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PREFACE 
 

The emergence of water, alongside energy and food, as one of the three major, interlinked, 

global environmental security issues provides abundant challenges and opportunities for the 

application of Machine Learning to such problems as optimisation of water distribution and 

drainage networks’ design and operation, modelling and prediction of fluvial, pluvial, urban 

and coastal flooding, sediment transport and water quality issues. Advances in GIS, remote 

sensing and weather forecasting techniques mean that environmental data is becoming 

increasingly abundant at the same time as demands for solutions and tools to work on these 

problems become more urgent. 

Numerical models have been applied widely to improve the understanding and operational 

management of natural and manmade water systems. Traditionally, so-called “physically-

based” models have been applied for such purposes. However, such models are often 

computationally demanding, and frequently require significant data to constrain model 

structures and parameters.  Data-Driven Models (DDMs) based on Machine Learning 

techniques - which seek to provide a mapping between the inputs and outputs of a given 

system, with little prior process knowledge – have emerged as an attractive option for 

prediction and classification in water systems. The principal benefit of such DDMs is their 

fast execution time, which allows many more model evaluations for a fixed computational 

budget. Such models have been applied widely to address a variety of problems within water 

systems modelling, including: system simulation (e.g. rainfall-runoff modelling/rating curve 

prediction) when trained on measured data, and also when employed as metamodels and 

trained to emulate models with a stronger physical (or process) basis; to improve the speed of 

the optimisation procedure by acting as a surrogate model to the full fitness evaluation; to 

correct systematic errors in physically-based models during real-time forecasting; to provide 

uncertainty bound predictions during model forecasting when trained on uncertainty bounds 

derived from offline calibration; and in classification (for example of predicted severity of a 

hazard or exceedances of regulatory limits). 

Despite their potential benefit, successful application of machine learning techniques is not 

straightforward. A variety of machine learning techniques, optimisation methods and 

evaluation procedures have been applied in the research literature. It is not always clear 

which methods will perform best in different settings, and how choices made will influence 

performance. As an example, different machine learning techniques might perform best 

depending on how their performance is evaluated within a given operational setting. 

Furthermore, although such methods are technically “black-box” models, system 

understanding may be required to choose the best input variables, and tailor the approach to 

the operational setting in question. With a view towards sharing the interdisciplinary 

knowledge required to make appropriate methodological decisions, papers are invited that 

explore issues of model design and application, and in particular, papers that compare 

different approaches for machine learning application. 
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A comparative study of artificial neural network 

architectures for time series prediction of water 

distribution system flow data

S. R. Mounce
1
  

Abstract.  Many water utility companies are beginning to amass 

large volumes of data by means of remote sensing of flow, 

pressure and other variables. For district meter area monitoring 

there has been increasing interest in using this sensor data for 

abnormality detection, such as the real-time detection of bursts. 

Research pilots have explored systems for generating ‘smart 

alarms’ and a key requirement is usually a prediction of future 

time series values. Artificial neural networks have been 

employed in this capacity, however built in temporal memory in 

the network architecture (tap delays, feedback etc.) has not been 

widely explored. In this comparative study, a number of 

artificial neural network architectures are evaluated for water 

distribution flow time series prediction, in particular by 

exploring using temporal memory. These models included multi-

layer perceptron, mixture density network, time delay network 

and recurrent network. In addition the mean diurnal cycle 

(calculated from the data set) was utilised as a baseline 

prediction. Genetic algorithm optimisation was utilised in some 

cases to optimise the number of hidden processing elements and 

the learning rates parameters for the neural network. Two 

reference data sets are used as a case study originating from 

typical real world distribution systems and the performance 

assessed by means of mean absolute error. The results of the 

study show that of the static networks, the mixture density 

network is superior for repeatability and insensitivity to 

parameter settings. Similarly, the recurrent network is generally 

superior to the time delay network in this capacity. However, the 

use of either time delays or feedback results in approximately 

50% less error than a static network for the best performing 

networks. 1 

 

KEYWORDS: Time series prediction, water distribution 

systems, DMA flow, ANN, MLP, MDN, TDNN, Recurrent 

1 INTRODUCTION 

The worldwide water industry has been making increasing use of 

advances in sensor technology for monitoring parameters of 

water systems to identify performance shortfalls in order to 

improve asset management and hence provide better customer 

service, value and regulatory performance. For example, in water 

distribution systems (WDS) sensors for flow and pressure have 

become more widely used, especially on trunk mains and at 

District Meter Area (DMA) level, in order to facilitate zone-

based asset management. 

                                                 
1
 Dept. of Civil and Structural Engineering, Univ. of Sheffield, S1 4JF, 

UK. Email: s.r.mounce@sheffield.ac.uk.  

Continuous on-line monitors and sensors are increasingly 

being used to measure a wide range of potable water hydraulic 

and quality variables within WDS [1]. The proliferation and 

diminishing costs of automated data transfer, such as by SMS 

and GPRS systems, is allowing all types of recorded data to be 

transferred from many disparate points on the networks. Water 

utilities are struggling to archive or to transform the data 

effectively into knowledge with which to enable operational 

control. Data-driven modelling provides a mapping between the 

inputs and outputs of a given system, with the advantage of not 

requiring a detailed understanding of the physical, chemical 

and/or biological processes that affect a system – and it is 

emerging as an attractive option for prediction and classification 

in water systems. Data-driven models can complement and 

sometimes replace deterministic models [2] and Artificial Neural 

Networks (ANNs) are one such model. ANNs have been 

successfully applied to a range of water modelling problems and 

have displayed particular promise for forecasting applications. 

They can be evaluated based on physical model outcomes and 

experimental/field data can be further integrated in order to 

enhance their performance. Maier and Dandy [3] provide a 

comprehensive review of 43 papers dealing with the use of 

ANNs for the prediction and forecasting of water resources 

variables, as well as a useful protocol for developing such 

models. Their study found that in all but two papers reviewed, 

feedforward networks were used, and that most used the 

backpropagation training algorithm. 

Sensor data (such as flow) obtained from a WDS is in the 

form of a time series—that is, a data stream consisting of one or 

more variables whose value is a function of time. Standard 

industry practice in the UK is to sample at a regular time interval 

of 15 minutes to produce a discrete series. Due to opportunities 

afforded in recent years near real time data acquisition is 

enabling new applications to be developed utilising this data.  

The challenge for data-driven approaches is to learn and predict 

the normal variability of a particular time series and then to use 

this in areas such as demand forecasting or abnormality 

detection. 

