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a b s t r a c t

Subglacial lakes are common features of contemporary ice masses. However, they are rarely identified in
the geological record. This is due to the difficulty in discriminating between subglacial and proglacial lake
sediments; a proglacial origin is typically preferred as the ‘simplest’ explanation. We hypothesise that
numerous deposits currently interpreted to record proglacial lake sedimentation may actually have a
subglacial origin. Here we try and find ways of distinguishing proglacial from subglacial lake sediments
by investigating three sites along the D€anischer Wohld Peninsula, northern Germany, which have been
interpreted to record both proglacial and subglacial sedimentation. We identify two major phases of ice
activity and associated lake formation during the Late Weichselian glaciation. (1) Proglacial lake for-
mation at ~23 ka in front of the advancing Baltic Ice Stream. This lake was subsequently overridden and
the sediments glaciotectonised as ice continued to advance to its maximum extent. (2) Retreat of ice back
into the Baltic Basin at ~19 ka and formation of a proglacial lake that persisted for ~4 ka. We suggest that
subglacial lake activity may have occurred at two of the sites between 23 and 19 ka. This is based on the
presence of aggrading sediment deposits characterised by stratified/laminated diamictons and inter-
bedded tabular to channelized sorted sediments, the juxtaposition of relatively undeformed waterlain
sediment and subglacial till, absence of glaciotectonic thrusting and folding or of fining/coarsening
successions and the geomorphic association with tunnel valleys to the south of the study area. The style
of sedimentation and deformation provided the greatest insight into the discrimination of proglacially vs
subglacially deposited glaciolacustrine sediments. The luminescence signal palaeodose distributions also
offers a potentially powerful means of fingerprinting sediment transport pathways of young glacial
systems.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Glaciolacustrine sediments are commonly observed in the
geological record and have classically been interpreted to record
proglacial (ice-marginal or ice-fed) lake formation (e.g. Rust and
Romanelli, 1975; Eyles, 1987; Eyles et al., 1989; Larsen et al.,
2006; Livingstone et al., 2010; Carrivick and Tweed, 2013). If the
geographic context for these sediments in relation to a former ice
margin is suitable for lake impoundment, or where other lines of
evidence exist e such as lake shorelines and/or deltas e then such
an interpretation is robust. It is common, however, to find
Livingstone).

r Ltd. This is an open access article
glaciolacustrine sediments without ancillary support for a progla-
cial origin, and we raise the question; in some of these cases could
the sediments have been deposited in a subglacial lake?We suggest
that breaking the automatic interpretation from glaciolacustrine
sediments to the existence of a proglacial lake is timely because
subglacial lakes are now known to be commonplace beneath
contemporary ice masses (e.g. Wright and Siegert, 2011), and are
predicted to exist beneath palaeo-ice sheets (Evatt et al., 2006;
Livingstone et al., 2013). Given that they must surely have exis-
ted, it is sensible therefore to hypothesise that many glaciolacus-
trine sediments previously interpreted as proglacial might actually
have a subglacial origin. If we can distinguish the signature of
subglacial lake sediments we could glean important spatial and
geological evidence on: (i) meltwater drainage, ice flow and ice
streams; (ii) their relation to palaeo-floods, ice dynamics and sub-
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Milankovitch-scale climate events; and (iii) long-term Quaternary
climate change (Livingstone et al., 2012).

Despite recent attempts to formulate diagnostic criteria based
on our current knowledge of subglacial lake processes (e.g. Bentley
et al. 2011; Livingstone et al. 2012; Ravier et al., 2014a), there is still
no incontrovertible method for distinguishing their geological
signature from that of proglacial lakes and therefore for demon-
strating their former existence. So, despite putative examples of
palaeo-subglacial lakes (e.g. Gjessing, 1960; McCabe and �O Cofaigh,
1994; Rebesco et al., 1998; Munro-Stasiuk, 1999; van Rensbergen
et al., 1999; Christoffersen et al., 2008), a proglacial lake origin is
typically preferred as the ‘simplest’ interpretation for glaciolacus-
trine sediments.

We explore this conundrum using the glacigenic succession of
the D€anischer Wohld Peninsula, northern Germany, in an attempt
to advance our skill in the discrimination of proglacially vs sub-
glacially deposited glaciolacustrine sediments. The sediments
exposed along this Peninsula have been variously interpreted to
Fig. 1. Location map of the D€anischer Wohld Peninsu
record deposition in subglacial and proglacial lake environments
(Piotrowski, 1992, 1994a,b, 1997; Hart et al., 1996, 1997; Piotrowski
et al., 1997; Piotrowski and Tulaczyk, 1999). Our aim is to test these
two conflicting models using a range of techniques, including
geomorphological mapping, sedimentological and stratigraphic
investigations, and Optically Stimulated Luminescence (OSL)
dating.

2. Location and glacial context

The D€anischer Wohld Peninsula is part of SchleswigeHolstein,
northern Germany and is located between deeply incised bays of
the southwestern Baltic Sea at Eckernf€orde and Kiel (Figs. 1 and 2).
An up to 25 m high sea cliff has exposed a remarkable record of
intercalated glacigenic facies deposited during the Weichselian
glaciation subdivided by Piotrowski (1996) into the lower and up-
per sedimentary complexes. The succession is interpreted to record
either: (1) a single advance of ice out of the Baltic Basin, which
la, northern Germany. Inset box relates to Fig. 2.
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dammed and subsequently overrode a proglacial lake (Piotrowski,
1992, 1994a; Piotrowski et al., 1997); (2) a series of readvances
during overall glacial retreat, with subglacial deformation occur-
ring during each advance and glaciolacustine sedimentation during
each retreat (Hart et al., 1996, 1997); or (3) sedimentation in a
subglacial lake basin that periodically drained in tunnel valleys
through a permafrost seal (Piotrowski, 1994b, 1997; Piotrowski and
Tulaczyk, 1999). These sediments comprise part of an extensive
succession of Quaternary deposits that reach up to 200 m thick
(Piotrowski, 1994b).

Retreat of the Scandinavian Ice Sheet and development of ice-
free conditions in northern Germany and Denmark after 29 ka BP
was followed by renewed growth of the Baltic ice streams to their
maximum limits between 25 and 22 ka BP (Houmark-Nielsen and
Kjaer, 2003; Jørgensen and Piotrowski, 2003; Larsen et al., 2009;
Sommer and Benecke, 2009; Houmark-Nielsen, 2010; Ukkonen
et al., 2011), terminating some 50 km to the south and 25 km to the
west of the study area. Stratigraphic investigations have identified
five glacial fluctuations during this expansion, the first four of
which took place south of the study area, which remained ice
covered (Stephan and Menke, 1977; Stephan et al., 1983; Prange,
1987, 1990). After the fourth advance ice retreated offshore of the
D€anischer Wohld Peninsula before re-advancing out of the eastern
Baltic Sea (over the study site) and terminating several kilometres
south of the present shoreline (Mecklenburg Phase, Young Baltic
Advance; Stephan, 1995, 2001). Final retreat of ice out of northern
Germany is thought to have occurred after ~19 ka BP (Lüthgens
et al., 2011; Houmark-Nielsen et al., 2012), and possibly as late as
~15 ka (Preusser, 1999), although this conflicts with deglacial
chronologies further north, which suggest the ice margin reached
southern Sweden between 18 and 16 ka BP (Lundqvist and
Wohlfarth, 2001; Anjar et al., 2014).
Fig. 2. Glacial geomorphology (A) and mapping (B) from 5 m NETXMap data of tunnel va
SchleswigeHolstein, northern Germany. Panel A displays the elevation and hillshaded DSM
3. Methods

3.1. Glacial geomorphology mapping

Glacial geomorphological mapping of the SchleswigeHolstein
region of northern Germany involved the recognition and inter-
pretation of glacial landforms from NEXTMap digital surface model
(DSM) data (Fig. 2a). This is a 5 m resolution DSM derived using
airborne Interferometric Synthetic Aperture Radar (IFSAR) imagery
(http://www.intermap.com/data/nextmap). Mapping was carried
out manually using on-screen digitisation. Vectors were used to
digitise channels, moraine ridges and eskers, and points used to
digitise hummocky moraine. Long profiles along channels were
extracted in order to assess a subglacial vs proglacial origin.

3.2. Sedimentology

Sedimentological and stratigraphic investigations were carried
out using a range of macro- andmicro-scale techniques at three sites
along the D€anischer Wohld Peninsula (Fig. 2). Sections were logged
and information on sedimentary structure, bed geometry, texture,
sortingandcolour (Munsell)used to characterise lithofacies (basedon
the nomenclature of Evans and Benn, 2004). Scaled section sketches
were drawn from a series of overlapping photographs so that the
lateral extent of the lithofacies could be assessed. At 16 sites clast
macro-fabricsweremeasuredusing theA-axes of stoneswith lengths
ranging from 1 to 10 cmandA/B axial ratios of at least 1.5/1 (n¼ 30 at
each fabric site). At 15 sites sediment samples were collected for the
analysis of grain-size distribution (fraction �2 mm) and lithological
components (fine-gravel fraction). In each sample, the lithological
composition was determined on a minimum of 300 grains in the
2e4 mm size fraction whereby rocks are subdivided into stable
lleys, moraine, eskers and hummocky moraine in the D€anischer Wohld Peninsula of
and panel B displays the hillshade and mapping results.

http://www.intermap.com/data/nextmap
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components (red crystalline rocks, light-coloured crystalline rocks,
dark-coloured crystalline rocks, quartz, chert, and sandstone) and
unstable components (Cretaceous and Danian chalk, Paleozoic lime-
stone, calcareous sedimentary rocks, opal chert, andother lithologies)
(Kronborg, 1986). The counting results are presented separately for
stable and unstable lithologies whereby the sum of stable compo-
nents gives 100% to enable sample-to-sample comparison not biased
by weathering. At four sites undisturbed, oriented samples were
collected in large Kubien€a boxes (10 � 5.5 � 4 cm) for thin section
production to investigate micromorphological characteristic of the
deposits. Standard techniques were used for the impregnation and
preparation of the thin sections (e.g. van der Meer, 1996).

