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Abstract 14 

Projections of the response of crop yield to climate change at different spatial scales are 15 

known to vary. However, understanding of the causes of systematic differences across scale 16 

is limited. Here, we hypothesise that heterogeneous cropping intensity is one source of scale 17 

dependency. Analysis of observed global data and regional crop modelling demonstrate that 18 

areas of high versus low cropping intensity can have systematically different yields, in both 19 

observations and simulations. Analysis of global crop data suggests that heterogeneity in 20 

cropping intensity is a likely source of scale dependency for a number of crops across the 21 
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globe. Further crop modelling, and a meta-analysis of projected tropical maize yields, are 22 

used to assess the implications for climate change assessments. The results show that scale 23 

dependency is a potential source of systematic bias. We conclude that spatially 24 

comprehensive assessments of climate impacts based on yield alone, without accounting for 25 

cropping intensity, are prone to systematic overestimation of climate impacts. The findings 26 

therefore suggest a need for greater attention to crop suitability and land use change when 27 

assessing the impacts of climate change. 28 

 29 

 30 

Introduction 31 

Scale dependencies in biological and ecosystem function are a known phenomenon (e.g.Zhao 32 

&  Liu, 2014). Relationships between species and environment vary according to the spatial 33 

scale of the analysis. One component of that difference arises from the intrinsic properties of 34 

the system, whilst a second contribution comes from choices made in the design of the study 35 

(Lechner et al., 2012). Important aspects of the study design include the spatial scale at which 36 

observations are available, and any choices regarding re-scaling of those observations prior to 37 

analysis. Observation and analysis at one or more spatial scales are used to make inferences 38 

regarding the intrinsic properties of a system, which may be expressed at a different spatial 39 

scale. The resulting potential for error in inference has led to ongoing refinement of methods 40 

(e.g.Hay et al., 2001). 41 

Assessments of scale dependencies in agricultural systems have been used to address a range 42 

of questions. For example, remotely sensed data have been used to assess yield gaps across 43 

scales (e.g.Lobell, 2013); and gridded data has been used to understand the implications of 44 
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scale dependencies for crop modelling (Folberth et al., 2012). Scale dependencies in climate 45 

change assessments have also been identified (e.g. Angulo et al., 2013, Hansen &  Jones, 46 

2000, Mearns et al., 2001). These studies have tended to treat scale dependencies as a source 47 

of model uncertainty by, for example, aggregating data prior to running a crop model (van 48 

Bussel et al., 2011a). The term ‘aggregation error’ is generally used to describe any crop 49 

model error resulting from the spatial averaging of either input data or crop model output.  50 

Here, we hypothesise that heterogeneous cropping intensity is one source of scale 51 

dependency, so that choosing major growing regions for climate change impacts studies can 52 

produce different results to spatially comprehensive analyses. Major growing regions may 53 

have a tendency for higher yields, since crops tend to be grown where they are more 54 

productive. We refer to this tendency as the niche effect. Our metric for separating major 55 

from minor growing regions is cropping intensity – i.e. the fraction of land in a given region 56 

that is used to cultivate a given crop. Hence crop niches are those regions where, for a given 57 

crop, yields are higher where cultivation is intensely concentrated. This is in contrast to a 58 

crop where yields do not vary significantly with the area under cultivation. Our hypothesis 59 

can therefore be succinctly expressed as follows: for crops that exhibit a niche effect, 60 

heterogeneous cropping intensity causes scale dependency. We also hypothesise that, as has 61 

been observed in other studies, input weather aggregation error generates systematic 62 

differences in crop model results. 63 

 64 

Materials and methods 65 

We employ three sources of independent data for our analyses: observed yields and growing 66 

area data, regional crop modelling, and meta-analysis of crop modelling studies. The crop 67 

modelling focusses on West Africa, the meta-analysis on tropical maize growing regions, and 68 
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observations range from within West Africa to global scale. Analyses of observed global data 69 

and regional crop modelling were used to assess whether or not areas of high versus low 70 

cropping intensity areas have systematically different yields. A subsequent crop modelling 71 

sensitivity analysis was used to test whether or not this effect has any implications for climate 72 

change studies. 73 

 74 

Meta-analysis 75 

The tropical maize data from an existing meta- analysis (Challinor et al., 2014b)  were 76 

reanalysed to differentiate between yield projections on spatial scales above 3x3o and those 77 

below 3x3o. This threshold was chosen since it is typical of that of the climate models used in 78 

the studies in the meta-analysis. The data were categorised as being at scales either above or 79 

below 330x330km, corresponding approximately to 3 degree cells. Site-scale assessments 80 

were all categorised as less than 3 degrees. For subnational- and country-scale yield data, the 81 

area of the corresponding sub-national unit or country were compared directly to the area of a 82 

