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Abstract

A phase-field model for dendritic growth under coupled thermo-solutal control model

is presented. Constructed in the quantitatively valid thin-interface limit the model

uses advanced numerical techniques such as mesh adaptivity, multigrid and implicit

time-stepping to solve the non-isothermal alloy solidification problem for materials

parameters that are realistic for metals. Using this model we demonstrate that the

dendrite radius selection parameter, *
, shows a complex dependence on a number of

materials properties including undercooling, Lewis number, alloy concentration and

partition coefficient, in addition to the known dependence on anisotropy strength.

Consequently, we argue that as a predictive tool, at least for non-isothermal alloy

solidification away from the limits of vanishing concentration and Peclet number, the

concept of *
probably retains little intrinsic value.

mailto:a.m.mullis@leeds.ac.uk


2

Introduction

One of the most powerful techniques to emerge in recent years for modelling

solidification microstructures is the phase-field method. By assuming the solid-liquid

interface to be diffuse, a continuous (differentiable) order parameter, , may be

defined which represents the phase of the material. The evolution of  is governed by

a free energy functional which can be solved using standard techniques for PDEs,

avoiding the need to explicitly track the solid-liquid interface and thus allowing the

simulation of arbitrarily complex morphologies. Consequently, most solidification

structures, including dendrites
[1], eutectics

[2], peritectics
[3]

and monotectics
[4]

have

been simulated via this method. The technique has been subjected to careful

validation against experiment, specifically in relation to dendrite growth velocities

and tip radii, with good agreement being shown between phase-field models and the

most carefully conducted dendrite growth experiments undertaken as part of the US

Isothermal Dendrite Growth Experiment II
[5]
, performed in microgravity conditions.

As a result, phase-field modelling is now the technique of choice for simulating

solidification microstructures, with numerous notable examples of its success. These

include the inclusion of flow effects
[6]

and electric currents
[7]

in the solidifying melt,

elucidating the mechanisms behind long-standing problems in solidification such as

spontaneous grain refinement
[8] and twinned dendritic growth

[9] and predicting the

effect of external oscillating fields on dendrites
[10]

.

However, phase-field modelling presents significant computational challenges in that

the resulting set of PDE’s is highly non-linear and generally the width of the diffuse

interface must be much narrower than the smallest physical feature to be simulated.

This results in very large computational meshes. Consequently, most phase-field

models employ a restrictive set of assumptions wherein, with only a very few

exception, the models are constructed within the idealized limit that solidification is

controlled by the diffusion of one species only, either heat or solute. While true for

the thermally controlled solidification of pure elements, in alloy systems it requires

one to assume that growth is so slow that the system remains everywhere isothermal,

an assumption that is hard to justify during rapid solidification processing operations

such as gas and centrifugal atomisation, melt spinning, planar flow casting, laser

surface melting and many welding techniques.

To date, relatively few attempts have been made to use phase-field techniques to

simulate coupled thermo-solutal solidification due to the severe multi-scale nature of

the problem (typically Lewis number, Le = /D, is 103 – 10
4
, where  and D are the

thermal and solutal diffusivities respectively). By extending the solutal model of

Warren & Boettinger
[11]

, Loginova et al.
[12]

have demonstrated such a model, although

they were unable to eliminate the effects of the domain boundary on the thermal field.

The methodology was subsequently extended by the introduction an adaptive finite

volume solver
[13]

, allowing realistic values of Le to be used without domain boundary

effects being encountered. However, serious doubts have been raised regarding the

quantitative validity of this model
[14]

as the numerical results appear to suggest excess

solute trapping and have an unresolved interface width dependence. However, these

problems may be overcome if the model is constructed within the thin interface limit,

as first demonstrated by Karma
[15]

. Such a model of coupled thermo-solutal

solidification has been formulated by Ramirez & Beckermann
[14, 16]

and subsequently
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extended by ourselves
[17, 18, 19]

to include the application of advanced numerical

techniques such as mesh adaptivity, implicit time discretisation and a multigrid solver

which has permitted the model to be extended to Lewis numbers that are realistic for

metallic melts
[19]

. As the thin interface model has been shown to be independent of

the length scale chosen for the mesoscopic diffuse interface width, it is capable of

giving quantitatively correct predictions for the velocity, V, and radius of curvature at

the tip, , during dendritic growth, permitting one of the longest standing problems in

solidification theory to be tackled directly.