Water demand forecasts are useful for estimating future water 

demands in different time scales and evaluating water demand 

management measures in urban areas. ANNs have been applied 

to both short-term demand forecasting for WDS, i.e., for 24 h 

demand forecasts [4, 5, 6] and for much longer term demand 

prediction, such as over a 10-year horizon [7]. These models 

often take in other factors, such as temperature, humidity etc. 

and operate at varying scales. Other techniques such as 

projection pursuit regression, multivariate adaptive regression 

splines, random forests and support vector regression [8] and 

genetic programming [9] have been considered. 
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In the second area of research, current work has explored the 

prediction of flow (and pressure) allowing for the DMA level 

detection of burst events or other abnormal demand. Generally, 

some sort of future time series prediction based solely on the 

observed data is produced and the resulting residuals (when 

comparing with the actual value) are examined in order to 

determine abnormality. A number of methodologies for the 

prediction of DMA monitoring readings (common in the UK) are 

described in the literature with the potential for real time 

processing of sensor data streams in mind. Mounce et al. [10, 11] 

used a Mixture Density Network (MDN) ANN, trained using a 

continually updated historic database that constructed a 

probability density model of the future flow profile. Romano et 

al. [12] used feed-forward multilayer perceptron (MLP) ANNs 

for short-term forecasting of future pressure/flow signal values. 

Adaptive Kalman filtering has been used to model normal water 

usage, so the residual of the filter represents the amount of 

abnormal water usage relating to bursts or other abnormal usage 

[13]. Support Vector Regression has also been explored for 

water time series prediction to enable novelty detection in WDS 

time series data [14]. In all these cases, some secondary process 

or methodology is required to analyse the residuals and make an 

event classification. It should be noted that the ANN approach 

employed in these applications has been to statically encode the 

temporal sequence on the input layer, and that built in temporal 

memory (tap delays, feedback etc.) has not been widely 

explored. It could be questioned whether this approach is 

sufficient to represent non-linear dynamic behaviour accurately. 

This paper presents a comparison in performance of a number 

of ANN architectures for WDS flow time series data, in 

particular exploring using ANN temporal memory. Two 

reference data sets are used as a case study originating from 

typical real world WDS. The rest of the paper is organised as 

follows. In section 2, the case study data is outlined and the 

prediction task defined. Next, in section 3, the ANN 

architectures are described with a focus on their use for time 

series prediction and some implementation details. In Section 4, 

results are presented and discussed of applying the techniques 

described in section 3. Section 5 presents the conclusions.  

2 CASE STUDY 

2.1   Data sources 

Two reference data sets were selected from available historic 

data. Each originated from a DMA inlet flow sensor in a UK 

water distribution system with a fifteen minute sample 

frequency. Both are characterised by a reasonably long time 

series, are fairly stationary and, since the goal was investigating 

parameters for the time series distribution prediction, contain 

few major events. Each data set time series was separated into a 

training set and a smaller test set. 

The first dataset consists of a flow meter located at a PRV 

with the DMA having approximately 3000 properties. Figure 1 

shows the raw data of the training set used in the example 

covering a period of 8 months. Missing data has been filled 

using an ARIMA approach (missing data segments appear dark). 

As can be seen, the minimum night flow is fairly constant at just 

below 10 l/s for this period. A consecutive period of six weeks 

was used as the test period (no filled data). 

The second dataset consists of an inlet flow meter for a DMA 

fed from a ring main system with the DMA. Figure 2 shows the 

raw data of the training set used in the example covering a 

period of 3 months. No missing data was present. A consecutive 

period of five weeks was used as the test period (no filled data). 
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Figure 1. Reference Set 1 
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Figure 2. Reference Set 2 

2.2   The prediction task 

Forecasting future values of time series is useful in many 

domains. A set of temporal ordered observations can be used to 

predict future values using previous observations due to serial 

correlations along the series. The task is essentially one of 

function approximation, i.e., to approximate the underlying 

continuous valued function F producing the time series.  

Time series data of real-world phenomena is inherently non-

stationary. If the series is non-stationary, then all the typical 

results of the classical regression analysis are not valid and 

results will be spurious. Time series produced by sensors 

deployed in WDS are, in general, non-stationary and manifest 

significant noise (both observational and measurement) because 

of changing network characteristics (for example, a valve which 

is closed may result in a new flow profile) as well as 

consumption patterns altering over longer periods. However, 

hydraulic data can be described as ‘almost’ stationary in that for 

settled periods the data acts in a stationary fashion, albeit with a 

periodic component. A diurnal cycle generally manifested in 

hydraulic parameters is a reflection of the dominating residential 

consumption pattern. This is nearly always present in DMA level 

data although not necessarily as prominent in larger bulk water 

transfer data such as trunk main monitoring. 
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ANNs have shown to be a promising alternative to traditional 

techniques for non-linear temporal processing tasks [15]. ANNs 

are well suited to this task since they are, in theory, universal 

computing machines capable of arbitrary function 

approximation. The non-linear mapping performed can be 

thought of as a multi-dimensional mapping surface, which is 

molded to a desired response. Conventional ANN architectures 

and learning algorithms are mostly designed for detecting 

patterns that do not change in time (static patterns). By contrast, 

temporal pattern recognition involves the processing of patterns 

that evolve over time. The appropriate response at a particular 

point in time depends not only on the current input, but 

potentially on all past inputs. The output of the neural network 

y(t)  is based on the input sequence x(t), x(t-1), x(t-2),.., x(0). 

There are two approaches to building time into an ANN: implicit 

and explicit. In the latter, time is given its own particular 

representation. Most general-purpose theory and architectures 

concentrate on an implicit representation. This can be achieved 

by embedding the temporal structure of the input signal within 

the spatial structure of the network (e.g. Time Delays) or by the 

use of feedback. Four categories can be defined [16]: 

 Layer delay without feedback (time delay) 

 Layer delay with feedback 

 Unit delay without feedback 

 Unit delay with feedback (self-recurrent loops) 

Several mechanisms for implementing an implicit representation 

are described in section 3. 

A training set of samples can be constructed using a particular 

dimensional delay vector m of the last m observations, where the 

sampling time is taken as uniform with  the lag time i.e. the 

sampling rate and predicting n time steps into the future: 

 

        1,...,,  mtxtxtxtx with target prediction 

 n tx
t

y      (1) 

 

Previous work has largely concentrated on next step ahead 

prediction as the forecasting goal (i.e. n=1 in equation 1) - this is 

the usual approach for optimal accuracy of prediction a short 

period into the future. Here, a 24 hour ahead prediction is 

attempted as a harder problem. Note that this is not so called 

multi-step ahead time series prediction in which the model is 

applied step by step to predict future values. This type of 

approach uses predicted values from the past and a significant 

problem with this methodology is that errors from the past are 

propagated into future predictions. Rather, the goal is to predict 

the likely value 24 hours (or 96 time steps for 15 minute data) 

into the future based on m. Other work [6] has found the MAE 

for this type of prediction (not surprisingly) higher than for the 

one step ahead value so this is a more challenging task. Another 

rationale is that some water utilities use daily download, via 

SMS, so predicting further into the future could be useful in such 

a scheme. The lag size for static encoding was 96 values 

(sensitivity studies on lag size not reported here had revealed 

approximately 10% less MAE for static ANNs when using this 

lag compared to smaller lags). 