330x330km square.  83 

The procedure resulted in yield data, with associated local mean temperature change, from 84 

223 maize simulations from 22 studies for range of maize-growing countries: Brazil, 85 

Burundi, Cameroon, Egypt, Ghana, India, Indonesia, Kenya, Mali, Mexico, Mozambique, 86 

Rwanda, South Africa, Tanzania and Uganda. Challinor et al. (2014b)  contains detailed 87 

analysis of these data, including assessment of focal regions of the studies relative to the 88 

major cropping regions globally; and assessment of potential disproportionate contribution of 89 

a small number of global gridded studies to the total number of data points.  90 

 91 
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Crop modelling 92 

A crop suitability model (Ramirez-Villegas et al., 2013) and a process-based crop growth and 93 

development model (Challinor et al., 2004)  were used to assess the impact of aggregation 94 

and of cropping intensity. Yield and suitability simulations in regions of high cropped area 95 

are contrasted with analyses that include all grid cells. Simulations at two spatial scales were 96 

carried out using the same models, in order to assess the aggregation effect whilst excluding 97 

model structural differences as a possible cause of systematic differences in the results. To 98 

assess whether or not niche and aggregation effects would be likely to have an impact on 99 

climate change projections in the regions, a sensitivity analysis was conducted. Temperature 100 

and precipitation were varied systematically, using increments of 1K and 10%, respectively. 101 

Changes were applied to the whole domain. Al l percentage changes reported in the figures 102 

are with respect to the baseline of zero change in temperature or precipitation.  103 

The General Large Area Model for annual crops (GLAM), which was used to simulate maize 104 

and groundnut yields, was designed to operate at regional scales and is therefore less complex 105 

in relation to field-scale models (Challinor et al., 2004). In GLAM, development is computed 106 

via a thermal time response function with three cardinal temperatures; biomass accumulation 107 

is calculated as the product of total crop transpiration and the transpiration efficiency; and 108 

yield is calculated using the total biomass and a time-integrated rate of change in the harvest 109 

index. Transpiration is in GLAM limited by soil structure, plant structure, available energy 110 

and water. Leaf area is parameterised using a potential rate of growth that is reduced by water 111 

stress and the yield gap parameter (CYG). Required inputs to GLAM are soil hydrological 112 

parameters (permanent wilting point, field capacity and saturation point), daily values of 113 

maximum and minimum temperature, downwards shortwave solar radiation, and 114 

precipitation. 115 
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For maize, all GLAM parameters except thermal time requirements were derived from 116 

Bergamaschi et al. (2007), Greatrex (2012) and Osborne et al. (2013). Thermal time 117 

coefficients were derived following Challinor et al. (2004), by calibrating to a mean duration 118 

based on cultivar parameterisations in another crop model, in this case CERES-maize. 119 

Cultivars with a range of thermal requirements were simulated with CERES-maize. The 120 

cultivar whose duration was closest to 120 days was then used to calculate the thermal 121 

durations required for GLAM. We chose 120 days as a typical duration of a cropping season 122 

in West Africa (Hartkamp et al., 2000, Sacks et al., 2010). For groundnut, parameter values 123 

were obtained from Vermeulen et al. (2013) . An intelligent sowing window was used, 124 

whereby planting occurs on the first day on which the soil is sufficiently moist. The sowing 125 

window began with the first day of the weather input data (see below). For both maize and 126 

groundnut, two values of the yield gap parameter (CYG) were used, in order to reduce the 127 

dependency on a single calibration (see Appendix S1). 128 

Crop suitability was modelled using EcoCrop, which is a relatively simple suitability-based 129 

model. It  has been previously used to understand the geography of crop suitability and its 130 

responses to climate change for various crops, including banana (Ramirez et al., 2011, Van 131 

den Bergh et al., 2012), cassava (Ceballos et al., 2011, Jarvis et al., 2012), sorghum 132 

