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MODELLING THE DAMPING OF SCREENED ROOM RESONANCES BY FERRITE TILES USING 

FREQUENCY DEPENDENT BOUNDARIES IN TLM 

J. F. Dawson, J. Ahmadi, A. C. Marvin 

University of York, UK 

ABSTRACT 

A new technique which allows the simulation of thin 

ferrite absorbing tiles in a coarse TLM mesh is 

described. Results are presented which show a good fit 

to manufacturers' reflectivity curves. Experimental and 

simulation results for a screened room partially lined 

with ferrite are presented to demonstrate the accuracy of 

the method. 

INTRODUCTION 

The Transmission Line Matrix (TLM) method of 

numerical electromagnetic analysis with the symmetrical 

condensed node is well known [1]. The representation 

of lossy materials is described in references [2], [3], and 

[4]. To represent the operation of a lossy dielectric or 

magnetic material using these methods the material 

blocks must be about 6 mesh units deep. This is often 

feasible for lossy dielectric radio absorbent materials, 

such as those used to line anechoic chambers, as the 

material depth is relatively large compared to the mesh 

size. Ferrite absorbing tiles are only a few millimetres in 

depth and cannot easily be represented as material 

blocks when the mesh size required to model a typical 

anechoic chamber may be a significant fraction of a 

metre. In order to overcome this problem an efficient 

means of approximating the reflectivity of ferrite 

absorbers with frequency dependent boundaries is 

presented. It allows the simulation of ferrite tile 

absorber by the use of frequency dependent boundaries. 

Thus allowing the use of a much larger mesh size than 

would be possible if the absorber were represented as 

material blocks. This means that it is realistic to 

simulate the effect of fully, or partially ferrite-lined 

screened enclosures with the TLM method. 

The method requires the storage of only 4 values for 

each mesh-unit sized boundary patch. This is very 

efficient compared with the alternative possibility of 

using multi-grid or graded mesh TLM which would 

require a large ratio of mesh sizes, and a large number 

of mesh elements to adequately represent  the tiles. 

FERRITE ABSORBING TILES 

Material Parameters 

 The variation of permeability of ferrite materials can 

approximated by the function: 

rm = 1 + 
( )'r0 - 1

1 + 
j
r

  (1) 

where rm is the complex permeability, 'r0 is the real 

part of the low frequency permeability of the material,  

is the angular frequency and r is the angular frequency 

at which the real and imaginary parts of the permeability 

are equal in magnitude. 

Flat tiles 

If the material parameters and thickness (d) of a flat tile 

are known its reflectivity () for a plane wave at normal 

incidence can be easily calculated. 
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Where f is the reflection coefficient at the front face of 

the tile, b is the reflection coefficient at the back face, 

and 
m

 is the propagation constant of the tile. 


f
  = 

Z
m

 - Z
0

 Z
m

 + Z
0
  (3) 

where Zm is the characteristic impedance of the material 

and Z0 is the characteristic impedance of free space 

(assuming the front face of the tile is in air). If the rear 

face is metal backed then: 


b
  =  -1 (4) 

The material impedance Zm varies with frequency and is 

given by: 
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The material propagation constant 
m

 is given by: 
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where 
0
 is the propagation constant for free space. 
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Grid tiles 

Ferrite tiles consisting of a grid of ferrite have a lower 

reflectivity than the flat tiles. However calculation of the 

reflectivity of grid structured tiles is more complex and 

will not be considered here. However the overall shape 

of the reflectivity curve is similar. 

TLM REPRESENTATION 

Formulation 

The formulation is based on the observation that the 

frequency dependence of ferrite absorbing tiles behaves 

in a similar manner to the second order function: 
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where s is the Laplace variable. It has a minimum 

magnitude min when s = jn. This formulation 

includes the pole at s=-e to give a limit to the value of 

the reflection coefficient at high frequencies. This was 

not considered not considered in [5] and is significant 

for small mesh sizes where the formulation given in [5] 

may result in reflection coefficients with a magnitude of 

greater than one at high frequencies. 

For large s: 
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and as s tends to zero: 
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We know that the reflection coefficient for the tile tends 

to -1 at low frequencies so we can match the functions 

by  taking key points on the reflectivity curve of the 

ferrite tile.  Therefore: 

n = 2fmin (10) 

where fmin is the frequency of the reflection minimum 

min . The factor k is given by: 

k = 
1

h
  (11) 

where h is the magnitude of the reflection coefficient at 

the highest frequency part of the curve (where the 

reflection coefficient levels out). The pole e is then 

determined by: 

e = 
2fu

k u
  (12) 

where fu is  the frequency  of a point well above the 

reflection minimum, before the reflection coefficient 

levels out, and u is the magnitude of the reflection 

coefficient at that point. The damping factor  can be 

expressed as a function of earlier factors and the 

minimum value of the reflectivity min: 