Finally, it should be noted some previous work has explored 

using separate models for different days of the week (particularly 

weekend vs week days) since there is often a difference in 

demand profiles for different days (albeit more subtle than the 

diurnal profile). In this study the time series is kept as a 

continuous entity and not subdivided in this way in line with 

what ANN architectures using delays and feedback will expect. 

3 METHDOLOGY 

A number of ANN architectures were used to assess their 

efficacy for flow time series prediction in WDS. These included: 

MLP, MDN, Time Delay ANN (TDNN) and recurrent ANN. In 

addition the mean diurnal cycle (calculated from the data set) 

was utilised as a baseline prediction.  

Mean diurnal cycle predictions and the MDN were developed 

in MATLAB2 (the latter using the NETLAB toolbox [17]). 

Neurosolutions3 was used for construction, training and testing 

of alternative architecture ANNs for time series prediction. 

MATLAB code was used for data pre-processing. To ensure a 

continuous data stream an ARIMA based filter fills in any 

periods of missing data. The input is then normalised by means 

of linear re-scaling with mean and standard deviation (Z-score) 

to a range of 0 to 1. Finally, the input stream is reformatted into 

a tapped delay line format (if required) in order to prepare for 

ANN presentation. 

3.1   Mean Diurnal Cycle 

The average diurnal cycle calculated from the training set was 

used as a 24-hour ahead prediction for the test sets. 

3.2   MLP 

The static network turns a temporal sequence into a spatial 

pattern encoded on the input layer. A MLP trained with 

backpropagation is the most popular method to do this [18]. The 

strategy for processing temporal information is to represent a 

sequence of input time series data ‘simultaneously’ on the input 

layer of the network. A traditional feedforward ANN can be used 

for time series forecasting by employing a sliding window over 

the input sequence. A set of N-tuples is used as input and a 

single output is the target value of the network. Figure 3 shows 

the basic architecture for lag size of three, and next step ahead 

prediction. No explicit reference to the dynamic nature of time is 

made. Full mathematical treatment of backpropagation can be 

readily found in the literature (e.g. [19]). 

 
Figure 3. ANN for time series prediction using sliding window 

The NeuroSolutions ANN simulator was used to build a static 

ANN for the 24-hour ahead prediction task. The training and test 

                                                 
2
 MATLAB version 7.10.0. Natick, Massachusetts: The MathWorks 

Inc., 2010. 
3
 NeuroSolutions (Version 5.06; NeuroDimension, Inc.) 
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sets were assembled by statically encoding the temporal 

sequence on the input layer. A standard MLP was built in 

NeuroSolutions: a one hidden layer MLP trained with 

backpropagation with a momentum term. The transfer functions 

are tanh and the data was further normalized to between –0.9 and 

0.9. For all the networks, a stopping criteria based on the Mean 

Squared Error (MSE) for a Cross Validation (CV) set consisting 

of 20% of the exemplars from the original training set was used. 

This is generally agreed to be an appropriate figure [20]. In most 

cases, if no improvement on the CV MSE was seen for 10-20 

epochs, training was halted. Once CV MSE starts increasing, 

generalization is lost.  

     Training MLPs is often a trial and error procedure since there 

are a large number of degrees of freedom in terms of architecture 

and parameters (for example: number of hidden layers, size of 

hidden layers, step size for learning, momentum term, online or 

batch learning, transfer function type, bias levels and stopping 

criterion) and few rules or formal procedures for selecting these. 

Experimentation on network size and parameters was conducted 

based on experience of similar learning tasks. However, to speed 

selection of parameters, a Genetic Optimisation feature of 

NeuroSolutions was applied which implements a genetic 

algorithm (a general-purpose search algorithm based upon the 

principles of evolution observed in nature) to optimise 

parameters within the ANN. The Genetic Algorithm (GA) 

achieves this by combining selection, crossover, and mutation 

operators with the goal of finding the best solution to a problem. 

The solution to a problem is called a chromosome. A 

chromosome is made up of a collection of genes, which are 

simply the neural network parameters to be optimized. A GA 

creates an initial population (a collection of chromosomes) and 

then evaluates this population by training an ANN for each 

chromosome. It then evolves the population through multiple 

generations in the search for the best network parameters. In this 

case, the selected parameters were the number of hidden 

processing elements and the learning rates. The termination 

criteria used to evaluate the fitness of each potential solution is 

the lowest cost achieved during the training run. 

3.3   MDN 

The MDN is a mixture density model combined with an ANN 

[21]. They can provide a framework for modelling conditional 

probability density functions  xtp  for a time series prediction 

[22]. The distribution of the outputs t is described by a 

parametric model whose parameters are determined by the 

output of a feed-forward neural network. The ANN element of 

the MDN is implemented with a two-layer feedforward MLP 

having a single hidden layer of hyperbolic tangent (tanh) units 

and an output of linear units (the vector holding the parameters 

that define the Gaussian Mixture Model). An MDN can be used 

in a similar fashion to an MLP by employing a sliding window 

over the input sequence (an MDN is a more general model for 

non-linear regression than an MLP under this scheme). More 

detail on its application for water data can be found in [10] in 

particular on how a prediction confidence can be obtained. 

The MDN algorithm is implemented in the NETLAB toolbox 

for MATLAB. This software library includes a number of data 

analysis techniques, including mixture model implementations, 

which are rarely, if ever, included in standard ANN simulation 

packages. The library contains an MDN module. A two-layer 

feedforward MLP is utilised in which the weights are drawn 

from a zero mean, unit variance isotropic Gaussian using the 

Matlab function randn. The mixture model is Gaussian with a 

single covariance parameter for each component. The mixture 

coefficients are computed from a group of softmax outputs, the 

centres are equal to a group of linear outputs, and the variances 

are obtained by applying the exponential function to a third 

group of outputs. The network is trained using a Scaled 

Conjugate Gradient (SCG) optimiser [23], which is a general-

purpose optimisation routine. 

A systematic sensitivity study was conducted to identify the 

optimal number of Gaussians, hidden units and number of 

training cycles for the reference data sets which for brevity is not 

reported in detail here. Generally, a wide range of parameters 

gave good results for the MDN architecture. Findings indicated 1 

or 2 Gaussians and 10-15 hidden units was a good choice for 96 

lag. The number of training cycles required to obtain a 

satisfactory error level was small. Good performance for 

prediction was achieved after approximately 100 cycles, when 

the majority of learning occurred. Additional cycles contributed 

to some fine-tuning. For training files covering several months 

around 1000 cycles was typical. The best performing nets were 

used for comparison with other architectures. 