(Ramirez-Villegas et al., 2013) and groundnut (Vermeulen et al., 2013) . EcoCrop has also 133 

been used to project future shifts in suitable areas for key staple foods across the globe (Lane 134 

&  Jarvis, 2007). Previous studies have reported that EcoCrop results are consistent with 135 

other approaches (Ramirez-Villegas et al., 2013, Vermeulen et al., 2013). 136 

EcoCrop uses fixed environmental ranges as inputs to produce a suitability index. Suitability 137 

is calculated separately for temperature and precipitation for a prescribed growing season 138 

using a set of four thresholds for each variable. Optimal conditions occur when a site is 139 

between the minimum and maximum optimum for both variables. Unsuitable conditions 140 
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occur when a site is either above or below the absolute (or marginal) thresholds for either 141 

temperature or precipitation. Between optimum and absolute thresholds suitability is 142 

calculated using a linear regression with the optimal value assigned to 100% and the marginal 143 

one assigned to 0% suitability. 144 

In this study, EcoCrop parameter sets for simulating maize and groundnut were used to 145 

analyse the impacts of scale for climate change impacts projections. Parameters for maize 146 

were derived from Jarvis et al. (2012) and Cairns et al. (2013), further adjusted using 147 

literature review. In particular, a number of  studies (Jones et al., 1986, Kim et al., 2007, 148 

Lobell et al., 2011, Sánchez et al., 2014, Schlenker &  Lobell, 2010) were used to identify 149 

optimum and marginal temperatures for the crop. For precipitation, the CIMMYT mega-150 

environments dataset were used to identify the relevant thresholds (Bellon et al., 2005, 151 

Hodson et al., 2002). For groundnut, parameter values were obtained from (Vermeulen et al., 152 

2013)  and   (Ramirez-Villegas, 2014) and further compared with those used in the GLAM 153 

(Challinor et al., 2004) and CROPGRO-PNUT (Boote et al., 1998, Dugan, 2004) models.  154 

Study region and model input data 155 

We focus on West Africa mainly due to its large spatial variation in precipitation and 156 

temperature (Baron et al., 2005, Berg et al., 2010), but also partly due to the availability of 157 

high-resolution convection-resolving regional climate simulations. Along the chosen portion 158 

of West Africa (Figure S1), total precipitation varies between 300 and 3,500 mm per year, 159 

with most precipitation occurring between June and October, during the monsoon. Mean 160 

June-October temperatures across the region also vary substantially, with the lowest 161 

temperatures (around 10 ºC) occurring in the Cameroonian Highlands and the highest 162 

temperatures (around 30-35 ºC) occurring across the Sahelian countries (Burkina Faso, 163 

Senegal, Niger and Mali). As a consequence of this spatial variation and heterogeneity in 164 
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crop management, crop yields are highly variable, and substantial yield gaps have been 165 

reported (Licker et al., 2010, Monfreda et al., 2008). 166 

The two crop models were driven with 12km x 12km weather simulations with explicit 167 

parameterisation of convection, taken from the CASCADE (Cloud System Resolving 168 

Modeling of the Tropical Atmosphere) project (Birch et al., 2014) . A total of 144 calendar 169 

days, between 1st June 2006 through 22nd October 2006, were available. Simulated 170 

precipitation, maximum temperature, minimum temperature and downwards shortwave 171 

radiative flux were used as input to the crop models. Mean temperature was calculated as the 172 

average between maximum and minimum temperatures. Simulated daily data were 173 

aggregated to monthly values for use with EcoCrop. The  mean 144-day temperature and 174 

precipitation for the region are shown in Figure S1.  175 

Aggregation error was assessed by first aggregating the  12-km CASCADE data to a 3x3 176 

degree grid using bilinear interpolation. The coarser-scale simulations will have less intense 177 

events and more drizzle than the 12km simulations. Thus storms active on the 12km grid will 178 

contribute to light rainfall across the whole 3 degree domain, as happens in coarse-grid 179 

climate simulations. This method avoids dependency of results on choice of climate model 180 

(see e.g.Angulo et al., 2013). Soils inputs for the crop yield model were regridded from the 181 