 = 
k emin

2 n
  (13) 

The pole position, d, is fixed by the fact that the 

reflectivity (and hence F(s) ) must become -1 as s tends 

to zero so that re-arranging (9) we get: 
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

2

n

k e
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The continuous function F(s) can be approximated by 

the discrete time function: 
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where Z
-1

 represents a unit delay. The a and b 

coefficients can be determined using the impulse 

invariant transform from F(s) so that: 
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b1 = -b0  (zz1 + zz2) (18) 

b2 = b0 e
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  (19) 

where (x) indicates the real part of x . The value of b0 

is chosen such that H(1) =  -1. T is the sample period for 

the filter which is made equal to the TLM time-step and 

the zeros, zz1 and zz2, of H(Z) are given by: 
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Fig. 1 Second order digital filter section 

The filter can be implemented as shown in Fig. 1 where 

V is the incident voltage and V is the reflected voltage. 

Two such filters are required to implement the reflection 

coefficient at each mesh element boundary - one for 

each wave polarisation.  

Results 

Here results are presented which compare the 

manufacturers data with analytical solution for and the 

discrete time filter for the conventional flat-plate tiles 

(Fig. 2). Then the response of the discrete time filter is 

compared with manufacturers data for the new grid-

structure ferrite tiles (Fig. 3). To compute these results 

with the material blocks of [3] and [4] would require a 

mesh size of approximately 1 mm - in many cases the 

use of such a fine grid would be impractical. 

Considering Figures 2 and 3 it can be seen that the 

discrete time filter response results corresponds closely 

to the manufacturers' data above the reflection minimum 

but an error of several dB occurs at low frequencies.  

The fit is best in the case of the flat tile. It can also be 

seen that there is some discrepancy between the 

analytical value for the reflection coefficient and the 

manufacturers data. This may be due to the fact that the 

permeability is only approximately given by Equation 

(1). 

When used in the TLM mesh a further error may occur 

in the reflectivity response of the tiles due to the low 

pass response of the TLM mesh itself. This is not 

normally a problem for mesh sizes smaller than 1/10th 

of a wavelength. 
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Fig. 2 Flat Ferrite tile  
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Fig. 3 Grid -structure ferrite tile 

MEASUREMENTS 

For electromagnetic measurements in a screened room a 

full lining of absorber on the walls and ceiling is near 

ideal giving the semi-anechoic conditions of an pen area 

test site. It is impractical to make a small room semi-

anechoic at low frequencies due too the depth of 

absorbing material required on the walls. Partially lined 

screened rooms are of interest because of their lower 

cost than fully lined anechoic chambers. It has been 

shown in reference [6] that the use of ferrite absorbing 

tiles at the magnetic field maxima can significantly 

damp the resonances of the enclosure which improves 

the quality of measurements that can be made in it. Here 

we compare measured and simulated results which show 

the damping achieved for a screened room partially 

lined with grid-structured ferrite tiles placed as in [6] 

(Fig. 6). 

An electrically small source and antenna were used in 

the measurement programme because of the difficulty of 

adequately representing typical antennas (e.g. bi-conical 

or log periodic) used in screened room measurements 

within the TLM method. The source was an optically 

coupled spherical dipole and the receive antenna was a 

short, active monopole with top loading. The receive 

antenna was positioned with its cable running along the 

floor of the enclosure. 



Figs. 4 and 5 show the measured and simulated screened 

room response for a room lined with tiles placed at the 

H-field maxima as explained in reference [6]. The 

absolute levels in the figures are not significant, as the 

antenna system used was not calibrated, but the degree 

of damping achieved when the tiles are present is. It can 

be seen that the reduction in amplitude of the resonant 

peaks predicted by the simulation corresponds with the 

reduction measured. 
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Fig. 4 Simulation of screened room 

with/without ferrite tiles 
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Fig. 5 Measurement of Screened room 

with/without ferrite tiles 
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Fig. 6 Screened room layout showing tile 

location 

FURTHER WORK 

Additional work is currently being carried out to verify 

the frequency dependent boundary representation for 

ferrite tiles. This includes: 

measurement of angular dependence of the 

simulated tile reflection coefficient; 

comparison of damped screened room results for 

flat tiles; 

simulation of the determination of tile parameters 

by the perturbation method - the change in 

frequency and Q-factor of a small resonant cavity 

in the presence of a material sample is measured; 

simulation of the effects of ferrite tiles on 

radiation through apertures in enclosures is being 

carried out. 

CONCLUSIONS 

A method of efficiently representing ferrite absorbing 

tiles in the TLM method has been presented. The 

method has been shown to give good results with grid-

structured ferrite tiles although the accuracy of the 

results are limited by the fact that the method does not 

follow the frequency response of grid structured tiles as 

well as for flat tiles. Further work is required to 

determine the accuracy which can be achieved. 
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