3.4   TDNN 

An ANN can be provided with ‘memory’ to deal with the 

temporal dimension by introducing a time delay on connections. 

The input signal is delayed by one time unit. The network 

receives both the original and the delayed signals 

     .,...,1, dtxtxtx   New information is placed at nodes at 

one end and the old information shifts down a series of nodes 

like a shift register controlled by a clock. This scheme 

effectively provides a static neural network with dynamic 

properties. Essentially, time delays are a way of building short-

term memory (in contrast to the usual long-term memory a static 

ANN develops through supervised training), which is required to 

make the network dynamic. Time delays can be implemented in 

two general ways: at the synaptic level inside the network 

(distributed) or at the input level of the network (focused). A 

TDNN has been used previously for district meter area flow 

data, but only as a classification task for known events [24]. 

The NeuroSolutions ANN simulator was used to implement a 

TDNN for prediction. The NeuroSolutions implementation is a 

Time-Lagged Feedforward Network (TLFN). The TLFN is an 

MLP with memory components to store past values of the data in 

the network. The memory components allow the network to 

learn relationships over time. It is probably the most common 

temporal supervised neural network. Similar training settings 

were used as for the MLP, except the input file was not static. 

3.5   Recurrent network 

Recurrent networks allow recurrences through feedback 

connections. Temporal pattern recognition is achieved through 

recurrent connections into input, hidden or output neurons. The 

neuron receives two types of input, one is from the current 

incoming data and the other is from the state information at the 

preceding time, which is fed back in to the network. In this way 
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the neural network can integrate temporal information going 

back to the starting point. Feedback can be applied in two basic 

ways. Firstly, local feedback provides feedback at the level of a 

single neuron inside the network - this is relatively 

straightforward. More generally, global feedback involves 

feedback encompassing the whole network. An ANN of this 

form can be considered as a non-linear dynamical system. 

Recurrent networks have two functional uses: associative 

memories (e.g. Hopfield network) and input-output mapping 

networks (e.g. simple recurrent network). The latter type, 

responding as they do temporally to an externally applied input 

signal, are sometimes referred to as dynamically driven recurrent 

networks. Feedback allows this form of network to acquire state 

representation.  

Recurrent networks offer an attractive ability to recognise 

non-linear relationships between elements of time series. 

Another advantage of recurrent networks is the ability to 

recognise temporal patterns independent of their duration. 

However, the actual choice of feedbacks, delays and weights still 

depends largely upon empirical evaluations. It is important to 

point out that recurrent non-linear networks demand large 

training data sets and careful evaluation of their learning 

algorithm is necessary. They have a tendency to settle in a stable 

local minima. Also, if feedback is not applied in a correct 

manner, harmful effects can result.  

The NeuroSolutions ANN simulator was used to implement a 

Time-Lagged Recurrent Network (TLRN). TLRNs are MLPs 

extended with short-term memory structures that have local 

recurrent connections. The NeuroSolutions architecture was built 

with a Gamma memory (cascade of leaky integrators). A low 

pass filter creates an output that is a weighted (average) value of 

some of its more recent past inputs. A focused architecture was 

selected, so that memory kernels are only connected to the input 

layer i.e. only the past is remembered.  

The training algorithm is the backpropagation through time 

(BPTT) algorithm [25]. In contrast to MLPs, TLRNs have a 

smaller network size to learn temporal problems (since MLPs 

use extra inputs to represent the past samples). The recurrence of 

the TLRN provides the advantage of an adaptive memory depth 

(i.e., it finds the best duration to represent the input signal’s 

past). From a system identification point of view, TLRNs 

implement nonlinear moving average (NMA) models. 

4 RESULTS AND DISCUSSION 

In each case, the reference training sets were used to train the 

ANN (or construct the average diurnal model) and performance 

compared by use of metrics. The precision of prediction models 

can be measured in term of the errors in the predicted values in 

relation to those observed. There are a variety of metrics that can 

be employed for assessing time series prediction, and no general 

agreement as to a definitive set of metrics as to some extent it 

will depend on the application and the issues that must be 

addressed such as repeatability or the precision in goodness of 

the prediction. 

For this study, the relative prediction accuracy was assessed 

based on the Mean Absolute Error (MAE) of the validation data 

sets (equation 2) which is a commonly used metric in this field.  





N

i

ii yo
N

MAE
1

1
   (2) 

where o is the observation and y the prediction. 

 

A continuous error metric such as either MAE or MSE would 

be suitable, where the errors are summed over the validation set 

of inputs and outputs and then normalised to the size of the 

validation set. MSE penalizes distant errors more severely and 

therefore favours a network with few or no distant errors. MAE 

takes large errors into account, but does not weigh them more 

heavily. For classification tasks, the choice of MSE may be more 

appropriate since MSE penalises distant errors (i.e. clear misses 

on class targets) more severely and therefore favours a network 

with few or no distant errors.  

The error term employed for training is dependent on 

particular architectures. For the MLP, TLFN and TLRN 

networks MSE was used to evaluate training epochs while for 

the MDN the negative log likelihood error function was used. 

For comparing training versus testing performance for a single 

ANN, a uniform metric should normally be preferred. But for 

evaluating the prediction accuracy here the most important 

consideration in the decision was to have a fair and uniform 

comparison across different ANN simulator environments, so 

MAE was chosen to facilitate this. The mean and standard 

deviation of this value for multiple ANN runs were also used as 

an indication of repeatability.  

4.1   Mean Diurnal Cycle 

Table 1 gives the MAE obtained by using the average diurnal 

cycle calculated from the normalised training set as a 24 hour 

ahead prediction for the test set. The processed error was 

calculated by first denormalising the prediction values before 

calculating residual averages in l/s.  

 
 

 

Test Data Set 

Average diurnal 

Raw MAE Processed average 

error 

Reference set 1 0.0885 2.61 l/s 

Reference set 2 0.0806 1.83 l/s 
 

Table 1. Results for mean diurnal cycle 

4.2   MLP 

Two simulations were conducted using GA to optimise the 

selection of parameters (GA1 and GA2) on Reference Set 1. The 

first consisted of 100 epochs, 20 chromosomes and 2 

generations. The second: 50 epochs, 20 chromosomes and 5 

generations. Each simulation resulted in a best solution that was 

used to inform the choice of parameters for both reference sets. 