3.3. Optically Stimulated Luminescence dating

OSL dating is a potentially powerful tool for deciphering be-
tween subglacial and proglacial lake sediments because sediment
entering a subglacial lake is not exposed to sunlight and so the
bleaching historywill be different to that of a proglacial lake (Fig. 3).
Fig. 3bed displays possible De distributions that might be expected
Fig. 3. A. Cartoon of sediment-transport pathways into subglacial and proglacial lake enviro
sediment overflows (buoyant plumes); 4 e supraglacial drainage; 5 e melt-out of debris-ric
reworking and deformation of subglacial and inherited sediments; 8 e supraglacial draina
deposition of the glaciolacustrine sediments from the D€anischer Wohld Peninsula in a progla
is 20 ka. Apparent ages of >130 ka relate to saturated grains. C and D: Probability density
glaciolacustrine sediments from the D€anischer Wohld Peninsula in a subglacial lake. In scen
lake (note the older average age associated with this inherited signature and the greater nu
reworked subglacial sediments and eroded bedrock. Note the high number of saturated gr
geological age sediments and reset sediment should be great. Differences between older se
elapsed between the two events.
for subglacial and proglacial environments. The luminescence
signal in a proglacial environment will vary depending upon its
depositional pathway (Fig. 3a), typically resulting in a skewed
distribution indicative of partial bleaching (Fig. 3b) (e.g. Fuchs and
Owen, 2008). In contrast, subglacial lake sediments will retain an
inherited signature of the event prior to deposition. Thus we might
expect erroneously old ages related to the inherited signal from
previous depositional events (Fig. 3c) or from grains with a satu-
rated OSL signal derived from comminuted bedrock (Fig. 3d). The
distribution may be less peaky or even multi-modal because it is
derived from an amalgam of sediment that has been eroded or
cannibalised, before being transported and deposited by ice. In the
Fig. 3c scenario grains are sourced from a former proglacial lake
during initial ice-advance. The reworking of sediment characterised
by different depositional histories is also not expected to produce
ages in the correct stratigraphic order. However, where proglacial
lake sediments have been poorly bleached, or in regions where the
bedrock has quartz with poor OSL characteristics (e.g.
Alexanderson and Murray, 2012) it may be difficult to distinguish
between proglacial and subglacial environments.
nments. 1 e Iceberg rainout; 2 e turbidity currents, underflows and gravity flows; 3 e

h ice; 6 e erosion of bedrock (meltwater drainage, plucking, abrasion, quarrying); 7 e

ge. B: Probability density function plot displaying a hypothesised De distribution for
cial lake. Insets 1-4 relate to numbers 1-4 in panel A. Assumed fully bleached burial age
function plot displaying hypothesised age replicate distributions for deposition of the
ario C there is a dominant component of sediments reworked from a former proglacial
mber of saturated grains). In scenario D most of the sediment has been derived from
ains associated with very old comminuted bedrock. Differences between comminuted
diment mixed with reset sediments may or may not be great depending on the time
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Seven samples of sand collected from Noer and Altbülk were
dated by the Optically Stimulated Luminescence (OSL) method to
establish the timing of sediment burial and to try and elucidate the
environmental context of deposition. All luminescence samples
were collected from freshly exposed sections using opaque plastic
tubes and immediately sealed with opaque end caps and tape to
avoid light contamination. These were transported to and prepared
under low-intensity red lighting at the Sheffield Luminescence
Laboratory. All samples were prepared to extract and clean quartz.
Carbonates and organic materials were removed using 1 MHCl acid
and 30% H202 respectively. Each sample was dry-sieved to isolate
sand in the range 90e180 mm. A density separation using sodium
polytungstate (specific gravity of 2.7 g cm�3) was used to remove
heavy minerals and the resultant extract was etched with 40% HF
acid for 45 min to remove contaminated feldspars and surface
coatings from quartz. Re-sieving at the lower size rangewas used to
separate quartz from any residual feldspars and the purity was
tested using infra-red stimulated luminescence.

OSL measurements were carried out both at the single aliquot
and single grain level which has been successfully applied to glacial
sediments elsewhere (e.g. Bateman et al., 2011). Single aliquot OSL
measurements were conducted on 9.6 mm discs, with quartz
deposited as a 2 mm diameter monolayer in the centre of the disc.
Single grain measurements carried out with grains mounted on
discs with 100 pits of 300 mm diameter arranged in a 10 � 10 grid.
All measurements were carried out on a TL-DA-15 Risø automated
luminescence reader equipped with a Hoya U340 filter (7.5 mm for
single aliquot, 2.5 mm for single grain). OSL Stimulation was pro-
vided by blue diodes emitting at 470 nm for single aliquots and
Nd:YVO4 laser for single grain OSL measurements.

Single grain and single aliquot De values were derived using the
single aliquot regeneration (SAR) protocol (Murray and Wintle,
2000), using four regeneration points and a recycling dose
Table 1
OSL related data for sampled sites D€anischer Wohld Peninsula, northern Germany.

Sample details Dose rate data Single
meas

Lab code Depth
(m)

Alpha
(mGy a�1)

Beta
(mGy a�1)

Gamma
(mGy a�1)

Cosmic
dose rate
(mGy a�1)

Total
dose rate
(mGy a�1)

n O
(%

Altblück
Shfd12083 1.0 39 ± 7 1439 ± 119 606 ± 39 184 ± 9 2267 ± 126 27 2
Shfd12081 3.3 36 ± 8 1479 ± 123 645 ± 41 120 ± 6 2280 ± 130 35 2

Shfd12082 4.3 39 ± 8 1333 ± 108 672 ± 43 136 ± 7 2179 ± 117 31 4

Shfd12079 5.0 24 ± 5 1205 ± 102 560 ± 36 104 ± 5 1812 ± 108 38 5

Noer
Shfd12084 6.5 17 ± 5 839 ± 75 535 ± 34 110 ± 6 1483 ± 83 32 3
Shfd12086 5.5 17 ± 2 830 ± 74 612 ± 39 110 ± 6 1569 ± 84 34 3

Shfd12085 5.0 33 ± 7 1096 ± 90 558 ± 35 104 ± 5 1797 ± 97 24 2

a n equals number of aliquots measured and meeting initial acceptance criteria. Num
criteria applied.

b Different models used to calculate single De from replicate De data. CAM is the Centr
Note results for FMM De components exclude those representing less than 10% of the me
parenthesis.

c Age in bold indicated preferred age based on De replicate data and stratigraphy (See
(Supplementary Fig. 1). The preheat temperature of 160 �C was
determined experimentally using a dose-recovery plateau test on
standard aliquots from one of the samples (Murray and Wintle,
2003). At this preheat temperature dose recovery was within 5%
of unity (n ¼ 3) and showed good recycling values (<10%)
(Supplementary Fig. 2). Twenty-four replicates for each sample
were measured at the single aliquot level. For single aliquot De
calculations, aliquots were only accepted if: (i) the recycling ratio
was within 10% of unity; recuperationwas <5%; De error was <20%;
the naturally-acquired OSL was significantly above background;
and SAR regeneration points could be fitted adequately by a growth
curve. For single grain De calculations, grains were accepted on the
same basis as above except the recycling ratio relaxed towithin 20%
of unity to account for poorer signal to noise ratios. Also for single
grain measurements, to minimise the influence of any slow
component we adopted the method of Cunningham and Wallinga
(2010) using a background integral that immediately followed
and was 2.5� the initial signal. Finally, single grain measurements
were only accepted if their OSL sensitivity exceeded 20 ct Gy�1 to
avoid De scatter derived from dim grains (Rhodes, 2007). This final
step significantly reduced the number of accepted grains per
sample (on average only 36% accepted).

Analyses were initially carried out using single aliquots because
this returns a good signal-to-noise ratio and where only a few
bright grains are contributing to the OSL signal 2 mm diameter
aliquots can be considered almost single grain measurements
(Medialdea et al., 2014). However, replicate single aliquot De results
showed appreciable scatter. Subsequent analysis of single grain
data showed contributions were not dominated by a single grain
and that the single aliquot approach was failing to reveal the true
palaeo-dose (De) variability in resetting within samples. Obscura-
tion of true De variability at the single aliquot level has been re-
ported elsewhere stemming from the measurement of many grains
aliquot OSL
urement data

Single grain OSL measurement data Age (ka)c

D
)

CAM De (Gy) na OD
(%)

Skew De (Gy)b

3 34.75 ± 1.08 76 (26) 34 1.26 CAM 34.52 ± 2.17 15.2 ± 1.28
8 44.57 ± 1.44 72 (31) 48 1.57 CAM 38.10 ± 2.95 16.7 ± 1.61

MAM 25.20 ± 4.19 11.1 ± 1.94
FMM (1) 25.08 ± 2.94 (34) 11.0 ± 1.43
FMM (2) 47.85 ± 4.23 (53) 21.0 ± 2.21
FMM (3) 96.02 ± 15.18 (13) 42.1 ± 7.08

3 52.26 ± 3.54 60 (20) 57 4.38 CAM 39.97 ± 4.28 18.3 ± 2.20
MAM 20.52 ± 4.51 9.42 ± 2.10
FMM (1) 23.65 ± 3.29 (31) 10.9 ± 1.62
FMM (2) 53.30 ± 4.08 (61) 24.5 ± 2.00

5 39.39 ± 3.08 61 (26) 54 3.52 CAM 37.67 ± 3.24 19.9 ± 1.85
MAM 25.51 ± 6.09 13.5 ± 3.31
FMM (1) 35.95 ± 2.83 (61) 19.0 ± 1.85
FMM (2) 71.21 ± 8.79 (27) 37.6 ± 5.10

7 37.24 ± 1.75 52 (17) 35 0.53 CAM 27.46 ± 1.65 18.52 ± 1.5
0 46.89 ± 2.03 49 (14) 54 2.34 CAM 39.64 ± 3.62 25.3 ± 2.68

MAM 33.90 ± 3.53 21.6 ± 2.53
FMM (1) 36.20 ± 3.11 (74) 23.1 ± 2.33
FMM (2) 111.8 ± 15.6 (26) 71.3 ± 10.6

9 48.25 ± 1.19 60 (14) 60 0.99 CAM 41.57 ± 3.14 23.1 ± 2.15

ber in parenthesis indicates number of accepted grains once additional sensitivity

al Age Model, MAM is the Minimum Age Model and FMM the Finite Mixture Model.
asured data with proportion of data represented by a given component indicated in

text for details).
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simultaneously to produce an average luminescence signal (e.g.
Arnold and Roberts, 2009; Bateman et al., 2014). We therefore focus
on the single grain results in this paper.

