This is a repository copy of Effects of EGFR inhibitor on helicobacter pylori induced gastric epithelial pathology in vivo.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/83625/

Version: Supplemental Material

Article:

https://doi.org/10.3390/pathogens2040571

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/
Supplementary Material for

Effects of EGFR Inhibitor on *Helicobacter pylori* Induced Gastric Epithelial Pathology *in Vivo*

Figure S1. Sequence alignment of Mongolian gerbil *Adam17*, *Egfr* and *Hb-egf*. (A) Alignment of 213 bp portion *Adam17* cDNA sequence for the Mongolian gerbil, mouse, rat, Chinese hamster and human. Those nucleotides in other species which are similar to those in the Mongolian gerbil are typed in stars, while those different are typed in letters. The degree of nucleotide identity observed between Mongolian gerbil and other species were 95% for mouse (Accession No. 9945314), 95% for rat (Accession No. 9945329), 95% for Chinese hamster (Accession No. AF380348) and 94% for human (Accession No. 14722411); (B) Alignment of 216 bp portion *Egfr* cDNA sequence for the Mongolian gerbil, mouse, rat, Chinese hamster and human. Those nucleotides in other species which are similar to those in the Mongolian gerbil are typed in stars, while those different are typed in letters. The degree of nucleotide identity observed between Mongolian gerbil and other species was 92% for mouse (Accession No. AF275367), 91% for rat (Accession No. M37394), and 80% for human (Accession No. X00588); (C) Alignment of 200 bp portion (*Hb-egf*) cDNA sequence for the Mongolian gerbil, mouse, rat, Chinese hamster and human. Those nucleotides in other species which are similar to those in the Mongolian gerbil are typed in stars, while those different are typed in letters. The degree of nucleotide identity observed between Mongolian gerbil and other species was 93% for mouse (Accession No. 6754177), 93% for rat (Accession No. L05489), 90% for Chinese hamster (Accession No. AF069753) and 79% for human (Accession No. M60278). Nucleotides identical to those in the Mongolian gerbil are indicated by *; Numbers in the right hand column are the nucleotide position assigned in each of the respective database entries. Primer sites for qPCR in bold.
A. *Adan17* sequence

CGTACGTCGATGCAAGCAAAAGAATTATTTTTGAGGAAAGGAGGAGACC 50 Gerbil

T 1567 Mouse
T 2128 Rat
T 1872 C. hamster
C 2051 Human

TCAGGAGTGGTTTCTGATMTGAAATTCTGGGAAAATCTGAAAAACGAGTACA 100 Gerbil

A 1937 Mouse
G 2178 Rat
C 1922 C. hamster
C 2101 Human

GAACTGATATGGAGTTTTGCGAGTTTCTCTGACGAGCACTTACAACA 150 Gerbil

T 1987 Mouse
T 2223 Rat
T 1972 C. hamster
T 2151 Human

CTTCGGAAATTCTTGGCGAGACACACATCTGGTGGTCGTCTGCTGTCTTC 200 Gerbil

T 2037 Mouse
T 2273 Rat
T 2022 C. hamster
T 2201 Human

TACTGTATATTTT 23 Gerbil

A 2050 Mouse
A 2205 Rat
A 2035 C. hamster
A 2014 Human

B. *Egfl* sequence

TGCTGCTGCTATGTGATCTTGCCTCAAACACTTTGGAAGGAGTCCCTCTGAGAAGACTCCC 60 Gerbil

C 536 Mouse
T 466 Rat
A 498 Human

AATATAGATGAAATGCGTCCTGACGAAACTGCATTGCTCAACCTCAGAATCTCAGATT 120 Gerbil

G 596 Mouse
G 526 Rat
G 559 Human

ACGGGCAAAACAGACTGCGCTACAGGAAACTGCTATCGGSAACTTCAGGGAATCCTA 180 Gerbil

T 656 Mouse
T 596 Rat
T 619 Human

CCCTGGCCTGCGCGTCACGACAAAACCCGATCCTCCTCTC 216 Gerbil

T 522 Mouse
T 522 Rat
A 547 Human
Figure S1. Cont.

C. \textit{Hb-egf} sequence

\begin{verbatim}
GTGTTGTCTGCTGTTGGATCCGGTGACAGCATGCTAGGACGCTTGAGCTGAGG
50 Gerbil

CTCTCGCCAGCAACCAAGCCACCCCTGACCTCTCTACCTGACCTCCACTAC
150 Gerbil

AGCTGTACCACGGAGGACGATCGCATGGAAGCCAAGCTGAGG
150 Gerbil

GGGTTTGAAGCACTTGTGGTTTTTCCTGCTGCTCCGCAA
500 Mouse

GGGGCTCTGCCAA
250 C. hamster

G**G***T******C*****G*****CA****A********** 406 Human
\end{verbatim}