Analytical solutions
[20]

to the equations for dendritic growth predicted that it is the

dimensionless Peclet number, Pt = V/2, that is related to undercooling, T, during
growth, leading to a degeneracy in the product V not observed in nature. Various

models based on the stability of the solidification front as it grows into its parent melt

have been proposed
[21, 22]

to break this degeneracy (marginal stability), all of which

contain a constant, *
, which arises from the stability analysis, and which may be

equated with the group

V

d
2
o* 2




 

where d0 is the chemical capillary length. For a planar interface *
takes the value

[21]

1/(42)  0.0253, while similar values have been found for other shapes, including 2-

and 3-D parabolic needles
[23]

. The apparent validity of these models was supported

by the direct simultaneous measurement of V and  for succinonitrile
[24]

which

yielded an experimental value for *
in this system of 0.0195, in close agreement with

theory.

However, all such stability arguments were shown to be flawed by the application of

boundary integral methods (microscopic solvability theory) which established that it

is crystalline anisotropy
[25]

rather than stability per se that is responsible for breaking

the degeneracy and therefore the apparent agreement between marginal stability

theory and experiment is fortuitous. The full analysis reveals that in the limit of

vanishing Peclet number an equation similar to the one arising from marginal stability

is encountered but that *
is the anisotropy-dependant eigenvalue for the problem,

which for small Peclet numbers is found to vary as *
()  7/4, where  is a measure

of the anisotropy strength.

As such there remains some validity in retaining the idea of *
as a stability

‘constant’, in that its value depends upon only one quantity, and moreover a quantity

that generally appears nowhere else in the governing equations. However, both

(numerical) solvability theory and phase field modelling of pure thermal growth have

shown
[26]

that for finite Peclet number *
is a function of Pt, or equivalently,

undercooling, with *
decreasing monotonically with increasing Pt. In this paper,

focusing on phase-field models of coupled thermo-solutal solidification, we review

the known dependencies of *
and present new data relating to the variation of *

with concentration. On the basis of the often very complex dependencies exhibited by

*
we ask whether the idea of a stability parameter is worth retaining.



4

Description of the Model

The model adopted here is based upon that of [14] in which, following non-

dimensionalization against characteristic length and time scales, W0 and 0, the

evolution of the phase-field, , and the dimensionless concentration and temperature

fields U and  are given by
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where, for 4-fold growth, A() = 1 + .cos(4) ,  is the angle between the principal

growth direction and the local, outward pointing normal to the solid-liquid interface,

kE is the partition coefficient L and cp are the latent and specific heats respectively and

 is a coupling parameter given by  = D/a2 = a1W0/d0 with a1 and a2 taking the

values 52/8 and 0.6267 respectively [15] . U and  are related to physical

concentration, c, and temperature, T, via


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where m is the slope of the liquidus line, which has dimensionless form

p

E

cL

km
M

/

)1( 
 .

The governing equations are descritized using a finite difference approximation based

upon a quadrilateral, non-uniform, locally-refined mesh with equal grid spacing in

both directions. This allows the application of standard second order central

difference stencils for the calculation of first and second differentials, while a

compact 9-point scheme has been used for Laplacian terms, in order to reduce the

mesh induced
[27]

anisotropy. To ensure sufficient mesh resolution around the

interface region and to handle the extreme multi-scale nature of the problem at high

Lewis number local mesh refinement (coarsening) is employed when the weighted

sum of the gradients of , U and  exceeds (falls below) some predefined value.

It has been shown elsewhere that if explicit temporal descretization schemes are used

for this problem the maximum stable time-step is given by t  Ch
2
, where C = C(,

Le, T), with C varying from  0.3 at Le = 1 to C  0.001 at Le = 500
[17]

, leading to

unfeasibly small time-steps at high Lewis number. Consequently, an implicit
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temporal descretization is employed here based on the second order Backward

Difference Formula with variable time-step.

When using implicit time discretisation methods it is necessary to solve a very large,

but sparse, system of non-linear algebraic equations at each time-step. Multigrid

methods are among the fastest available solvers for such systems and in this work we

apply the non-linear generalization known as FAS (full approximation scheme [28]).