Dose rates were determined from field measurements made
with an EG&G Micronomad field gamma-spectrometer to derive
the gamma dose rate combined with laboratory based inductively-
coupled plasma mass spectrometry (ICP-MS) measurements to
determine the beta dose rate. The cosmic dose rate was determined
following published algorithms (Prescott and Hutton, 1994). The
total dose rates were attenuated for sediment size and palae-
omoisture contents, with the latter based on present-day values
determined at the time of sampling with an absolute error of 5%.

As was expected from the depositional contexts, the majority of
samples analysed in this study were significantly overdispersed
(OD), skewed and/or multimodal, indicative of partial bleaching
which resulted in a range of De values within each sample (Table 1).
For age calculation purposes, to derive single De values for each
sample, replicate De data was analysed through a variety of age
models. Where sample De distributions were unimodal, normally
distributed and with a low OD, the sample was considered to be
well bleached and of a single age. In such cases it was appropriate to
use the Central Age Model (CAM; Galbraith and Green, 1990) to
calculate a single De value for age calculation, once outliers (defined
as falling outside the 1.5 times the fourth spread from the median;
Hoaglin et al., 1983) were discarded. Where sample De distributions
were skewed, with a high OD, then the sample was considered
Fig. 4. Stratigraphic logs at Noer. White areas in the section log (A) were not exposed. The l
samples (shfd code) and fabrics (F) are illustrated on the vertical logs. Lithofacies codes are
and lithofacies associations).
partial bleached with some grains carrying an antecedent geolog-
ical signal masking the true burial age. In such cases an age model
targeting the lowest component of De data, such as the minimum
age model (MAM; Galbraith et al., 1999), was more appropriate.
Where sample De distributions were non-normally distributed,
multi-modal and with a high OD, the sample could be interpreted
as partially bleached, and/or post-depositionally disturbed and/or
havingmultiple age components (Bateman et al., 2003, 2007, 2014).
In such cases the finite mixture model (FMM; Galbraith and Green,
1990; Galbraith et al., 1999) was considered. Critical to the latter
was the use of an appropriate sigma-b value. This was experi-
mentally determined for this study on the basis of a dose-recovery
test which showed only that a sigma-b value of 0.2 was required to
recover a dose within unity using FMM. Where FMM was applied
for age calculation purposes only the FMM component represent-
ing more than 10% of the dataset were considered.

4. Glacial geomorphology

Geomorphological mapping of glacial landforms reveals a
complex pattern of terminal and hummockymoraine bisected by or
blanketing a network of ~6 km spaced channels (Fig. 2). These
channels are up to 4 km wide (average ~500 m) and 200 m deep,
and rise up the adverse slope from the Baltic Basin towards the
Saalian highlands forming part of a wider network of channels that
terminate close to or at the former ice-margin (Fig. 1, Ehlers and
ocation of thins sections (TS), bulk samples for clast lithology and particle size (B), OSL
based upon those of Evans and Benn (2004) (see Table 2 for classification of lithofacies



S.J. Livingstone et al. / Quaternary Science Reviews 112 (2015) 86e10892
Wingfield, 1991). At the D€anischer Wohld Peninsula the channels
are preferentially aligned with the deeply incised Eckernf€orde Bay
and Kieler F€orde (Fig. 2b). A number of smaller <1 km wide chan-
nels are also observed, both associatedwith the larger channels and
as isolated features (Fig. 2).

The spatial association with the former ice-margin, up-slope
thalwegs, infilling by glacigenic sediments and partial burial by
hummocky and terminal moraine has allowed the large channels to
be interpreted as subglacially eroded tunnel valleys (see also Ehlers
and Wingfield, 1991; Piotrowski, 1994b, 1997) and the smaller
channels as subglacial meltwater channels. An extensive borehole
investigation of the infilled Bornh€oved tunnel valley south of Kieler
F€orde by Piotrowski, 1994b reveals it to be a polygenetic feature
eroded over multiple glaciations. Sandur deposits in front of the
Bornh€oved tunnel valley comprising large numbers of well-
rounded boulders up to 20 cm diameter indicate meltwater
drainage by high-energy outbursts.

5. Sedimentology and stratigraphy

5.1. Noer

We examined and recorded exposed glacigenic sediments along
120 m of the east-west orientated, 9e12 m high Baltic Sea cliff near
Table 2
Classification of lithofacies and lithofacies associations (LFA) at Noer, Stohl and Altbülk.

Site LFA Component facies and facies codes Description

Noer LFA1 Massive diamicton (Dmm) Massive, matr
clast poor and

LFA2 Stratified and laminated diamicton (Dms/Dml);
upward fining and massive granule gravel
(GRfu/GRm); upward fining, rippled, horizontally
bedded, deformed, massive and laminated sand
(Suf/Sr/Sh/Sd/Sm/Sl); and deformed silts and
clays (Fd) with dropstones (Fd(d))

2e3 m massiv
intercalated w
muds giving i
clasts occur th
Thickness of b
and contacts a
LFA has been
flame structur

LFA3 Deformed laminated to stratified diamiction
(Dml/Dms); chalk, sand (Sd); and mud (Fd) with
outsized clasts (Fd(d)/Sd(d))

Intensely defo
diamicton, ch
occur and hav
bedding. Beds

LFA4 Stratified to massive diamicton (Dms e> Dmm);
and deformed sand rafts (Sd)

>5 m massive
clast poor, an
in lower porti
sub-horizonta
been deforme

Stohl LFA1 Stratified to laminated diamicton (Dms/Dml);
deformed sand (Sd); and mud (Fd) partings

8e10 m of str
imparted by m
mud, and by b
Clasts are rare
folds, augen s
and diamicton

LFA2 Upwards fining and clast-supported, imbricated
(a(p)a(i)) gravel (Gfu/Gmi); horizontally stratified
and upward fining granule gravel (GRh/GRfu);
massive and horizontally stratified sand (Sm/Sh);
and thin interbeds of diamicton (Dmm)

Shallow (0.5e
Clast-support
pebble gravel
of trough. Upw
coarse sand. C
by openwork
diamicton int

Altbülk LFA1 Stratified diamicton (Dms); and stringers of
bedded sand (Sl)

0.5 m thick st
Stratification
bedded sand

LFA2 Massive gravel (Gm); deformed, rippled,
laminated and horizontally bedded sand
(Sd/Scr/Sl/Sh); laminated and massive silts and
clays (Fl/Fm); and matrix supported, stratified
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Noer (54�28.0750 N, 9�59.3010 W). Six sedimentary logs were
recorded along the length of the exposure (Fig. 4), which is pre-
dominantly composed of stratified diamicton, interbedded with
sorted sand and mud that volumetrically exceeds the diamicton in
the middle third of the exposure (Table 2). Towards the cliff-top the
diamicton becomes increasingly massive and can be confidently
traced across all six logs. There is a noticeable absence of erosional
contacts between sedimentary facies, and striated and faceted
clasts are rare.

5.1.1. Lithofacies Association 1 (LFA N1; diamicton)
The lowermost lithofacies association (LFA), N1, is >1 m thick

and comprises a dark grey (5Y 4/1), massive, matrix-supported
diamicton (Dmm) that is clast poor and has a fissile appearance.
A single fabric (F4) reveals a moderately strong (S1 ¼ 0.71), spread-
unimodal distribution with azimuths which dip to the northeast
and southwest (Fig. 5).

5.1.2. Lithofacies Association 2 (LFA N2; interbedded diamicton,
gravel, sand and mud)

LFA N2 consists of gently-dipping to horizontal beds of brown
(7.5YR 5/4), matrix-supported diamicton (stratified, laminated and
massive), granule gravel (GRfu, GRm), sand (Suf, Sr, Sh, Sd, Sm, Sl)
and mud (Fd(d), Fd). Although the diamicton facies are not graded
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Fig. 5. Clast fabric data collected from diamictons at Noer (blue), Stohl (green) and Altbülk (red) plotted using OpenStereo with (equal area) hemispheric projection and contoured
using the natural neighbour method. See stratigraphic logs for locations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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internally, the intercalated sediments are often distinctly bedded,
with horizontal laminations, upward-fining successions and cur-
rent ripple structures evident (Figs. 6a,b). The thickness of the in-
dividual lithofacies varies from a fewmm to ~1 m, giving the whole
2e3 m thick LFA a stratified appearance. Where the sand is current
bedded, ripples reveal a palaeo-current direction towards the east.
In logs 3 and 4 the rippled surface is conformably overlain by dia-
micton, which delicately drapes the undulating surface below
(Fig. 6b). Packages of upward-fining granule-gravel, sand and oc-
casionally laminated clay/silt occur repeatedly between diamicton
layers and can in places be traced tens of metres along the cliff.
Occasionally, these packages are associated with concave, erosional
lower contacts that pinch out laterally over several decimetres
(Fig. 6c). Outsized clasts and infrequent pods of coarse sand and
gravel occur throughout the sorted sediments, either penetrating or
bending the substratum.

The base of LFA N2 consists of a discontinuous m�elange of
contorted, clast poor, clay-rich diamicton, sand and clay with
convolute bedding, flame structures, small intra-clasts of underly-
ing material associated with sheared (rip-up clasts) and loaded
boundaries, disrupted pods and lenses and sub-horizontal silt/sand
stringers. Primary sedimentary structures are only partially pre-
served, and the facies tend to pinch and swell laterally. Further
evidence of deformation is provided by eastward-curving sediment
lenses (Fig. 6d), which rise through the diamicton m�elange and are
composed of massive to stratified sand, with rare dropstones, and
pods of silt, granule-gravel and diamicton. These features, which
are ~70 cm tall and reach up to 25 cmwide at their base bend round
larger clasts in the diamicton and both taper and splay upwards.
Fold structures include the identification of parasitic folding of
intercalated diamicton, sand and clay around a more competent
mass of protruding diamicton. Localised, centimetre to decimetre
scale reverse and normal faulting is also recorded, particularly
where the primary sedimentary structure has been partially pre-
served, such as in the warped and faulted stratified sand and
granule-gravel facies at the base of log 5.

