the implication of clinical actions (e.g. surgery). In the domain of musculoskeletal   

medicine physics based models (e.g. Finite Element models) may be constructed 

based on MRI or MicroCT data [4]. Such data only provides one value per voxel 

(Density in the case of MicroCT). Chemical stains used in histopathology can provide 

a wealth of other functional information such as collagen density (relating to 

elasticity), cell density, etc. However, such data is two dimensional only and, as 

such, not suitable for use in building 3D models. We have run experiments to 

reconstruct 3D data sets from multiple interleaved sections stained with different 

chemical stains using the methods described in section 4. Data used was from an 

ovine intervertebral disc. In all 5 stains were used (Alcian Blue, ERSR, FAST, Elastic 

Pico Sirius Red and Sirius Red) to build a multi-parametric 3D representation of the 

data. This volumetric data was also aligned with high resolution MRI (scanner as in 

previous section) to provide further anatomical information. The aim is to build multi-

scale physics based models based on the anatomical and functional data provided 

by this rich data set. The modelling work is ongoing. 



5. Discussion  

Reconstructing microscopic functional and anatomical datasets in 3D using multiple 

2D digital images is a powerful tool in a number of research areas including disease 

quantification and computational modelling. In this paper we have described how 

multiple sources of information (multiple chemical and immunohistochemical stains, 

Radiology) may be combined in a similar manner to stacking single stain 2D 

datasets by using an information theory based image pre-processing method. In 

order to facilitate such research the process of volumetric reconstruction must be as 

robust as possible. We have tackled this challenge using a combination of fast local 

analysis, robust statistics, a multi-scale approach, and a minimal (but important) 

amount of manual intervention. The combined method has been demonstrated to 

outperform iterative optimisation based techniques both in terms of accuracy, and 

run-time [16]. Our techniques have been applied in a number of different areas and 

we continue to explore applications and collaborations in surgical planning, radiology 

sequence development validation, disease quantification, and a number of other 

areas.  
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Figure 1. Single Stain Reconstruction results (stack views, 1 line per image) (a) 

Bowel cancer in human liver (50 µm slice spacing, paraffin embedded, H&E stained), 

(b) Rat Glomorulus (0.5 µm slice spacing, Plastic Embedded, H&E stained) 

(a) (b  

Figure 2: Tissue Class Images: (a) Two histopathology images with different stains 

[left: original images and sub image, right: 3 “tissue class probability images” 
corresponding to each image/tissue class, (b) Histopathology image and MRI image] 

(a)  

(b)  

 



 

Figure 3: Liver tissue Quantification. (a) Left: Original Data, Right: “Stacks View” of 
reconstructed data (one row from each image). (b) Volume rendering of 

reconstructed liver tissue 

(a) (b)  

 

 

 

Figure 4: Rat Heart Collagen Quantification (a) 3D Segmentation of MRI based on 

the AHA heart model, (b) Histology to MRI Registration 

(a) (b)  
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