FAO digital soil map of the world using the same methodology employed in Vermeulen et al. 182 

(2013) . 183 

In addition to the CASCADE data, high-resolution climatological data from WorldClim 184 

(Hijmans et al., 2005) were used to drive the crop suitability model. WorldClim is a high-185 

resolution (30 arc-sec) global database of climatological means of monthly precipitation, 186 

mean, minimum and maximum temperatures. WorldClim is currently the most used climate 187 

database for niche modelling and has been tested for robustness in Africa (Ramirez-Villegas 188 
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&  Challinor, 2012) and the globe (Hijmans et al., 2005). For West Africa, previous studies 189 

have reported low uncertainty associated with the interpolations in WorldClim. We 190 

aggregated the 30 arc-sec data to a resolution of 5 arc-min in order to reduce computational 191 

needs. We used WorldClim to drive the EcoCrop model and then assess its output against 192 

observational data. 193 

We used both planting and harvesting data (Sacks et al., 2010) to constrain the growing 194 

period in the crop suitability model. This dataset comprises the largest up to date database of 195 

crop planting and harvesting dates. The maize dataset consists of 192 observations that cover 196 

ca. 88 % of the maize harvested areas worldwide. The groundnut dataset consists of 40 197 

observations that comprise ca. 57 % of global harvested areas.  198 

 199 

 200 

 201 

Results 202 

Meta-analysis 203 

Fig. 1 shows the meta-analysis of Challinor et al. (2014b) , reanalysed to differentiate 204 

between yield projections on spatial scales above 3x3o and those below 3x3o. The figure 205 

contains 223 simulations of tropical maize under climate change in a range of locations, 206 

conducted with a range of crop and climate models. All yield projections are with respect to a 207 

baseline simulation with no climate change. Ranges of crop yield at any given temperature 208 

could be due to differences in the model used and in the model inputs, notably precipitation. 209 

The observed systematic difference between the two spatial scales of analysis could be due to 210 

a combination of factors: model structural differences, the locations chosen, and the spatial 211 
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scale of the analysis. However, systematic differences are unlikely to be caused by random 212 

differences between studies. Hence, given the large range of models and locations used in the 213 

meta-analysis, the spatial scale of the analysis is likely to be a causal factor in explaining the 214 

systematic differences in Fig. 1. These scale differences may arise because of the spatial scale 215 

of the model simulations and/or the methods used to aggregate modelled yields (van Bussel et 216 

al., 2011a, van Bussel et al., 2011b). There is also, potentially, a systematic relationship 217 

between the spatial scale of the simulations and whether or not they focus on a region of high 218 

intensity cropping: sites chosen for detailed crop modelling analyses are likely to be in 219 

regions that are important for that particular crop.  220 

 221 

Distinguishing crop niches using data and models 222 

Evaluation of the results from both models (Appendix S1) indicated that the output could 223 

reliably be used to investigate the niche effect. Observed data on yield and area harvested for 224 

maize (Monfreda et al., 2008) were analysed together with model results to assess our 225 

hypotheses. 226 

Observed yield and cropping area data indicate the existence of crop niching. Both maize and 227 

groundnut show a relatively small number of grid cells with high cropping intensity. Just 228 

2.52% of maize grid cells, and 1.31% of groundnut grid cells, have a fractional growing area 229 

greater than 0.1. 5.32% of groundnut grid cells have a fractional growing area greater than 230 

0.05. Fig. 2 shows the observed niche effect for both maize and groundnut. It was constructed 231 

by analysing yield data first across all grid cells, and second across grid cells with high 232 

growing area. The mean yields are similar in both sets of data for groundnut, but not for 233 

maize.  Hence we can identify, for West Africa, that maize is a “niched” crop; whilst for 234 

groundnut the niche signal is less clear.  235 
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Crop yield simulations also indicate the existence of maize crop niching. For two different 236 

values of CYG, GLAM represents well the difference between the maize simulations grouped 237 

i. across all regions and ii. in niche regions alone (Figure S2). In agreement with data (Fig. 2), 238 

for groundnut a smaller distinction is seen. Thus, GLAM adequately represents the distinction 239 