Two fabrics were taken in LFA N2, one in the lower m�elange (F3)
and another in the upper less-deformed succession (F5) (Fig. 5).
Both show multimodal clustering with weak S1 values of 0.49 (F3,
log 1) and 0.54 (F5, log 4). A predominance of NW/N dipping clasts
is noted in F3, which matches the local dip of the palaeo-surface,
and both fabrics contain relatively steeply dipping clasts.

5.1.3. Lithofacies Association 3 (LFA N3; deformed diamicton, sand
and mud)

Above LFA N2, at the eastern end of the exposure (logs 5 and 6),
is an intensely deformed 1e2 m thick m�elange of laminated to
stratified diamicton, chalk, sand and mud (LFA N3) (Fig. 6e,f). Dia-
micton balls and flame structures are common as are clay, silt and
sand pods/stringers and pockets of granule to pebble gravel.
Outsized clasts (up to 40 cm) within the diamicton m�elange have
downwarped or penetrated underlying laminae and are in turn
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draped by overlying strata. Where underlying lamina has been
disturbed by larger stones small, longitudinally asymmetrical folds
form below the clasts, indicating lateral drag towards the east and
south (Fig. 6e). In log 6 the entire succession dips up to 22� towards
the SW/W. A fabric taken from the centre of LFA N3 in log 5 (F8) had
a moderate (S1 ¼ 0.62), spread-unimodal distribution and a mean
lineation azimuth which dips towards the NNE (Fig. 5).

A thin section taken near the base of LFA N3 (TS-D) reveals a
lower massive diamicton with sub-vertical fissures (Fig. 7). This
leads up into a sub-horizontal sand lamina, with an erosional, un-
dulating to stepped lower boundary and convolute transition into a
capping silt facies. Diamicton pellets, outsized clasts and minor
ductile deformation structures are evident within this zone. The
diamicton above the lamina has a distinctive sub-horizontal
structure imparted by numerous undulating laminations of
(normal and inverse) graded sand/silt, clay-rich and -poor dia-
micton and horizontally aligned clasts. Laminae are warped below
and above larger clasts, which are themselves often plastered with
clay. Rotation structures are common and there is a weakly-
developed skelsepic plasmic fabric.
Fig. 6. Photographs of lithofacies exposed at Noer. A: Horizontal beds of diamicton, sand and
by a grey diamicton (LFA N4) containing cm-thick chalk stringers that become less freque
conformably overlain by diamicton. C: Example of a small scour-and-fill structure that fine
lenses (~70 cm tall) that rise through the diamicton m�elange. E: Outsized clast within the dia
and the concentration of clasts in its lee-side (right). F: Intensely deformed 1e2 m thick m
deformation is concentrated towards the centre of the image, and that the transition into
5.1.4. Lithofacies Association 4 (LFA N4; partially bedded matrix-
supported diamicton)

LFA N4 is a brown (7.5YR 5/4) to dark grey (7.5YR 4/1) matrix-
supported diamicton that has a bedded appearance imparted by
cm-thick chalk stringers that become less frequent towards the top
of the >5 m thick LFA. The chalk stringers are horizontally to sub-
horizontally aligned, undulating to anastomosing, and downwarp
below or are penetrated by larger pebbles. In the lowermost 20 cm
pods and stringers of sand and chalk have been partially deformed.
At log 5, at the boundary with LFA N3, this has resulted in a kinked
fold structure and associated reverse faults indicating NEeSW
compression (Fig. 8f). The boundary with LFA N2/3 varies from
gradational at logs 5 and 6 to loaded and sheared at log 1. Two large
(~0.5 m) deformed sand rafts with granule to pebble gravel and
pockets of diamicton float within LFA N4 at the eastern end of the
exposure (log 1). The boundary between the rafts and the sur-
rounding Dmm is sheared and convoluted. Four fabrics were
recorded in LFA N4 (F1, 2, 6, 7) spaced laterally across the exposure
(Fig. 5). All display moderately-strong clustering, with S1 values
that range from 0.68 to 0.75 and plot as spread unimodal with
azimuths which dip to the NWeSE (F1) and NeS (F2, 6, 7).
mud, partially deformed in the central bottom portion of the picture (LFA N2), overlain
nt towards the top. B: Close up of LFA N2 illustrating the ripple structures (arrowed)
s upwards and is conformably overlain by diamicton. D: Eastwards curving sediment
micton m�elange of LFA N3. Note the small asymmetric fold to the east (left) of the clast
�elange of laminated to bedded diamicton, chalk, sand and mud (LFA N3). Note that

LFA N4 is marked by kinked bands.



S.J. Livingstone et al. / Quaternary Science Reviews 112 (2015) 86e108 95
5.1.5. Grain size analysis
Grain size analysis reveals that the diamicton matrices at Noer

are equivalent, with about 10% clay, 40% silt and 50% sand (Fig. 8).
LFA N4 is slightly more silty and contains less sand. The lithological
components also show little variability and exhibit spectra typical
for diamictons deposited by ice of north-easterly provenance (e.g.
Piotrowski, 1994; Kjaer et al., 2003). This includes a high proportion
of far-travelled components, including Palaeozoic limestone
(20e40%) sourced from the Baltic and crystalline rocks (60e70%)
from the Fennoscandian Shield (Fig. 8).

5.2. Stohl

We investigated exposed glacigenic sediments along 360 m of
the east-west orientated, 10e16 m high Baltic Sea cliff near Stohl
(54�28.7530 N, 10�08.7810 W). Five sedimentary logs were recorded
along the length of the exposure (Fig. 9). Stratified and laminated
diamicton is exposed throughout the succession (8e10 m thick),
along the entire length of the cliff (Table 2). Typically sub-
Fig. 7. Annotated scan of sample TS-D from Noer. This thin section is taken near the base of
upper sub-horizontally bedded diamicton.
horizontally bedded, the diamicton undulates and anastomoses
around structures such as folds, rafts and channel-fills. The base of
the succession had slumped considerably making it difficult to
observe the transition into the lower facies (U1), which has been
interpreted both as a lodgement (Piotrowski, 1992) and deforma-
tion till (Hart et al., 1996, although see reply by; Piotrowski et al.,
1997).

5.2.1. Lithofacies Association 1 (LFA S1; Stratified and laminated
diamicton)

LFA S1 is composed of stratified and laminated diamicton and is
observed throughout the succession. It corresponds to facies U2 of
Piotrowski (1992), which was interpreted as a melt-out till.

Log 1 was recorded at the western end of the investigated
exposure at ~8 m a.s.l. (Fig. 9). It comprises 2 m of grey (7.5YR 5/1)
to brown (7.5YR 5/3), stratified to laminated matrix-supported
diamicton. The bedding is imparted by mm-to cm-thick partings
of sand and mud (Sl, Sd, Fm) that occur every 1e2 cm in places
(Fig. 10c). Clasts within the diamicton are rare and predominantly
the diamicton m�elange of LFA N3 at log 5 (see Fig. 4). Note the scoured sand fill and the



Fig. 8. Grain size distribution (fraction � 2 mm) and fine gravel lithology for Noer, Stohl and Altbülk. Lithological composition was determined on a minimum of 300 grains in the
2e4 mm size fraction. Red, Light and Dark refer to coloured crystalline components. Cr þ Dn ¼ Cretaceous and Danian chalk; Paleozoic ¼ Paleozoic limestone; Calc.
Sed. ¼ calcareous sedimentary rocks. The counting results are presented separately for stable and unstable lithologies whereby the sum of stable components gives 100% to enable
sample-to-sample comparison not biased by weathering. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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granule-gravel sized, with some pebbles. Beds dip up to 32� to-
wards the S and SW. Lower in the succession the bedded appear-
ance is imparted by mm-thick, darker-coloured diamicton lamina
that become less frequent down-exposure. A thin section taken
across one of the darker lamina shows clast-poor, clay-rich domains
up to 10 mm thick, characterised by sharp, undulating upper con-
tacts and conformable to graded lower contacts (Fig. 11). Small
(mm-offsets), steeply-dipping normal faults cut through the
domains.

The bedded succession is punctuated by a SW-dipping recum-
bent fold (Fig. 10e). A large (10 cm) clast towards the base of the
structure penetrates a sand stringer and is draped by overlying
facies. Laterally discontinuous, regularly spaced, mud and sand
stringers pervade the upper half of the exposure (Fig. 10c). A thin
section taken through the diamicton reveals an interbedded suc-
cession of stratified clay- and sand-rich diamicton and laminated
normally-graded diamicton, sand and mud (Fig. 12). The laminae
drape and are downwarped beneath clay-coated clasts. Two clast
fabrics (F9, F10) show moderately strong clustering, with S1 values
of 0.62 and 0.61 (Fig. 5). Both plot as spread bimodal distributions
showing NWeSE and NNEeSSW dipping clasts, although the ma-
jority dip SE to SSW.

Logs 2a,b are composed of a 5 m grey (7.5YR 5/1), stratified,
matrix-supported diamicton (Dms). Stratification is imparted by
the presence of pale and dark diamicton domains (Fig. 10b) and
mm-to cm-thick sand partings equivalent in character to log 1
(Fig. 10a,f). Clasts have downwarped the underlying substratum
and are draped by overlying facies. Laterally continuous sand
stringers tend to occur as clusters, while discontinuous stringers
and deformed pods of sand occur infrequently throughout. Beds dip
up to 32� towards the N and NE. Two fabrics (F11, F12) were
measured in the diamicton at log 2a (Fig. 5). F11 shows strong
unimodal clustering (S1 value of 0.79), while F12 shows a spread
unimodal distribution, steeply dipping clasts and a moderately-
strong S1 value of 0.63. In both fabrics clasts tend to dip towards
the NE.
Log 3 is a 3 m exposure just to the east of log 2b, the bottom 2 m
of which overlaps, although the sand partings (some of which show
internal bedding) become more densely spaced (occurring every
3e6 cm). Two fabrics (F14, F15) record NE dipping azimuths with
F14 displaying strong unimodal clustering (S1 ¼ 0.84) and F15
spread unimodal clustering (S1 ¼ 0.61) (Fig. 5).

Log 4 was recorded towards the top of the exposure and consists
of a largely massive, grey (7.5YR 5/1), matrix-supported diamicton.
Some stratification is imparted by mm-thick lamina of paler dia-
micton and internally-bedded sand partings up to a few-cm thick. A
fabric (F16) taken at the top of the section records moderately
strong (S1 ¼ 0.75), unimodal clustering and azimuths that typically
dip towards the NE (Fig. 5).