Thus, for MLP 4-6 the GA simulations provided the choice of 

step size and momentum. Generally, these values varied between 

0.3-0.7 for the step size ( ) and 0.6-0.85 (m) for the momentum 

(the GA optimizes these values for different layers). Table 2 

documents the errors (to 4 d.p.) for the various networks. ‘T’ 

indicates the network was terminated, ‘CV’ indicates cross 

validation was used as the stopping criteria. The optimal 

architecture as indicated by the GA was between 2 and 4 

processing units on the hidden layer. The best performing 

network based on MAE is highlighted. As we would expect, the 

ANN model shows a clear superiority for prediction error level 

compared to the average diurnal prediction. 
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ANN 

Reference set 1 Reference set 2 

Epochs MSE 

(train) 

MAE 

(test) 

Epochs MSE 

 (train) 

MAE 

(test)  

MLP1 

96,10,1 

 0.1,  

m 0.7 

500 
(T) 

 

0.0203 0.0767 1900 

(T) 

0.0088 0.0439 

MLP2 

96,20,1  

 0.2,  

m 0.7 

1420 

(CV)  

0.0111 0.0511 1200 

(T) 

0.0140 0.1141 

MLP3 

96,25,1 

 0.3,  

m 0.6 

905 

(CV) 

0.0247 0.0795 - - - 

GA1 100 

Winner: 

96,2,1 

- 0.0413 100 

Winner: 

96,4,1 

- 0.0405 

 

MLP4 

96,2,1 

(GA)  

1401 

(CV) 

0.0081 0.0405 985 

(CV) 

0.0086 0.0398 

MLP5 

96,3,1  

(GA) 

680 

(CV)  

0.0079 0.0403 2500 

(T) 

0.0091 0.0421 

GA2 50 

Winner: 

96,4,1 

- 0.0403 50 

Winner: 

96,3,1 

- 0.0411 

 

MLP6 

96,4,1 

(GA)  

1240 

(CV)  

0.0072 0.0385 1546 

(CV) 

0.0105 0.0454 

 

Table 2. Results for MLP 

4.3   MDN 

Table 3 documents the errors for a range of MDN networks. The 

conditional average is calculated from the conditional probability 

density and used as the prediction in the MAE calculations.  

 
 

 

ANN 

Reference set 1 Reference set 2 

Epochs Error  

(train) 

MAE 

(test) 

Epochs Error 

 (train) 

MAE 

(test)  

MDN1 

96,3,1 

1 GMM 

900 -36210 0.0375 800 -14698 0.0432 

MDN2 

96,10,1 

1 GMM 

1000 -36736 0.0370 1100 -15175 0.0427 

MDN3 

96,15,1 

1 GMM 

1200 -37310 0.0372 1000 -15291 0.0432 

MDN4 

96,3,1 

2 GMM 

900 -36276 0.0381 1200 -15077 0.0426 

MDN5 

96,10,1 

2 GMM  

900 -37355 0.0362 1100 -14621 0.0424 

MDN6 

96,15,1 

2 GMM  

1100 -38046 0.0363 1000 -15490 0.0417 

MDN7 

96,10,1 

3 GMM 

1000 -37932 0.0362 1200 -15796 0.0421 

 

Table 3. Results for MDN 

 

Training times (epochs) were similar to the MLP. But one 

important consideration was that the MLP was more sensitive to 

parameter choice than the MDN – selection of architecture and 

parameters was much more critical to success compared to the 

MDN. Otherwise best MAE levels were similar, which was 

expected since both networks use static encoding. 

4.4   TDNN 

Table 4 gives the results for the TLFN networks used (single 

hidden layer networks trained using backpropagation with 

momentum). A smaller learning parameter value (0.01) was used 

in later epochs. The number in parentheses after the model name 

indicates the number of taps. A GA was also used for optimising 

the parameters with 50 population and 4 generations. 

Experiments were also conducted on both a high tap number (up 

to 48) and on using a tap delay larger than 1. This delay 

represents a number of samples between successive taps (e.g. tap 

4, delay 24 covers 24hrs in 4 values for 15 min data). Both of 

these factors were found not to contribute any improvement for 

the prediction task. Some experimentation was carried out using 

iterative prediction. For a multi-step prediction problem one 

approach is to use current and previous data to predict N-steps 

ahead. Alternatively, iterative prediction just predicts one sample 

ahead. It then uses the output of this prediction as an input to a 

prediction of the next sample. This cycle is continued until a 

prediction N-steps ahead is made. However, it was found that 

iterative prediction was not suitable for this application because 

the prediction into the future was too distant (larger prediction 

lengths lead to instability when using iterative teaching). 

 
 

 

ANN 

Reference set 1 Reference set 2 

Epochs MSE 

(train) 

MAE 

(test) 

Epochs MSE 

 (train) 

MAE 

(test)  

TD1 (3) 

96,10,1 

 0.02, 

m 0.6 

1190 

(CV) 

0.0076 0.0481 145 

(CV) 

0.0104 0.0195 

TD2 (5) 

96,10,1 

 0.02, 

m 0.6 

337 

(CV) 

0.0075 0.0751 180 

(CV) 

0.0108 0.0204 

TD3 (3) 

96,10,1 

 0.1,  

m 0.7 

539 

(CV) 

0.0075 0.0211 110 0.0107 0.0300 

TD4 (2) 

96,10,1 

 0.1,  

m 0.7 

350 

(CV) 

0.0072 0.0160 110 0.0099 0.0210 

TD5 (1) 

96,10,1 

 0.1,  

m 0.7 

240 

(CV) 

0.0071 0.0721 

 

265 

(CV) 

0.0102 0.0240 

GA 

 

50 

Winner: 

96,5,1 

1 tap 

- 0.0580 50 

Winner: 

96,10,1 

1 tap 

- 0.0192 

TD6  

GA Win 

450 

(CV) 

0.0074 0.0580 230 

(CV) 

0.01069 0.0222 

TD7 (1) 

96,5,1  

 0.1,  

m 0.7 

360 

(CV) 

0.00757 0.0674 125 

(CV) 

 

0.0104 0.0223 

 

Table 4. Results for TDNN 

 

Training observations included: 

 Training time was very short compared to the MLP. A 

small value of MSE for the training set was obtained after 

only a few epochs. Without a CV set training rapidly results 
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in over specialization to the training set. Most subsequent 

training is aimed at reducing the MSE of the CV set. 

 By using much smaller values of learning parameters a 

better convergence of CV MSE could be obtained, at very 

little expense of training time. Further, problems with local 

minima are less likely. 

 The good results obtained for some neural nets were not 

guaranteed (particularly for reference set 1). Runs 

conducted with the same set of parameters gave a wide 

range of results. Initial starting conditions (weight values) 

played a significant part, as well as encountering local 

minima. Stopping criteria proved more vital as large 

oscillations were observed for MSE compared to the MLP. 

However, the best performing networks were superior to the 

MDN/MLP as should be expected for a topology that 

incorporates the temporal dimension. 