The local adaptivity is accommodated via the multilevel algorithm originally

proposed by Brandt
[29]

. The interpolation operator is bilinear while injection is used

for the restriction operator. For smoothing the error we use a fully-coupled nonlinear

weighted Gauss-Seidel iteration where the number of pre- and post-smoothing

operations required for optimal convergence is determined empirically
[17]

. Full details

of the numerical scheme are given in [17, 18, 30].

We obtain from the model the two key parameters characteristic of dendritic growth,

namely the velocity and radius of the tip. The latter we obtain by fitting a parabolic

profile to the  = 0 isoline using a 4
th
order interpolation scheme described in [17, 18],

as this has generally been felt
[14, 31]

to be more directly comparable to analytical

dendrite growth theories
[22]

, than the curvature directly from the derivatives of  at

the tip.

In order to compare our results with analytical theories of solidification it is also

useful to be able to calculate the radius selection parameter, *
. In this respect we

mean that we will use the values of V and  obtained directly from the phase-field

model to calculate a value of *
such that, if one were to use a marginal stability

model of dendritic growth with the given value of *
, the correct values of the

velocity and radius would be recovered. The analysis is repeated separately at each

undercooling for which the phase-field model is run as we do not assume that *
will

necessarily remain constant. Specifically, the calculation of *
is such that V and 

are recovered when the LKT
[22]

model of solidification with corrections for high

undercoolings is used, wherein  is given by
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where Pc is the solutal Peclet number (as distinct from the thermal Peclet number, Pt

which has already been defined above) and c is the local concentration 'frozen in' at

the interface (taken as  = 0) and which can be obtained directly from the phase-field

simulation. This methodology was originally proposed by [14] and is explained in

more detail in [18].

Results

The dependence of *
on undercooling

[18]
(at fixed concentration and Lewis number

of Mc = 0.05 and Le = 200 respectively) and Lewis number
[19]

(at fixed undercooling

and concentration of  = 0.15 and Mc = 0.05 respectively) is summarised in Figures

1 & 2. In both cases significant variations in *
are observed, with this variation

typically being around a factor of 2 with undercooling and a factor of 3 with Lewis

number. Moreover, the variation is quite complex, particularly in the case of

undercooling where *
displays both a local minimum and a local maximum.

Although this interpretation is somewhat speculative at the moment we note that the

general form of the dependence of *
upon  observed in Figure 1, namely an initial

decrease with increasing undercooling, giving way to a local minimum which is then

followed by an increase, a local maximum and finally a further decrease, is actually

very similar to the dependence predicted for  (upon ) by marginal stability models

when *
is held constant. In this latter case the accepted interpretation is that we are

seeing a transition in the mechanism controlling growth from solutal to thermal.

Generally, for constant *
,  is predicted to decrease with increasing Peclet number.

During coupled thermo-solutal growth the local minimum marks the onset of the

transition from solutal growth at high solute Peclet number to thermal growth at low

thermal Peclet number, while the maximum represent the transition to fully thermally

controlled growth at moderate thermal Peclet number, wherein there is a decrease as

the thermal Peclet number is increased further. However, as pointed out above, both

(numerical) solvability theory and phase field modelling of pure melts have shown
[26]

*
decreasing monotonically with increasing Pt. Here we suggest that where there is

more than one diffusing species (solute & heat) the competition between solutal and

thermal growth mechanisms may manifest itself not necessarily in the radius, but in

*
, giving rise to the complex behaviour observed.

In Figure 3 further investigation into the dependence of *
on concentration is

presented at four different undercoolings between  = 0.4 and  = 0.6875. Again,

significant variations in *
are observed which are quite complex in character. At the

lowest undercooling displayed ( = 0.4), and indeed for undercoolings below this

level, a smooth decrease in *
is observed as the concentration is increased before a

shallow local minimum is encountered around Mc = 0.07 (this feature not being

present at lower undercoolings). With a small increase in the undercooling to  =

0.4625 the curve retains largely the same form but there is now a distinct shoulder

beginning to develop around Mc = 0.03, and with a further increase to  = 0.5875

this becomes fully developed into a local maximum, while the local minimum

observed around Mc = 0.07 at the two lower undercoolings is no longer evident.