Large (metre-scale) amplitude folds, augen structures, deformed
rafts of sand and competent masses of diamicton are observed to-
wards the base of LFA S1, which are in-turn draped by stratified and
laminated diamicton (Figs. 9 and 10d,h). In some cases it is clear
that these structures sit within the diamicton in which case the
bedding seem to diverge around them, whereas in others they may
underlie it. The most impressive example is of a >5 m high upright
fold with hooked limb (Fig. 10d) indicating compression during NW
flow. Large (several metres in diameter), deformed sand rafts and
augens nested within the stratified/laminated diamicton show
evidence of folding, rotation (tails) and shearing. In one example
stratified diamicton underlying a large sand raft had been
deformed producing an isoclinal recumbent fold structure.

5.2.2. Lithofacies Association 2 (LFA S2; Massive to diffusively
graded-stratified gravel and sand)

Nestedwithin LFA S1 are a number of shallow (0.5e1m),1e10m
wide channel-fills (LFA S2) (Figs. 9 and 10g). At log 3, LFA S2 pinches
out laterally over a distance of ~10 m and is composed of massive to
diffusively graded-stratified gravel (Gfu, Gmi, GRh, GRfu), sand (Sh,
Sm) and pods of soft diamicton (Table 2). Clast-supported granule
and pebble gravel coarsens towards the centre and base of the
trough and fines upwards into clast-to matrix-supported granule



Fig. 9. Stratigraphic logs at Stohl. White areas in the section log (A) were not exposed. The location of thins sections (TS), bulk samples for clast lithology and particle size (B) and
fabrics (F) are illustrated on the vertical logs. Lithofacies codes are based upon those of Evans and Benn (2004) (see Table 2 for classification of lithofacies and lithofacies
associations).



Fig. 10. Photographs of lithofacies exposed at Stohl. A: Sub-horizontally bedded,
stratified and laminated diamicton. B: Example of paler and darker bands within LFA
S1, which produces a bedded appearance (see Fig. 11 for thin section that cuts across
the banding). C: Diamicton interbedded with mm-to cm-thick partings of sand and
mud (see Fig. 12 for thin section displaying the finely laminated structure of these
partings). D: >5 m high upright fold of waterlain sediments with hooked limb indi-
cating NW flow. Note that further waterlain sediments (arrowed) drape the top of the
fold. E: Recumbent fold of diamicton, sand and mud. Note that above and below the
fold the sediments are horizontally bedded. F: Diamicton with partings of mm-to cm-
thick partings of sand and mud that have been partially washed out towards top of
image. G: Small (~1 m) channel fill (base arrowed) composed of bedded gravel (LFA S2).
Note that the channel fill is formed in a syncline of bedded diamicton. H: Sand augen
with tails indicating rotation during eastwards flow.
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gravel and coarse sand. Crude stratification towards the top of the
channel fill is imposed by thin beds of openwork granule-gravel,
horizontally-bedded sand, and thin diamicton interbeds charac-
terised by abrupt lower contacts and loaded upper contacts. The
coarse gravel facies at the base is imbricated (a(p)a(i) fabric), with
measurements indicating a flow direction towards the SW.

5.2.3. Grain size analysis
The results of the grain size analysis are remarkably consistent

throughout the succession comprising ~10% clay, 45% silt and 45%
sand (Fig. 8). The top-most diamicton (from log 4) is slightly finer-
grained, with a higher percentage of clay relative to sand. The
analysis is comparable to Noer, although there is a higher fraction of
silt. The distribution of fine-gravel components is fairly uniform
across all seven samples, possibly apart from sample B13 which has
somewhat less red crystalline rocks, more chert and more Creta-
ceous and Danian chalk. However, these differences are within a
typical range of variations characterizing one and the same dia-
micton unit derived from ice advance of NE provenance, similar to
the Noer site.

5.3. Altbülk

At Altbülk (54�27.8980 N, 10�10.5780 W) we focused on a 6 m
high vertical section (Fig. 13). In contrast to Noer and Stohl the bulk
of the succession comprises sorted sand and mud, sandwiched
between two diamictons (Table 2).

5.3.1. Lithofacies Association 1 (LFA A1; diamicton)
At the base of the Section 0.5 m of brown (10YR 5/3) matrix-

supported diamicton was recorded (LFA A1) (Fig. 14a). It has a
stratified appearance imparted by mm-thick, horizontally-bedded
sand stringers, which undulate, pinch out and are downwarped
beneath larger clasts. Fabric F17 records a spread-bimodal distri-
bution, with moderate clustering (S1 value of 0.64), and clast azi-
muths which predominantly dip towards the NE (Fig. 5).

5.3.2. Lithofacies Association 2 (LFA A2; sorted gravel, sand and
mud interbedded with diamicton)

The bulk of the sedimentary succession (~4.5 m), LFA A2, con-
sists of sorted gravel, sand and mud (facies: Gm, Sd, Scr, Sl, Sh, Fl,
Fm) with a thin (~30 cm) inter-bed of clast-poor, loaded diamicton
(Dms). The basal 2 m of LFA A2 fines upwards through ~10 cm of
clast-supported, granule- and pebble-gravel intomassive to rippled
sand, and laminated mud. The gravel facies pinches out laterally,
has an erosional lower contact, and is draped by a thin mm-thick
silt layer (Fig. 14a). One of the pebbles appears to have sunk into
the underlying Dms. This facies is overlain by massive sand with
rare granule gravel that in turn grades into type-A climbing ripples
(Jopling and Walker, 1968) recording a NW palaeo-current direc-
tion (Fig. 14b). A series of normal faults with ~1 cm offsets show
displacement towards the south. Conformably draped over the
climbing ripples is a clay bed overlain by ~2 m of wavy, sub-cm
laminations (Fig. 14c). Micromorphological analysis of the lamina-
tions (Fig. 15) shows alternations of silt (coarse component) and
clay (fine component) laminae that are identified as a couplet (see
Palmer et al., 2008; Livingstone et al., 2010). The coarse component
grades into the fine component (clay) and consists of silt with some
fine sand in places. The fine component has a sharp upper contact.
Couplets vary from <1 mm up to 1 cm thick and the coarse
component is typically about twice the thickness of the fine
component. The laminae have been faulted by a series of shallow-
angled reverse faults at the base of the succession and steeply
dipping normal faults further up. The clay at the base of the thin



Fig. 11. Annotated scan of sample TS-E from Stohl. This thin section is taken across one of the darker bands in the bedded diamicton of LFA S1 at log 1. The darker band correlates to
the clay-rich domains that are characterised by graded lower and sharp upper contacts.
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section is heavily contorted, displaying flame and water-escape
structures.

Laminated silteclay couplets are interrupted by a thin, brown
(10YR 5/3), matrix-supported diamicton almost devoid of clasts
(Fig. 14d). It has a sheared lower contact, and loaded upper contact
characterised by sag and flame structures that has resulted in a
contorted admixture of diamicton and silt.

Micropalaeontological investigation of three bulk samples taken
from the laminated silteclay facies (B17, 19 & 22, Fig. 13) at Altbülk
revealed single specimens of foraminifer E. excavatum and single
Cretaceous foraminifers in B17 only. Althoughwell preserved, given
its very low abundance E. excavatum is most likely re-worked,
probably from marine Quaternary deposits on Rügen, NE Ger-
many (e.g. Wiegank, 1972; Steinich, 1992).
5.3.3. Lithofacies Association 3 (LFA A3; diamicton with gravel, sand
and silt interbeds)

The upper 3 m of the exposure coarsens from clayesilt lami-
nations via silt-sand laminations and horizontally-bedded sand
into a thin (<1 m thick) capping diamicton (LFA A3) (Fig. 14e). LFA
A3 is aweathered, brownmatrix-supported diamicton. In the lower
0.5 m it comprises a stratified diamicton, defined by the presence of
horizontally interbedded granule-gravel, sand and silt. The beds of
sand increase in thickness into LFA A2 below. This Dms grades
upwards into a more massive diamicton (Dmm).

5.3.4. Grain size analysis
Grain size analyses of the lower and upper diamicts are com-

parable to sites 1 and 2, with about 10% clay, 40% silt and 50% sand
(Fig. 8). In contrast, the thin brown diamicton in the centre of the
succession contains a higher fraction (~60%) of silt. Stable litho-
logical components of the two diamicton samples taken at the
bottom and at the top of the succession are nearly identical.
However, the top sample (B24) has a depleted content of unstable
components, indicating that it has been weathered. Apart from the
impact of weathering, these diamictons closely resemble those at
Noer and Stohl.

6. Interpretation of glacigenic deposits

6.1. Deposition in a glaciolacustrine environment proximal to or
beneath an ice mass (LFA N2-3, S1-2, A1)

The co-existence of diamicton conformably intercalated with
sorted gravel, sand and mud (LFA N2-3, S1-2, A1) suggests
contemporaneous deposition in a glaciolacustrine environment



Fig. 12. Annotated scan of sample TS-F from Stohl. This thin section is taken across diamicton interbedded with sands and muds at log 1. Note the finely laminated structure and
gradational contacts.
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proximal to or beneath an ice mass by a combination of rain-out,
current reworking and flow remobilization (e.g. Evenson et al.,
1977; Gibbard, 1980; Eyles, 1987; Eyles et al., 1989; Bennett et al.,
2006; Lee and Phillips, 2008; Ravier et al., 2014a). This agrees
with previous work by Piotrowski (1994a), although we extend the
interpretation to include ‘melt-out’ tills of his upper complex
(Piotrowski, 1992, 1996).