(maize) or lack of distinction (groundnut) between niche and non-niche environments that is 240 

seen in Fig. 2. The mean yields are similar in both sets of data for groundnut, but not for 241 

maize. Note, however, that even for groundnut the two distributions still show a bias towards 242 

higher yields when only high-cultivation cells are analysed.  243 

The EcoCrop results (Appendix S1) show that the areas in which groundnut and maize are 244 

grown are areas where the model simulates high suitability. In addition, for maize, mean 245 

suitability is higher when the analysis is restricted to the high-cultivation cells; whilst for 246 

groundnut the two means are the same. This result is consistent with Fig. 2. Maize has a large 247 

number of grid cells in which suitability is high. Groundnut, in contrast, is grown over a 248 

greater range of suitability environments than maize, including more marginal environments.  249 

Thus the crop suitability simulations also indicate the existence of crop niching for maize. 250 

 251 

Sensitivity analysis 252 

The sensitivity analysis was conducted to assess whether or not the niche effect would likely 253 

result in systematically different responses to climate change across regions of high versus 254 

low cropping intensity. It was also used to test aggregation error. First, temperature alone was 255 

varied. For maize (Fig. 3), a niche effect (difference between the squares and crosses) is seen 256 

in mean yields, but no aggregation effect (circles vs. crosses). This effect becomes more 257 

pronounced as temperature increases. Figure S3 shows the full range of values from the 258 

temperature sensitivity analysis. Whilst the niche effect as evident in mean yields is relatively 259 
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weak compared to the full range, the signal is seen in GLAM in the mean, minimum, 260 

maximum, upper quartile and lower quartile; i.e. it is systematic.  261 

For groundnut, no aggregation effect is seen, and any niche effect is marginal (Figure S4). 262 

Whilst the aggregation effect is insignificant at the domain-wide level for both crops, it can 263 

be significant in particular regions. Grid cells G and M (see Fig. 2) contain respectively dry 264 

and wet environments (Figure S1), and grid cell G manifests aggregation error, whilst cell M 265 

does not (Appendix S2).  266 

One key difference between Figs. 3 and 1 is that Fig. 1 includes changes in precipitation, 267 

whilst Fig. 3 does not. The results of the full maize sensitivity analysis, where both 268 

temperature and precipitation were varied, are presented in Fig. 4. For both yield and 269 

suitability, the niche effect is more pronounced at lower precipitation than at higher 270 

precipitation. Whilst the reductions in crop suitability are relatively small, analysis of 271 

absolute values of suitability shows that the number of grid cells suitable for cultivation 272 

decreases by up to 30 percent (Appendix S3).  273 

Ongoing increases in the spatial resolution of climate models mean that 3 degrees is no 274 

longer a common resolution for impacts modelling. a reproduction of Fig. 3b based on 1x1 275 

degree weather data and corresponding crop yield simulations showed results that are 276 

consistent to those at 3 degrees (Figure S5). 277 

 278 

Discussion 279 

Implications for crop productivity assessments   280 

There are a number of implications of niche and aggregation error for both individual 281 

modelling studies and for the synthesising of information about climate change impacts. 282 
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Whilst aggregation error was not evident at the domain-wide level in this study, evidence 283 

here and elsewhere (Baron et al., 2005, Mearns et al., 2001) suggests that coarse-scale 284 

simulations in a range of environments are often affected. Aggregation error has also been 285 

detected through variation in phenology resulting from aggregation of sowing dates and 286 

temperature (van Bussel et al., 2011a, van Bussel et al., 2011b). It is also evident in the 287 

optimisation procedure: calibrated crop model parameters can vary significantly with the size 288 

of the grid used (Iizumi et al., 2014). Aggregation error is difficult to predict, not least 289 

because climate model simulations at different spatial scales will produce different errors in 290 

aggregated precipitation, and because downscaling and bias-correction of crop model inputs 291 

also introduce errors. High resolution simulations can reduce aggregation error. However, if 292 

regional-scale yields are the quantity of interest then aggregation will still be needed at the 293 

model output stage, a process that can itself result in significant error (Angulo et al., 2013).  294 

For niched crops – that is, crops where regions of high growing area coincide with regions of 295 

higher yield – the choice of study location can have a clear and systematic impact on 296 

projected yield changes. This issue is not confined to West Africa. Fig. 5 presents a simple 297 

country-scale analysis of niching for maize, confirming that maize is a niched crop in West 298 