Finally, at the highest undercooling studied,  = 0.6875, we observe a pronounced

local maximum that is also shifted towards a higher concentration around Mc = 0.05.

As in our previous investigations there is a variation in *
of around a factor of 3.
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Moreover, for  = 0.4625 a variation of this order is observed just with concentration

(i.e. at fixed undercooling). Again, this variation would be consistent with a

competition between solutal and thermally controlled growth mechanisms.

Although given the kind of complex quantitative model described here it is possible to

calculate  (and indeed *
) directly, in many fields of solidification science a rather

quick and crude estimate of characteristic dendrite length scales are required, and for

this the approach often employed is to utilise an analytical approximation, such as the

LKT
[22]

model, with some assumed constant value for *
, possibly one obtained from

solvability theory in the low Peclet number limit for some assumed anisotropy. This

theme is explored in Figure 4 where we plot the equivalent parabolic radius of

curvature for our phase-field dendrites and in Figure 5 where we compare this with

the corresponding radius estimated from LKT theory based on a *
which is constant

with concentration. Here for each of the 4 undercoolings presented we have used the

value of *
obtained from the phase-field model at Mc = 0.02 as the input value to

the LKT model (and as a consequence the ratio between actual and LKT radius at

Mc = 0.02 is by definition 1). However, this does give an inherent temperature

variation to *
and were we to have used a value that was constant across all the

simulations (i.e. constant with both concentration and undercooling) even larger

variations would have been observed. Nonetheless, the ratio between actual (phase-

field) and LKT radius of curvature is telling. At the lowest undercooling ( = 0.4) the

radius calculated assuming a constant *
shows a maximum difference of around 40%

relative to that actually calculated from the phase-field model while at the highest

undercooling ( = 0.6875) this variation is almost a factor of 4. Indeed, at high

undercooling the results here suggest one would actually introduce a smaller

(although still substantial) error by assuming  to be constant, rather than *
.

Discussion

Given the results presented above and elsewhere by ourselves
[17, 18, 19]

and others
[14, 16]

it therefore becomes pertinent to ask what value there is retaining the notion of *
as a

predictive tool, certainly for rapid solidification where the dendrite grows under

coupled thermo-solutal control. To date it is already established that *
= *

(, Le, ,
Mc) and although it is not a theme we have addressed in this paper one preliminary

result suggests that kE can also be added to the list of dependencies, with *
increasing

by a factor of 1.6 (from 0.0200 to 0.0322) as kE is increased from 0.15 to 0.30 (with 
= 0.15, Mc = 0.05,  = 0.02). Moreover, in many cases it is a complex, non-

monotonic variation that has been uncovered, and as the results presented here show,

the interdependence between the variables is not easily separated, with increasing

concentration giving possibly either a local minimum or a local maximum depending

on undercooling. Under these circumstances we would therefore argue that as a

predictive tool for rapid alloy solidification *
adds little. While it may retain a

conceptual value at vanishing concentration and Peclet number, away from this limit

*
has become a quantity we calculate once we know the dendrite tip radius rather

than as means for calculating that radius.

References

[1] Mullis A M, Phys. Rev. E 68 (2003) 011602.

[2] Green J R, Mullis A M, and Jimack P K, Metall. Mater. Trans. A 38 (2007) 1426.



8

[3] Folch R, and Plapp M, Phys. Rev. E 72 (2005) 011602.

[4] Nestler B, Wheeler A A, Ratke L, and Stocker C, Physica D 141 (2000) 133.

[5] Tennerhouse L A, Koss M B, LaCombe J C, and Glicksman M E, J. Cryst.

Growth 174 (1997) 82.

[6] Lu Y, Beckermann C, and Ramirez J C, J. Cryst Growth 280 (2005) 320.

[7] Brush L N, J. Cryst. Growth 247 (2003) 587.

[8] Mullis A M, and Cochrane R F, Acta Mater. 49 (2001) 2205.

[9] Mullis A M, Proc. 5th Decennial Conf. on Solidification Processing (SP2007),

23-25 July 2007, University of Sheffield, pp. 126-129. ISBN 095225074-8.

[10] Borzsonyi T, Toth-Katona T, Buka A and Granasy L, Phys. Rev. Lett. 83 (1999)

2853.