The widespread occurrence of dropstone and dump structures
in all associated LFAs demonstrates melt-out of debris from
sediment-laden icebergs and/or an ice ceiling. This includes pene-
tration, bending, rupture and rucking of the underlying substratum,
and fold-structures and pressure shadows from remobilization
(Thomas, 1984; Thomas and Connell, 1985). Individual units of
diamicton conformably separated by waterlain facies (e.g. LFA N2,
Fig. 6) represent discrete sediment-density flows (Evenson, 1977;
Eyles et al., 1987) and pulses of debris raining out from an ice-
roof (Gibbard, 1980; Bennett et al., 2006). Subaqueous sedimenta-
tion of diamicton through awater column by low-energy rain-out is
best illustrated at LFA N2 where underlying ripple structures have
been preserved and are conformably overlain by diamicton (Fig. 6b)
(Piotrowski, 1994a).
Beds showing current ripple structures (Sr, LFA N2), openwork
granule gravel (GRh, LFA S2) and laminated sand andmud (Sh, Sl, Fl,
Fm, all LFAs) (Table 2) indicate punctuated sedimentation by bot-
tom current transport and suspended sediment settling (e.g.
Jopling and Walker, 1968). Decimetre-scale scours infilled with
normally-graded sand (LFA N2, Fig. 6c), are interpreted as the
product of rapid cut-and-fill processes associated with jet flows
that underwent a hydraulic jump (Winsemann et al., 2007, 2009).
These cut-and-fill structures are typically associated with sub-
aqueous ice-contact fan deposits (e.g. Russell and Arnott, 2003;
Winsemann et al., 2009).

At Noer and Stohl (LFA N2-N3, S1-2) the principle mode of
sedimentation was remobilization by cohesive and cohesionless
density flows. Micro-laminae of normally graded clay-rich, clast-
poor diamicton (dark beds), separated by massive diamicton (LFA
S1, Fig. 11), suggest repeated subaqueous sedimentation by hyper-
concentrated sediment-density flows capable of inhibiting sorting
in all but the dilute mixing cloud at the top of the boundary layer
(Eyles, 1987; Mulder and Alexander, 2001; Bennett et al., 2002).
These types of flows often occur close to the grounding-line where
channels debouch into lake water (Plink-Bj€orklund and Ronnert,



Fig. 13. Stratigraphic log at Altbülk. The location of thins sections (TS), bulk samples
for clast lithology and particle size (B), OSL samples (shfd code) and fabrics (F) are
illustrated on the vertical log. Lithofacies codes are based upon those of Evans and
Benn (2004) (see Table 2 for classification of lithofacies and lithofacies associations).
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1999). Laminae of graded silty-sand finely interbedded with dia-
micton (LFA S1, Figs. 10c and 12) are interpreted as being deposited
by the rapid rain-out of sediment-laded underflows or as thin-
bedded turbidites (Gravenor et al., 1984; Eyles et al., 1989; Lee
and Phillips, 2008). Alternatively the laminae may reflect win-
nowing of clay and silt facies by currents in an environment
dominated by rain-out (Eyles et al., 1989; McCabe & �O Cofaigh,
1994; Wysota, 2007). In LFA S1 (Fig. 12), rip-up clasts of lami-
nated clay and crude sorting of the thicker intrabeds of matrix-rich
diamicton are consistent with a density-flow origin, while drop-
stones attest to ice-rafted melt-out. Thick successions of stratified/
laminated diamicton, sand andmud (all LFAs, Table 2) reflect pulses
of diamicton being introduced into a standing water body.

LFA N3 comprises undulating, sub-horizontal stringers of chalk,
sand andmud (e.g. LFA N3, Fig. 6f) that have been heavily contorted
and fluidized, creating a distinctive streaky appearance typical of
wet-type debris flows (Gravenor et al., 1984; Lachniet et al., 1999,
2001; Roberts and Hart, 2005). Variably sorted diamicton, sand
and mud that bend around larger clasts; the preferential alignment
of coarse sand and fine gravel with their long axes parallel to
laminations; small compressional folds; and rotation structures are
all also characteristic of ductile deformation during laminar flow
(Fig. 7, LFA N3).

LFA S2 is interpreted to be the product of rapid subaqueous
deposition by high-concentration channelized density flows (Rust
and Romanelli, 1975; Rust, 1977; Cheel, 1982; Thomas, 1984;
Mulder and Alexander, 2001; Bennett et al., 2002, 2006). Flow
parallel imbrication of gravels at the base of LFA S2 indicates a high
sediment concentration. Scouring at the base of the flow and rapid
deposition of the poorly sorted clast-support coarse-grained ma-
terial is indicated by the rip-up and incorporation of underlying
pods of diamicton. A transition into crudely-stratified granule-
gravel and sand indicates waning flow, while thin, interbedded
diamicton beds with loaded upper contacts towards the top of LFA
S2 are interpreted to record repeated subaqueous sediment
gravity-flows by the downslope remobilization of outwash (Rust,
1977; Eyles et al., 1987; Plink-Bj€orklund and Ronnert, 1999).
Openwork gravels indicate periods of winnowing, possible close to
the mouth of a channel. Thus, initially rapid scouring and deposi-
tion was followed by more episodic remobilization of material.

Syndepositional flow folds, including recumbent, isoclinal
structures interpreted as fold noses (e.g. Stohl, LFA S1) (see
Evenson, 1977; Hart and Roberts, 1994), and small open folds in
front of dropstones (Fig. 10e) caused by flow down the palaeo-slope
are interpreted to be the product of more cohesive debris flows
(Piotrowski, 1994a). At Noer, the curving sand-filled lenses in LFA
N2 are analogous to those observed in flow- or squeeze-till at Lake
Erie Bluff (see Dreimanis, 1993), with the direction of lean
imprinted by easterly flow (Fig. 6d). At Stohl, the sense of motion is
further enhanced by gently undulating bedding interposed by
massive diamicton beds, convolute sand rafts and channel fills (LFA
S2) that are interpreted to reflect gravitational infilling of basins by
flow lobes and channels (e.g. Phillips et al., 2008).

Our interpretation, of a sedimentary environment dominated by
subaqueous density and debris flows, is consistent with the mac-
rofabric data (Fig. 5). This is particularly clear at Stohl where clasts
dip strongly down local palaeo-slopes (10e32�), towards the NE
(F16, 15, 14, 12, 11) and SW (F9, 10). Girdle fabrics (F9, 10) are
diagnostic of compression, while the range of strain signatures (S1
values of 0.62e0.84) reflects locally variable flow. The lack of
vertically-dipping clasts and the moderate to strong fabrics sug-
gests rain-out was not significant or has been remobilized. A similar
pattern is observed at Noer where clasts tend to dip NW, N and NE
in the direction of the local palaeo-slope and other structural in-
dicators (e.g. folds in front of dropstones), while girdle fabrics are
commonplace (e.g. F3, F5 and F8). The range of strain signatures is
even greater here (0.49e0.75) and there is a greater frequency of
steeply dipping clasts, which suggests a larger component of rain-
out.

6.2. Deposition in a proglacial glaciolacustrine environment (LFA
A2)

The lithofacies at Altbülk are distinctive from those observed in
Section 6.1. This includes, the presence of climbing ripples (Sr)
indicating bottom current transport towards the NW (Jopling and
Walker, 1968) and laminated silteclay facies (Fl) that are inter-
preted as clastic varves (Fig. 15). Properties indicating varve depo-
sition include rhythmic coarse (silt) and fine-grained (clay)
couplets, with a sharp transition from clay to silt and a graded
transition from silt to clay. The coarse component may therefore
represent distal underflows into a lake basin during the summer
months, while the fine-component is the settling of clay through
the water column during winter quiescence (Smith and Ashley,
1985; Ringberg and Erlstr€om, 1999; Palmer et al., 2008;



Fig. 14. Photographs of lithofacies exposed at Altbülk. A: Diamicton (LFA A1) overlain by clast-supported, imbricated gravel and then massive sand (LFA A2). B: Type-A climbing
ripples recording a NW palaeo-current direction. Note the normal fault to the right of the coin. C: Laminated silt and clay facies (see Fig. 15 for micromorphology). D: Thin, brown
clast-poor diamicton within the laminated silt and clay. Note the loaded upper contact. E: Transition from horizontally bedded sand into diamicton (LFA A3). The bottom half of the
diamicton is characterised by horizontal inter-beds of granule-gravel, sand and silt.
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Livingstone et al., 2010). The sharp contact between the winter
laminae and succeeding summer laminae documents renewed
transport of sediment into the lake.

6.3. Glacial deformation of lake sediments (LFA S1)

The clearest evidence for subglacial deformation is large
amplitude glaciotectonic folding and rotation in LFA S1 (see also
Hart et al., 1996; Piotrowski et al., 1994a). The large ~5 m high hook
fold indicates ice-flow towards the NW. The deformation is parti-
tioned within the lower part of LFA S1, with further undisturbed
stratified diamicton draped on top. This is consistent with the
identification of a lower subglacial deformation till (deformed
section of LFA S1) (Hart et al., 1996), characterised as a grey, massive
till folded together with waterlain sediments and comprising stri-
ated and faceted clasts and locally strong fabrics orientated
ESEeWNW to SEeNW.

6.4. Subglacial till deposition (LFA N1, N4)

Whether or not the glaciolacustrine sediments are capped by a
subglacial traction till (after Piotrowski, 1994a; Hart et al., 1996) is
difficult to reconcile as there is no obvious transition and striated
clasts are rare. Certainly LFA N4 becomes increasingly homogenized
towards the top of the succession, which in combination with its
continuity along the cliff face, strong (S1: 0.68e0.75) and reason-
ably consistently NeS orientated macrofabrics (F1, 2, 6, 7), fissile
character and presence of sheared/convoluted sand rafts suggests a
subglacial till genesis (Evans et al., 2006a). At Altbülk both
Piotrowski (1994a) and Hart et al. (1996) interpret the capping
diamicton as a subglacial traction till due to evidence of deforma-
tion and/or truncation of underlying facies, although this was not
observed during our investigation and is difficult to reconcile with
the OSL chronology. It may instead relate to debris flow deposition
during the melt-out of stagnant ice.
6.5. Grain size and lithology

Both the grain-size and lithological characteristics of the dia-
mictons (Fig. 8) are fairly uniform within and between sites sug-
gesting that the examined sections represent the same
lithostratigraphical succession deposited by an ice sheet advancing
from north-easterly direction. This is consistent with previous
studies showing that this area was affected by the Young Baltic Ice
Stream moving along the Baltic Sea depression at the end of the
Weichselian glaciation (Stephan, 2001). The lack of systematic



Fig. 15. Annotated scan of sample TS-I from Altbülk. This thin section is taken across the laminated sand and silt of LFA A2. Note the fining up from the coarse component into the
fine component and the sharp upper contact of the fine component.
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variations in fine-gravel composition and grain-size distribution
suggests that multiple diamicton beds separated by sorted sedi-
ments should be explained by depositional processes rather than
repeated ice advances and retreats. Differences in these charac-
teristics may then be attributed to local sorting, winnowing and
washing in a subaquatic environment. However, in nearby southern
Denmark the provenance of diamictons has proven insufficient to
differentiate between different ice advances (see Kjaer et al., 2003),
and so this interpretation requires further testing.