4.5   Recurrent network 

Table 5 gives the results for the TLRN networks.  

 
 

 

ANN 

Reference set 1 Reference set 2 

Epochs MSE 

(train) 

MAE 

(test) 

Epochs MSE 

 (train) 

MAE 

(test)  

R1 (6) 

96,50,1 

 0.1,  

m 0.7 

400 0.0216 0.0220 500 0.0230 0.0244 

R2 (6) 

96,200,1 

 0.1,  

m 0.7 

400 0.0202 0.018 500 0.0222 0.0219 

R3 (6) 

96,500,1 

 0.1,  

m 0.7 

400 0.0196 0.0168 500 0.0220 0.0219 

R4 (6) 

96,600,1 

 0.1,  

m 0.7 

400 0.01980 0.0172 133 

(CV) 

0.0353 0.0426 

R5 (3) 

96,500,1 

 0.1,  

m 0.7 

400 0.0201 0.0186 500 0.0225 0.0228 

R6 (12) 

96,500,1 

 0.1,  

m 0.7 

400 0.0190 0.0186 500 0.0216 0.0244 

 

Table 5. Results for TLRN 

 

Training observations included: 

 Training was rapid, with most of the reduction in MSE 

observed over 20-50 epochs. The graph of MSE was 

observed to be smooth, in particular compared to 

MLP/TLFN. 

 A broad range of parameters gave good MAE results 

for the test sets. Hence performance was more 

predictable compared to the TLFN.  

4.6   Summary 

Figure 4 provides a graphical summary of best MAE levels for 

the various techniques. Table 6 gives a comparison of actual test 

set prediction errors (mean and standard deviations over total 

runs) for the various ANN architectures. Clearly, MDN has a 

similar best performance level to the MLP. Similarly, the TLFN 

and the TLRN networks are comparable and with an 

approximate 50% reduction in MAE level compared to the two 

static architectures. This finding is not very surprising as 

TLFN/TLRN networks have memory components to store past 

values of the data in the network thus allowing networks to learn 

relationships over time. We should expect the extra memory 

structure in the time-lagged architectures to result in a 

performance gain for time series prediction. In contrast, static 

networks must turn a temporal sequence into a spatial pattern 

encoded on the input layer. However, an important caveat is 

revealed after inspecting table 6. The MDN is superior to the 

MLP in that it has less sensitivity to initial condition and 

parameter values (the standard deviations for the MAE error 

levels reveal that the MDN shows an order of magnitude less 

variation for different network set-ups). Therefore the average 

MAE for the MDN is significantly better than the MLP. The 

same applies to the TLFN when compared to the TLRN – indeed 

the average MAE of the TLFN was worse than that of the MDN 

for reference set 1. So while superior MAE error levels are 

achievable with the two time-lagged networks, the MDN can be 

relied on to give similar MAE results for a broad range of the 

architecture parameters used. This is a useful property when time 

or human resources are not available to find an optimal solution 

of parameter values for different data sets. Of course, if time 

series prediction error residuals are the only consideration, a 

time-lagged architecture should be selected.  

 

 
Figure 4. Comparison of best MAE levels for prediction 

techniques 

 
 

Test  

Data  

Set 

MDN 

prediction 

MLP 

prediction 

TLFN 

prediction 

TLRN 

prediction 

Mean/s.d.  

MAE 

Mean/s.d. 

MAE  

Mean/s.d. 

MAE  

Mean/s.d. 

MAE  

Ref 

  Set 1 

0.0369/ 

0.0006 

0.0510/ 

0.0171 

0.0520/ 

0.0223 

0.0260/ 

0.0210 

Ref  

  Set 2 

0.0425/ 

0.0009 

0.0524/ 

0.0273 

0.0223/ 

0.0034 

0.0258/ 

0.0075 

 

Table 6. Comparison of prediction MAE for ANN architectures 

across all networks 

5  CONCLUSIONS  

This paper has investigated how a number of ANN architectures 

perform when predicting future values of WDS DMA flow. The 
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approach of the research has been to use time series produced by 

sensors to directly construct an empirical model by use of an 

ANN. A systematic study based upon two reference sets was 

performed comparing the performance achievable from several 

techniques: mean diurnal cycle, MLP, MDN, TDNN and 

recurrent ANN. The key results and findings were as follows: 

 The results of the study demonstrate how ANNs can 

provide superior predictions of future flow values in 

WDS. All ANN models had at least 50% less MAE 

than a prediction based on the average diurnal cycle 

directly calculated from the data.  

 Of the static networks, the MDN is superior for 

repeatability and insensitivity to parameter settings. 

Similarly, the recurrent network is generally superior 

to the TDNN in this capacity. However, the use of 

either time delays or feedback results in 

approximately 50% less error than a static network for 

the best performing networks. 

 The advantages of the ANN approach for this problem 

are that it is a data driven paradigm, with robustness to 

noisy or incomplete data, with knowledge that can be 

relatively easily updated (retraining), generalisation on 

unseen data and, once trained, fast execution speed.  

The easier it is to collect and analyse large data sets the more 

water utilities will collect and, in a decade, tens or even hundreds 

of Petabytes of data may be routinely available. There is a 

growing need for sophisticated data analysis using the resultant 

data and ANNs are one type of data driven model that can 

provide predictive capabilities. Future work in this area may 

involve developing hybrid temporal architectures for addressing 

specific types of water resources data sets collected. 
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Abstract.  Extreme hydrological events have gained significant 

interest in hydrology as such events have the potential to cause 

human and economic losses. Meanwhile predictive uncertainty 

and imprecise peak (extreme flow) estimations are continuing 

major perplexing concerns in the field of hydrology. A 

conjunctive application of machine learning and extreme value 

theory can provide useful solutions to address the extreme values 

of hydrological series and thus to enhance modelling of values 

which fall in the ‘Tail End’ of hydrological distributions. This 

study introduces a novel Monte Carlo (MC) technique named 

Statistical Blockade (SB) which focuses on significantly rare 

values in the tail distributions of data space. The capability of 

Statistical Blockade is compared with well-trained Artificial 

Neural Networks (ANN) and Support Vector Machines (SVM) 

to assess the accuracy of Statistical Blockade. The required 

optimum input space and training data length for the 

aforementioned models were identified using Gamma Test. The 

study was performed on the Beas river catchment in the 

Himalayan region of India. The SB method has proved its 

capability to offer better predictive accuracy to find the peaks 

over a given threshold, which has significance in such 

catchments with high variability in discharge volume.   