Africa. The figure also highlights other crops and countries where the same behaviour is seen, 299 

e.g. rice in a number of countries, and soybean in North and South America. This observed 300 

niche effect, whilst varying in form across crops and regions (Figure S6), is of clear 301 

significance for understanding climate change impacts. 302 

One reason for the niche effect is that the baseline yields are higher in niche regions, in both 303 

observations (Fig. 2) and in the model simulations (Figure S2).  Similar absolute changes in 304 

yield, in response to climate change, therefore produce smaller percentage changes in niche 305 

regions. Under the majority of the temperature and precipitation changes tested in our 306 

sensitivity analysis, the mean of yields in niche regions decreases by more, in absolute terms, 307 
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than that of all cultivated regions taken together (Figure S7). Direct comparison of percentage 308 

changes in yield across environments with different cropping intensities can therefore be 309 

misleading. In particular, analysis of yield changes across all regions, assessed together and 310 

treating percentages changes as directly comparable, can result in a systematic overestimation 311 

of the impacts of climate change.  312 

Measuring changes in production, as well as or instead of crop yield (Deryng et al., 2014), by 313 

definition corrects for heterogeneity in cropping intensity. However, future growing area is 314 

unknown. The projected emergence of novel climates (Burke et al., 2009) suggests that a 315 

focus on current major growing areas, without testing for potential changes, may lead to 316 

errors. At decadal timescales, land use change is therefore an important part of crop 317 

productivity assessments. It acts as a driver of changes in production (Schroter et al., 2005) 318 

and both a response to (Olesen &  Bindi, 2002), and cause of (Feddema et al., 2005), climate 319 

change. This suggests a need for studies that combine suitability models, and/or Agro-320 

climatic indices (Trnka et al., 2011), with crop growth and development models and high 321 

quality data (Avellan et al., 2012). The fact that the skill of models can also be higher where 322 

cropping intensity is greater (Folberth et al., 2012) is promising in this context.  323 

 324 

Synthesising knowledge on climate impacts 325 

How should the response of yield to temperature in Fig 1 be interpreted in the light of the 326 

above analyses? Niche and/or aggregation error may contribute to systematic differences in 327 

yield projections. If smaller-scale yield projections are chosen such that they focus on regions 328 

of greater importance for maize production, then a niche effect may be present. In this event, 329 

the results from the smaller-scale crop models will be more representative of the expected 330 

changes in food production. The corresponding projected percentage reductions in food 331 
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production, as a function of temperature and across large regions, will then be smaller than 332 

the reductions in yield. This effect is observed in the maize simulations presented here (Table 333 

1). 334 

The differences between yield and production changes presented in Table 1 are relatively 335 

small compared to the spread of yield values in Fig. 1. This is not surprising given that for 336 

both yield and production at any given temperature, there will be a range of different 337 

locations, precipitation, subseasonal temperatures, solar radiation, soils, and crop models. 338 

Each set of simulations will most likely have different model skill and different values of 339 

baseline yields.  340 

As more studies are added to meta-analyses, the range of yields increases, which may be 341 

interpreted as an increase in uncertainty (Rotter, 2014) . However, uncertainty in the central 342 

tendencies, which measure the aggregate response of crops to local temperature increase, 343 

does not increase as data are added (Challinor et al., 2014b) . Clearly it is important to 344 

separate explained from unexplained variation in model results (Lehmann &  Rillig, 2014) . 345 

Future work might draw on progress made in the broader area of cross-scale analysis in 346 

ecology (Lechner et al., 2012). Communicating the underlying issues surrounding uncertainty 347 

is also critical. Different interpretations of uncertainty ranges cause different conclusions to 348 

be reached, even amongst experts within a given field (Wesselink et al., 2014).  349 

Model structural differences are another component of the spread in Fig. 1. Differences 350 

between models can be greater than differences introduced by aggregation of input weather 351 

data (Angulo et al., 2013). Consistent with what was found here, Rosenzweig et al. (2014) 352 

found that the inclusion of ecosystem-based models increased the ranges of simulated yields, 353 

compared to assessments with site-based models alone. Assessing consilience in processes, 354 

rather than in numerical model output, can reduce uncertainty (Challinor et al., 2013, 355 
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Challinor &  Wheeler, 2008). Key processes such as response to temperature (Koehler et al., 356 