7. Optically Stimulated Luminescence dating

Our results reveal a broad range of De distributions (Table 1,
Fig. 16 and Supplementary Fig. 3). Samples shfd12083-12085 have
broad unimodal peaks with low skew and ODwhen the outliers are
removed.We therefore use CAM to derive De values for the final age
calculations. Shfd12086, which was sampled from a waterlain
diamicton, is skewed with a high OD (54%) and displays bimodal
peaks. We interpret this as indicating some partial bleaching and
therefore choose to use FMM taking the first component, which can
explain 74% of the data. Samples Shfd12079, Shfd12081 and
Shfd12082 show multi-modality, high OD (54%, 48% and 57%
respectively) and skewing that would suggest partial bleaching and
the use of MAM or the smallest FMM De component as most
appropriate for age calculation purposes. In the case of Shfd12079
the MAM approach results in an unfeasibly young age (<14 ka) so
our preference, given the stratigraphic context, is the FMM
(dominant) component, which encompasses 64% of the data. For
samples Shfd12081 and Shfd12082, both MAM and the smallest
FMM De component resulted in very young ages (<12 ka). There-
fore, for these samples a De value as calculated by CAM is our
preference given our current understanding.

If stratigraphic context is ignored and the age models used are
purely selected on the criteria of Bailey and Arnold (2006) and
Boulter (2007) then the chronology for Altbülk is characterised by
very young ages (8e15 ka) not in age order. If our preferred age
models are used then we can achieve a more realistic deglacial
chronology for LFA A2, with all the ages in the correct order. These
result in an age of 19 ± 1.8 ka in rippled sand at the base of LFA A2,
followed upwards by ages of 18.3 ± 2.2 ka and 16.7 ± 1.6 ka in
waterlain diamicton and horizontally bedded sand respectively and
finally 15.2 ± 1.3 ka from sand interbedded with diamicton. If these
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results are accepted this would indicate deposition of LFA A2 over a
period of ~4 ka giving sedimentation rates of ~12 mm yr�1. This is
consistent with the varve thicknesses (~10 mm) observed at LFA A2
(Fig. 15).
Fig. 16. Probability density function plots of De distributions for all samples. Over-
dispersion (OD), skew and n are also displayed. Based on our preferred age model
(Table 1) palaeodoses we consider outliers (>2s error) are shown in purple. Note there
is no discernible difference between the two sites in terms of the probability density
distributions. It is therefore difficult to determine whether the sediments were
deposited subglacially or proglacially (Fig. 3). This may be because the time elapsed
between the advance and retreat phases is only ~4 ka. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this
article.)
Luminescence ages from the intercalated waterlain diamicton,
gravel, sand and clay beds of LFA N2 at Noer are more robust than
for Altbülk, with two ages of ~23 ka (23.07 ± 2.3 and 23.13 ± 2.2)
from waterlain diamicton and massive sand facies and another of
18.5 ± 1.5 ka from a deformed sand facies further to the east.

This chronology is significantly younger than Thermo-
Luminescence (TL) ages of Marks et al. (1995), who sampled a
range of sediments along the D€anischerWohld Peninsula, including
Stohl and Altbülk, and generated ages that clustered between 40
and 70 ka. However, as shown with this single grain data partial
bleaching is thought to have been a significant issue for these
sediment, something which the TL ages of Marks et al. (1995) could
not have determined.

8. Discussion

The following discussion aims to determine whether the
waterlain sediments on the D€anischer-Wohld Peninsula, northern
Germany, were deposited in a subglacial or proglacial lake
environment.

8.1. Altbülk

The simplest explanation for the glacigenic succession and OSL
chronology at Altbülk is deposition in a proglacial lake dammed up
against ice retreating into the Baltic Basin. In contrast to Noer and
Stohl, sands and muds deposited by current transport (flow to-
wards the NW) and suspended sediment settling comprise the bulk
of the succession, while rainout of waterlain diamicton and drop-
stones are rare. The initial fining from gravel to rippled sand and
then varved clayesilt is typical of an increasingly distal ice margin
(Fig. 13). The varves indicate a seasonal control characteristic of
proglacial lake sedimentation (e.g. Smith and Ashley, 1985). Indeed,
varves are likely to be much rarer in subglacial lake settings (e.g.
Livingstone et al., 2012), although hypothetically they could form
due to seasonal supraglacial lake drainage events. Subsequent
coarsening and the occurrence of diamicton debris-flows may
indicate a minor re-advance of ice into the vicinity of the study area
or more likely at this time period, debris flows associated with the
melt-out of stagnant ice.

If our preferred age models are adopted (Table 1) the OSL dates
at Altbülk produce a realistic deglacial chronology (e.g. Lüthgens
et al., 2011; Houmark-Nielsen et al., 2012) in the correct age or-
der. This would support a proglacial lake origin. The oldest OSL age
of 19 ± 1.85 ka, taken from rippled sand at the base of the succes-
sion, is therefore interpreted as a minimum age for deglaciation of
the D€anischer-Wohld Peninsula, northern Germany. An age of
15.2 ± 1.28 ka at the top of the succession constrains the lakes
existence to about 4000 years. Given that the D€anischer Wohld
Peninsula lies outside of the reconstructed high-stand of the Baltic
Ice Lake and is associated with an earlier phase of deglaciation (see
Bj€orck, 1995; Jensen et al., 1997; Andr�en et al., 2011), the lake most
probably related to local ponding, dammed by stagnant ice
topography.

8.2. Stohl and Noer

We suggest that the sites at Noer and Stohl record proglacial
possibly followed by subglacial lake formation during advance of
the Baltic Ice Stream to its maximum extent. Sedimentological and
stratigraphic observations indicate a subaquatic subglacial or pro-
glacial depositional environment dominated by rain-out of drop-
stone diamicton and mud, flow remobilization by subaqueous
debris-flows and turbidity currents, and local sorting, winnowing
and washing. The two ages of ~23 ka (23.07 ± 2.3 ka and
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23.13 ± 2.2 ka) and another of 18.5 ± 1.5 ka taken at Noer are older
than those at Altbülk and therefore thought to relate to an earlier
event. Although there is no discernible difference in De distribu-
tions between the two sites (Fig. 16), the samples at Noer are
characterised by fewer grains that passed the acceptance criteria,
were less sensitive to dose and Shfd12085 contained a much larger
percentage of saturated grains. This suggests at least some of the
quartz was derived from a different sedimentary source and that
some of the sediment had a different transport-deposition-burial
pathway when compared to Altbülk (see Fig. 3). But we are un-
able to tell whether this relates to differences associated with
proglacial vs subglacial deposition (Fig. 3). In northern Germany the
ice sheet reached its maximum extent at ~22 ka BP (e.g. Houmark-
Nielsen et al., 2003; Sommer and Benecke, 2009; Houmark-Nielsen,
2010; Ukkonen et al., 2011). The observed sedimentary succession
of waterlain sediments capped by subglacial till is consistent with
ice advance, and the two ~23 ka are within error and in agreement
with the regional geochronology. We therefore accept the two
~23 ka ages, which constrain the waterlain sediments at Noer to
(subglacial or proglacial) lake formation during ice advance.

The style of sedimentation and deformation offers a potential
avenue for discriminating between former subglacial and proglacial
lake environments. At both Noer and Stohl, the sedimentary suc-
cession is characterised by laminated/stratified diamicton interca-
lated with large lenses of tabular to channelized sorted sediments
(LFA N2-3, S1-2). Such a vertically stacked sedimentary succession
has been ascribed to aggradation within subglacial lakes or cavities
where the accommodation space is restricted (Munro-Stasiuk,
1999; Wysota, 2007; Clerc et al., 2012; Ravier et al., 2014a). In
contrast, prograding sedimentary structures that are typical of
proglacial environments (e.g. Ravier et al., 2014a) are largely absent
at the two sites. Indeed, one might expect an upward coarsening or
fining architecture if deposition was into a proglacial lake from an
advancing of retreating ice mass. The transition from sorted sedi-
ments (LFA N2-3) into subglacial till (LFA N4) at Noer suggests a
common subglacial depositional environment, possibly associated
with a gradual switch from subaqueous deposition to localised
deformation (ductile and then brittle) and till aggradation
following ice-bed recoupling.

Contrary to other sedimentary successions ascribed to subgla-
cial sheet, cavity or lake formation, there is limited sedimentary or
deformational evidence (hydroplastic deformation, fluidization and
hydrofracturing of discrete sediment layers) for repeated (de)
coupling of the ice-bed due to drainage events or fluctuations in
subglacial meltwater pressure (Piotrowski and Tulaczyk, 1999;
Boyce and Eyles, 2000; Piotrowski et al., 2001; Phillips et al.,
2007, 2008; Wysota, 2007; Lesemann et al., 2010; Clerc et al.,
2012; Ravier et al., 2014a,b). The waterlain sediments are rela-
tively undisturbed, apart from two 1e2 m layers at Noer where
discrete sediment packages have been highly disturbed and fluid-
ized, most likely due to remobilization as density flows (Gravenor
et al., 1984), and the lower part of the sediments at Stohl, which
have been proglacially glaciotectonised and overridden (see below).
The identification of thin, undeformed stringers of intra-till sorted
sediments attributed to basal meltwater washing during phases of
ice-bed separation (e.g. Piotrowski and Tulaczyk, 1999; Boyce and
Eyles, 2000; Piotrowski et al., 2001; Wysota, 2007) have been
observed along the Baltic Coast (e.g. Piotrowski and Tulaczyk,
1999), indicating an environment dominated by high water pres-
sures, ice-bed decoupling and basal sliding. Although the juxta-
position of sorted sediment and diamicton is analogous to these
ice-bed separation features, the absence of intra-till beds or
discrete deformation zones could either imply proglacial sedi-
mentation or a subglacial environment that remained decoupled
for an extended period of time. Certainly, subglacial lakes are not
thought to completely empty during drainage events (Pattyn, 2008)
and may therefore be associated with persistent ice-bed decou-
pling. Multiple phases of (de)coupling are more indicative of
ephemeral subglacial drainage systems or small cavities (e.g.
Lesemann et al., 2010; Clerc et al., 2012; Narloch et al., 2012, 2013;
Tylmann et al., 2013; Ravier et al., 2014a).