1 INTRODUCTION 

Reliable and well-timed information on the discharge of 

Himalayan rivers is of great importance, as most rivers 

originating from the Himalayas and flowing through India are 

heavily exploited for hydro-power generation, irrigation 

development and domestic supply, and manageed with flood 

control structures. The response of Himalayan rivers is largely 

unpredictable as it depends on the extent of snowcover and 

volume of snowpack in their respective catchments. Many 

studies have shown the incapability of traditional 

precipitation/snowmelt-discharge models in predicting peak 

values in glacier-dominated catchments [1]. Meanwhile, the 

continuing development of digital computers has brought new 

possibilities in hydrologic modelling with the help of 

mathematical and data based approaches like Neural Networks, 

Fuzzy Logic and Support Vector Machines. This paper explores 

a new realm in hydrological modelling combining Statistical 

Blockade (which combines extreme value distributions with 

machine learning to classify extreme data [2]) with vector 

support classifiers.  This is a new application of such methods in 

hydrology, though it has been successful in circuit and memory 

design [2].  
1
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2
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This study is focusing on the Beas River and its dominantly 

flash flood prone catchment in Himachal Pradesh, one of the 

Himalayan states of India. The accuracy of Statistical Blockade 

is also compared with well-trained SVMs and ANNs to check its 

credibility in predicting number of peaks above a threshold 

value. 

2  METHODOLOGY 

The methodology adopted in this study is shown in Figure 1. In 

this study, we have: 

1. Applied the Gamma Test on the daily hydrological and 

meteorological data of the Beas Catchment to identify effective 

input series and optimum training data length for modelling  

2. Applied the Statistical Blockade (SB) for identification of 

peak flood over a given threshold value 

3. Built an optimum Support Vector machine (SVM) model for 

the study region and sorted the results to check the capability of 

SB. 

4. Constructed an ANN model using the data sets from the Beas 

catchment; then compared the results with that of SVM and to 

check the clustering capability of SB. 

 

Figure 1. The Methodology Adopted in the Study 
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3 STUDY AREA AND DATA SETS  

The study was performed with discharge data from the Beas 

River which originates in the Himalayas and flows for 

approximately 470 km before joining the Sutlej River. The Beas 

River has a basin area of around 12,561 km2. There are two 

major dams along the river, Pong dam and Pandoh dam, which 

are predominantly used for irrigation, hydro-electric and flood 

control purposes. Pandoh dam is a diversion dam which diverts 

nearly 4,716 million cubic metres of Beas waters into the Sutlej 

River. The daily meteorological data used for the study are from 

National Centers for Environmental Prediction (NCEP) Climate 

Forecast System Reanalysis (CFSR) gridded data. The study area 

is shown in the Figure 2. 

 

Figure 2. The Study Area of the Beas catchment in Himachal 

Pradesh, India (Positions of Two Dams are Marked in the 

Figure) 

The available data from the above mentioned data sets are 

daily precipitation (mm/day) [Precip], daily maximum 

temperature (0C) [Tmax], daily minimum temperature (0C) 

[Tmin], daily average solder radiation (MJ/m2/day) [Solar], daily 

average wind velocity (m/s) [Wind] and relative humidity (%) 

[RH]. The study has used river discharge time series (daily 

inflow data to the Pong dam) obtained from Bhakra Beas 

Management Board (BBMB). The study has used 5 years data 

for the analysis from 1st January 1998 to 31st December 2002. 

The statistics of the daily data sets used for this study are shown 

in Table 1.  

 Precp 

(mm 
/day) 

RH 

(%) 

Solar 

(MJ/ 
m2 

/day)   

Tmax 

(0C) 

Tmin 

(0C) 

Wind 

(m/s) 

Flow 

(m3 
/s) 

Mean 1.68 0.46 19.85 19.42 6.53 3.59 285.34 

Max 97.08 0.95 32.38 31.61 17.99 7.03 5475.67 

Min 0.00 0.14 0.89 1.94 -9.27 1.55 16.57 

Skews  9.53 0.68 -0.24 -0.37 -0.29 0.18 4.32 

Kurt- 

osis  

125.93 -

0.09 

-0.39 -0.93 -1.21 0.55 28.50 

SD 5.38 0.15 6.29 6.83 6.78 0.82 478.92 

Table 1. Summary Statistics of Input and Output Data Space 

used for the Study (Dam Positions Shown) 

The high value of standard deviation (SD) and maximum value 

of the discharge time series in the study period indicates the 

intensity of possible flood threats in the catchment and it also 

gives an idea of ’how far‘ the event could be from its expected 

average value.   

4 INPUTS AND DATA LENGTH SELECTION  

In mathematical modelling, it is important to identify the 

representative inputs and reasonable training data length for 

modelling. This helps the modeller to avoid over training of the 

model and to avoid redundant variables from the input space. 

This study has employed Gamma Test [3, 4, 5] to identify the 

best possible inputs among our available data sets. Gamma test 

estimates the minimum mean square error which is achievable in 

any continuous non- linear model with unseen data.  

Only a brief introduction on the Gamma Test is given here as 

further details can be find in 3, 4, 5. The basic idea is quite 

distinct from the earlier attempts with nonlinear analysis. 

Suppose we have a set of data observations of the form 

  , ,1i iy i M x                    (1) 

    Where the input vectors xi Є Rm are vectors confined to some 

closed bounded set C Є Rm and, without loss of generality, the 

corresponding outputs yi Є R are scalars. The vectors x contain 

predicatively useful factors influencing the output y. The only 

assumption made is that the underlying relationship of the 

system is of the following form 

 1... my f r x x                 (2) 

    Where f is a smooth function and r is a random variable that 

represents noise. Without loss of generality it can be assumed 

that the mean of r’s distribution is zero (since any constant bias 

can be subsumed into the unknown function f ) and that the 

variance of the noise Var(r) is bounded. The domain of a 

possible model is now restricted to the class of smooth functions 

which have bounded first partial derivatives. The Gamma 

statistic Γ is an estimate of the model’s output variance that 

cannot be accounted for by a smooth data model. 

The Gamma Test is based on  kiN , , which are the kth 

 pk 1 nearest neighbours  [ , ] 1N i k k p x  for 

each vector  1i i M x .  Specifically, the Gamma Test is 

derived from the Delta function of the input vectors: 

2

( , )1

1
( )

M

M N i k ii
k

M



  x x   pk 1             (3) 

    Where ... denotes Euclidean distance, and the corresponding 

Gamma function of the output values: 

2

1 ),(
2

1
)( i

M

i kiNM yy
M

k   
  pk 1            (4) 

    Where ),( kiNy  is the corresponding y-value for the k th 

nearest neighbour of ix  in Equation 3. In order to compute Γ a 
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least squares regression line is constructed for the p 

points  )(),( kk MM   

  A                                                    (5) 

    Calculating the regression line gradient can also provide 

helpful information on the complexity of the system under 

investigation [6]. The graphical output of this regression line 

(Equation 5) provides very useful information. First, it is 

remarkable that the vertical intercept   of the y (or Gamma) 

axis offers an estimate of the best MSE achievable utilising a 

modelling technique for unknown smooth functions of 

continuous variables [6].  Second, the gradient offers an 

indication of the model’s complexity (a steeper gradient 

indicates a model of greater complexity). 