[11] Warren J A and Boettinger W J, Acta metall. mater. 43 (1995) 689.

[12] Loginova I, Amberg G, and Aagren J, Acta mater. 49 (2001) 573.

[13] Lan C W, Chang Y C, and Shih C J, Acta mater. 51 (2003) 1857.

[14] Ramirez J C and Beckermann C, Acta mater. 53 (2005) 1721.

[15] Karma A, Phys. Rev. Lett. 87 (2001) 115701.

[16] Ramirez J C and Beckermann C, Phys. Rev. E 69 (2004) 051607.

[17] Rosam J, PhD Thesis, University of Leeds, 2007.

[18] Rosam J, Jimack P K and Mullis A M, Acta Mater. 56 (2008) 4559.

[19] Rosam J, Mullis A M and Jimack P K, Phys. Rev. E 79 (2009) 030601.

[20] Ivantsov G P, Doklady Akademii Nauk SSSR 58 (1947) 567.

[21] Mullins W W and Sekerka R F, J. Appl. Phys. 33 (1964) 444.

[22] Lipton J, Kurz W and Trivedi R, Acta Metall. 35 (1987) 957.

[23] Langer J S and Muller-Krumbhaar H, Acta. Metall. 26 (1978) 1681.

[24] Huang S C and Glicksman M E, Acta Metall. 29 (1981) 701.

[25] Kessler D A, Koplik J and Levine H, Adv. Phys. 37 (1988) 255.

[26] Karma A and Rappel W-J, Phys. Rev. E 57 (1998) 4323.

[27] Mullis A M, Comp. Mater. Sci. 36 (2006) 345.

[28] Trottenberg U, Oosterlee C and Schuller A, Multigrid, Academic Press (2001).

[29] Brandt A, Math. Comp. 31 (1977) 333.

[30] Rosam J, Jimack P K and Mullis A M, J. Comp. Phys. 225 (2007) 1271.
[31] X. Tong, C. Beckermann, A. Karma, & Q. Li, Phys. Rev. E 63, R49 (2001).



Figure Captions

Fig. 1. Radius selection parameter, *
, as a function of undercooling, , for a non-

isothermal alloy solidification model with Mc = 0.05, Le = 200, kE = 0.3 and  =
0.02.

Fig. 2. Radius selection parameter, *
, as a function of Lewis number, Le, for a non-

isothermal alloy solidification model with Mc = 0.05,  = 0.15, kE = 0.3 and  =
0.02.

Fig. 3. Radius selection parameter, *
, as a function ofMc for a non-isothermal alloy

solidification model with kE = 0.3 and  = 0.02.

Fig. 4. Dendrite tip radius (parabolic), para, as a function ofMc for a non-isothermal

alloy solidification model with kE = 0.3 and  = 0.02.

Fig. 5. Ratio of the actual dendrite tip radius as calculated from the phase field model

to that calculated from the LKT model on the basis on constant *
, displayed as a

function ofMc. Note that for each of the four undercoolings displayed the value of

*
to be used in the analytical model is obtained from the phase-field model at Mc. =

0.02, where the ratio is, by definition, 1.
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isothermal alloy solidification model with Mc = 0.05, Le = 200, kE = 0.3 and  = 
0.02. 
 
 

 
 
Fig. 2. Radius selection parameter, *, as a function of Lewis number, Le, for a non-
isothermal alloy solidification model with Mc = 0.05,  = 0.15, kE = 0.3 and  = 
0.02. 
 
 

 
 
Fig. 3. Radius selection parameter, *, as a function of Mc for a non-isothermal alloy 
solidification model with kE = 0.3 and  = 0.02.  
 
 
 

 
 
Fig. 4. Dendrite tip radius (parabolic), para, as a function of Mc for a non-isothermal 
alloy solidification model with kE = 0.3 and  = 0.02. 
  
 

 
 

Fig. 5. Ratio of the actual dendrite tip radius as calculated from the phase field model 
to that calculated from the LKT model on the basis on constant *, displayed as a 
function of Mc.  Note that for each of the four undercoolings displayed the value of 
* to be used in the analytical model is obtained from the phase-field model at Mc. = 
0.02, where the ratio is, by definition, 1.  
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