At Stohl, towards the bottom of the succession, the waterlain
sediments have been subjected to localised large-amplitude,
asymmetric glaciotectonic folding and rotation (Figs. 9 and
10d,h). This is interpreted to record proglacial deformation and
glacial overriding of a proglacial lake sequence during advance of
the Baltic Ice Stream to its maximum limits (see also Hart et al.,
1996; Piotrowski, 1994). High-amplitude (>5 m) folding and gla-
ciotectonic stacking is typically, although not exclusively (e.g.
Phillips et al., 2007), associated with deformation in an unconfined
proglacial environment (e.g. Roberts and Hart, 2005; Phillips et al.,
2008; �O Cofaigh et al., 2011). The orientation of the hook fold
suggests ice flow towards the NW, consistent with the ESEeWNW
to SEeNW orientated fabrics recorded by Hart et al. (1996) .
Significantly, the glaciotectonised sediment package is draped by
further, undisturbed waterlain sediments analogous to those
observed at Noer. These sediments could either have been depos-
ited subglacially, in an aqueous environment after ice overrode the
Peninsula, or in a proglacial lake formed during ice retreat into the
Baltic Basin. Although the top of the cliffs were difficult to access
while we were there, Piotrowski (1992) previously interpreted the
top unit as a flow till. This could have resulted from glaciofluvial,
glaciolacustrine and debris-flow deposition between stagnant and
melting ice masses that also generated the hummocky moraine in
SchleswigeHolstein (Fig. 2).

A key consideration is whether the undisturbed waterlain sed-
iments at Noer and Stohl were deposited during the same event. If
so, then the ~23 ka OSL ages from Noer preclude proglacial lake
formation in-front of a retreating ice-margin because the Baltic Ice
Stream was still advancing to its maximum limits during this time.
In this scenario, the simplest interpretation is deposition in a
subglacial lake; the OSL ages then represent an inherited signal of
proglacial lake deposition during ice advance (Fig. 3a,b). If they are
not contiguous it becomes more difficult to distinguish between a
proglacial and subglacial origin. Stratigraphically, the undisturbed
waterlain sediments at Noer and Stohl are both sandwiched be-
tween more homogenous and pervasive diamicton facies, although
ultimately ages are needed from Stohl to confirm whether they are
part of the same sequence. However, a subglacial depositional
model is currently favoured given: (i) the presence of laminated/
stratified diamicton intercalated with large lenses of tabular to
channelized sorted sediments (LFA N2-3, S1 & A1), indicating
aggradation by density flows, current reworking and rain out in a
confined environment (e.g. Munro-Stasiuk, 1999; Wysota, 2007;
Clerc et al., 2012; Ravier et al., 2014a); (ii) the transition from
waterlain sediment into subglacial till at Noer, indicative of a
common depositional environment; (iii) the absence of ice-
marginal glaciotectonic thrusting and folding associated with
overridden proglacial environments (e.g. . Roberts and Hart, 2005;
Phillips et al., 2008; �O Cofaigh et al., 2011); (iv) the absence of
progradation structures and upwards fining or coarsening of the
waterlain sediments that typify retreating and advancing ice-
margins respectively (Ravier et al., 2014a); and (v) identification
of tunnel valleys radiating southwards from the study sites (Fig. 2),
which provide geomorphological support for the periodic drainage
of stored subglacial meltwater to the ice margin (Livingstone et al.,
2012; and see also Piotrowski, 1994b). Borehole data from the
Bornh€oved tunnel valley region, ~40 km to the south of our study
area, indicates that the final phase of tunnel valley incision relates
to Late Weichselian ice flow. High-energy outburst of subglacial
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water is evidenced by the deposition of the Kalübbe Sandur and
Trappenkamp gravel beds at the southern extension of the
Bornh€oved tunnel valley (Piotrowski, 1994b).

8.3. Implications for ice-sheet dynamics and lake formation in
northern Germany

Irrespective of whether a proglacial or subglacial model is
adopted for the undisturbed waterlain sediments at Noer and Stohl,
the OSL ages constrain two major phases of ice activity in Schles-
wigeHolstein: (1) advance of the Baltic Ice Stream across the study
area at ~23 ka resulting in formation of a proglacial lake along the
margin of the D€anischer Wohld Peninsula; and (2) final retreat of
ice back into the Baltic Basin at ~19 ka and formation of an ice-
dammed lake that persisted for ~4000 years. Given the recon-
structed high-stand and timing of the Baltic Ice Lake and the
deglacial chronology of the southwestern Baltic Basin (e.g. Bjorck,
1995; Jensen et al., 1997), lake formation is likely to have been
localised and possibly dammed by stagnant ice topography. In
addition, we suggest that at Stohl and Noer there is evidence for
subglacial lake formation along the margin of the Baltic Basin be-
tween 23 and 19 ka. The relative sizes of the former pro- and sub-
glacial lakes are difficult to determine given the limited spatial
information constraining the distribution of waterlain deposits.
However, Noer and Stohl are ~10 km apart and so if the waterlain
sediments were contiguous then the implication is that a sub-
stantial subglacial water body >10 km in length existed. The
drainage of water stored in such a lake provides a mechanism for
erosion of the NeS orientated tunnel valleys and the emplacement
of gravels and sandur deposits by high-energy outbursts.

8.4. Implications for discriminating between subglacial and
proglacial lakes

The results of this study demonstrate the difficulty in discrim-
inating between subglacial and proglacial lake sediments deposited
by a similar set of processes (e.g. Livingstone et al., 2012). This
necessitates the use of multiple discriminating tools, including
geomorphological, sedimentological and datingmethods. Although
there is no one method or diagnostic criterion that allows for the
conclusive identification of a palaeo-subglacial lake, we found
certain tools to be more useful than others.

The style of sedimentation and deformation offers one means of
differentiating overridden proglacial lake sediments from subgla-
cial lake sediments. In particular, progressive proglacial to subgla-
cial deformation, as observed at the base of LFA S1, is typically
characterised by large-scale compressive glaciotectonic thrusting
and folding of the glaciolacustrine sequence (e.g. Evans et al.,
2006a; Phillips et al., 2008), resulting in a thick sediment stack
with an increasing strain history (�O Cofaigh et al., 2011). Conversely,
subglacial waterlain sediments deposited during periods of ice-bed
decoupling (thin water films to subglacial lakes) may be preserved
due to passive melt-out of sediments and net till aggradation, or by
the partitioning of ductile deformation, fluidization and hydro-
fracturing within discrete water-lubricated sediment packages (e.g.
Evans et al., 2006b; Phillips et al., 2007, 2008; Lesemann et al.,
2010; Clerc et al., 2012; Ravier et al., 2014a). Subglacial aquatic
environments are typically thought to produce conformably
stacked stratified/laminated diamicton and tabular to channelized
sorted gravel, sand and mud deposited by density flows, rain out
and current reworking processes (e.g. Munro-Stasiuk, 1999; Ravier
et al., 2014a). Progradation structures and fining/coarsening ar-
chitectures are likely to be absent due to the limited accommoda-
tion space and position of subglacial lakes beneath the ice rather
than proximal or distal to an advancing or retreating ice margin.
Luminescence palaeodose distributions based on single grain
measurements offer a potentially powerful method for finger-
printing sediment transport and depositional histories. This is
because the luminescence signal in a proglacial environment will
vary depending upon its depositional pathway, while a subglacial
lake will retain an inherited signature of events prior to deposition
(Fig. 3). However, the variable response of quartz grains and the
wide range of conditions and sediment transport pathways in both
proglacial and subglacial settings (e.g. Fuchs and Owen, 2008) give
great scope for complexity and overlap as shown by our results.
Further work is therefore required to fingerprint the influence of
depositional processes on the luminescence signal of modern and
ancient glaciolacustrine sediments. This will allow better discrim-
ination of, for example, in situ and subglacially cannibalized pro-
glacial lake sediments (Fig. 3b).

9. Conclusions

The widespread existence of subglacial lakes beneath contem-
porary ice masses, and their predicted existence beneath palaeo-ice
sheets, necessitates a re-appraisal of the automatic interpretation
of glaciolacustrine sediments as proglacial in origin. The onus
should be on demonstrating rather than presuming a proglacial
origin. Indeed, we hypothesise that numerous deposits currently
interpreted to record proglacial lake sedimentation may actually
have been deposited by their subglacial cousins. However, there is
no incontrovertible method for discriminating subglacial lake
sediments in the geological record. This makes it a difficult problem
that requires a closer examination of reputed palaeo-subglacial lake
sites to tease out diagnostic criteria, and the development of
techniques or multi-disciplinary approaches to improve our
discriminating skill.

In this paper we tackled the problem by investigating sites along
the D€anischer Wohld Peninsula, northern Germany, which have
been conflictingly interpreted to record deposition in both pro-
glacial and subglacial aqueous environments. We identified two
major phases of ice activity and associated lake formation during
the Late Weichselian glaciation. (1) Initial advance of the Baltic Ice
Stream across the D€anischer Wohld Peninsula at ~23 ka. This
resulted in formation of a proglacial lake along the edge of the
Baltic Basin that was subsequently overridden and the sediments
glaciotectonised as ice advanced across it. (2) Retreat of ice back
into the Baltic Basin at ~19 ka and formation of an ice-dammed
proglacial lake that persisted for ~4000 years.

An additional phase of subglacial lake activity may have
occurred at two of the sites following advance of ice to its
maximum extent between 23 and 19 ka. This inference is based on
the style of sedimentation, which is consistent with other inferred
subglacial aquatic environments, the juxtaposition of relatively
undeformed waterlain sediment and subglacial till, absence of
glaciotectonic thrusting and folding or of fining/coarsening suc-
cessions and the geomorphic association with tunnel valleys to the
south of the study area.

Of the discriminating tools used in this study, the style of
sedimentation and deformation proved the most useful for dis-
tinguishing between subglacial and proglacial depositional envi-
ronments. In addition, the luminescence signal palaeodose
distributions offer a potentially powerful means of fingerprinting
sediment transport pathways of young systems, although further
work is required.
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