2013)  and CO2 (Tausz et al., 2013) can  vary significantly between different crop varieties 357 

and different crop models. Constantly challenging models with data, and recognising the 358 

different strengths and weaknesses of different modelling approaches, can also reduce 359 

uncertainty (Challinor et al., 2014a). 360 

As the number of studies and methods used for climate impacts continues to grow, meta-361 

analyses will include an increasing array of models and underlying assumptions. Differences 362 

in results from these methods are important and useful, since understanding and decomposing 363 

yield ranges can reduce uncertainty and aid understanding. Coordinated international 364 

programmes are instrumental in facilitating the intercomparisons needed for this work 365 

(Asseng et al., 2013, Rosenzweig et al., 2014).  366 

Conclusions 367 

Three independent lines of evidence point to the existence of a niche effect in maize in West 368 

Africa, and global data suggest that this effect is widespread in other crops and regions. The 369 

increasing array of climate impacts models should be used in a way that is cognisant of scale 370 

differences. Further, assessments of climate impacts based on yield alone, without accounting 371 

for cropping intensity, are prone to systematic overestimation of climate impacts. These 372 

findings therefore suggest a need for greater attention to crop suitability and land use change 373 

when assessing the impacts of climate change. In particular, future studies might combine 374 

suitability models, and/or Agro-climatic indices, with crop growth and development models 375 

and high quality data. 376 

 377 

 378 

 379 
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 565 

Supporting Information legends 566 

Appendix S1. Crop model evaluation 567 

Appendix S2. Analysis of aggregation error 568 

Appendix S3. Presence-absence analysis 569 

 570 

Tables 571 

Temp. 
change 

1oC 2 oC 3 oC 4 oC 5 oC 

Yield 14.7 27.8 39.6 50.7 61.2 

Production 13.4 25.1 35.9 46.1 56.6 

Table 1. Mean percentage reduction in crop yield and production as a function of 572 

temperature for the full set of 12km simulations. Yield values are the same as those shown in 573 

Fig. 3 574 

 575 

Figure legends 576 

Figure 1. The effect of spatial scale on projected yield change under local warming. Data 577 

taken from the tropical maize panel of Fig. 1 of (Challinor et al., 2014b), and re-analysed 578 

according to the spatial scale of the projected yield (see Methods). 579 

Figure 2. Observed yield histograms and maps of fraction area harvested for maize (a,c), and 580 

groundnut (b,d), constructed using data from the M3-crops dataset (Monfreda et al., 2008). 581 

Blue lines in (a) and (b) are for all grid cells where the crop is grown. Red lines restrict the 582 

analysis to the highest intensity of cropped areas (the choice of 10% and 5% thresholds is 583 

explained in the Supplementary text). Blue squares in (c) and (d) correspond to the 3x3 584 

degrees grid cells used for testing for aggregation error. Grid cells G and M are used in the 585 

main text to illustrate aggregation. Cell G has high groundnut cultivation, whilst cell M is a 586 

region of high maize cultivation. 587 

Figure 3. Temperature sensitivity analysis for maize yield with two different values of the 588 

calibration parameter (CYG=1 in panel (a), CYG=0.5 in panel (b), and for maize suitability (c). 589 
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y-axis shows percentage change in crop yield or suitability, averaged across the grid cells 590 

indicated.  591 

Figure 4. Simulated GLAM maize yield and EcoCrop suitability changes (percent) in 592 

response to temperature and precipitation perturbations. Average yield change across all 593 

12km grid cells from all GLAM simulations with two different values of CYG (a,c) contrast 594 

with results from the high cropping intensity areas only (b,d). Corresponding EcoCrop 595 

suitability changes are also shown (e,f). 596 

Figure 5. Difference in yields between areas of high maize cultivation intensity (top 10 % of 597 

area harvested within the country) and areas of low maize cultivation intensity (bottom 10 % 598 

of area harvested within the country). White areas are countries where the crop is not grown. 599 

Red colour scale indicates where high cropping intensity is coincident with higher yields, on 600 

a country scale. Grey areas indicate where the converse is true. Data taken from Monfreda et 601 

al. (2008). 602 
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