The Gamma test is a non-parametric method and the results 

apply regardless of the particular techniques used to 

subsequently build a model of f .  We can standardise the result 

by considering another term Vratio, which returns a scale invariant 

noise estimate between zero and one. The Vratio is be defined as 

2 ( )
ratioV

y


                                    (6) 

Where, )(2 y  is the variance of output y, which allows a 

judgement to be formed independent of the output range as to 

how well the output can be modelled by a smooth function. A 

Vratio close to zero indicates that there is a high degree of 

predictability of the given output y. 

    We can also determine the reliability of the Γ statistic by 

running a series of Gamma tests for increasing M, to establish 

the size of data set required to produce a stable asymptote. This 

is known as the M-test. The M-test result helps to avoid the 

wasteful attempts of fitting the model beyond the stage where 

the MSE on the training data is smaller than Var(r), which may 

lead to overfitting. The M-test also helps to decide how much 

data is required to build a model with a mean squared error 

which approximates the estimated noise variance. The study has 

used WinGammaTM  implementation for our analysis. 

    We have tabulated the Gamma Static values corresponding to 

all data sets in our input space and selected the first four inputs 

with minimum Gamma Static value. The embedding 000001 

model (i.e.:  wind speed data as input and flow data as output) 

was identified as the best structure in comparison to other 

models with single inputs for daily discharge modelling in the 

Beas catchment. Also the humidity data is considered as second 

most effective input data series because of following reasons viz. 

its low noise level (Г value), the rapid fall off of the M-test error 

graph, relatively low V-ratio value (indicating the existence of a 

reasonably accurate and smooth model), the regression line fit 

with slope A = 1.3882 (low enough as a simple non-linear model 

with less complexity). The relative importance of six input data 

sets in modelling are in the form of Wind speed > Humidity > 

Minimum Temperature > Precipitation > Maximum Temperature 

> Solar Radiation. The variations of Gamma Static value for 

different data sets are shown in the Figure 3 along with 

corresponding coefficient of correlation values.  

 

 
Figure 3. The Variation of Gamma and Coefficient of 

Correlation Values for Different Time Series 

 

    The cross correlation method is the traditional method for 

identifying the effective inputs suitable for 

mathematical/statistical modelling. To check the authenticity of 

above results obtained from the Gamma Test, we performed a 

cross-correlation analysis between the target discharge data set 

and different input time series. The outcome from the cross 

correlation analysis is given in the Figure 3 as a secondary axis. 

These cross correlation results are matching the results obtained 

from the Gamma test with a slight disparity between Maximum 

Temperature and precipitation. Cross Correlation suggests that 

Maximum daily temperature has more information than that of 

precipitation data in the Beas catchment to predict discharge in 

contrast to the results suggested by the Gamma Test.  However, 

it should be pointed out that there is one caveat with this cross 

correlation procedure viz. cross correlation is suited to linear 

systems as it is a linear procedure. However in this study we 

have used four inputs for modelling as suggested by the Gamma 

Test and those inputs are daily values of wind speed, humidity, 

minimum temperature and precipitation.  

    Overfitting or overtraining is a statistical phenomenon 

associated with nonlinear data-based models when a model is 

generally complex with too many degrees of freedom, in relation 

to the amount of data available. So it is important to identify the 

suitable length of data for training the model. The quantity of the 

available input data (four input time series in this case) to predict 

the desirable output was analysed using the M-test (a repeat 

execution of the Gamma Test with different number of input 

data lengths). The results obtained from the M-Test with four 

inputs (110011 Model) are shown in the Figure 4.  

Figure 4. Variation of Gamma Static (Γ) with Unique Data 

Points Corresponding to Four Input (110011 Model) 
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  The M-test produced an asymptotic convergence of the Gamma 

statistic to a value of 0.0805 at around 566 data points, then 

increases. The analysis also shows that the Statistical error (SE) 

corresponding to M = 566 is very small (0.0019) and that the 

complexity slightly increases after this point [i.e. Gradient (A) is 

increasing]. These values altogether can give a clear indication 

that it is quite adequate to construct a nonlinear predictive model 

using around 566 data points with reasonable accuracy. So in 

this study the training data length is selected as 566 data points.  

5 SUPPORT VECTOR MACHINES  

The SVM approach is a machine learning strategy; which was 

introduced by Vapnik [7] as an implementation of the structural 

risk minimization principle. This approach is widely used for 

analysing data, recognition of patterns, classification and 

regression analysis. The -SV regression structure from 

LIBSVM [8] was used for this study with four different Kernels 

(Linear, Polynomial, Radial and Sigmoid).  

6 SVM MODELLING RESULTS 

The conventional SVM model has used the first 566 data points 

of the available data points as the training data set using four 

input data time series as per the recommendations of the Gamma 

Test. The scaling of the input lists are important in SVM 

modelling as the difference between extreme values is reduced, 

which makes it easier and fast to run the SVM algorithm. So, we 

have normalized the whole data sets in a zero to one range. The 

proper identification of the kernel function out of the four 

functions is important in SVM based modelling as kernels are 

the components which simplify the learning process. Trial and 

error modelling was adopted to identify the suitable kernel 

functions and the corresponding results are given in Figure 6 in 

terms of mean square error (MSE) and correlation of 

determination (R2). It was found that the -SVR with polynomial 

kernel function is the best model for the discharge modelling in 

the Beas basin for the selected input space. The cost parameter 

(C) of error assigns a penalty for the number of vectors falling 

between the two hyperplanes in the SVM hypothesis.  

Estimation of the optimum number of cost is very important as it 

has an influence on the quality of the data used for the 

modelling. To ascertain the optimum cost value, the support 

vector machine made from the best model -SVR regression 

algorithm with polynomial kernel was run several times, with 

differing values of C between C = 1 to C = 20 (Figure 7).  

 

 

Figure 6. The Modelling Performance of -SVR with Different 

Kernels in Beas Discharge Modelling using Scaled Data Sets 

[6(a). Variation of R2 and 6(b). Variation of MSE] 

 The performance of the models was compared by calculating 

the mean square error (MSE) of the daily discharge outputs 

given by the SVM model with that of the actual observed Beas 

flow into the Pong Dam.  The Figure has shown that the mean 

least error is the lowest when the C parameter is 2. So we set the 

value of C to 2 for reliable results. 

 

 

Figure 7. Variation of MSE in -SVR with Polynomial Kernel 

Function Corresponding to Different Cost Parameters in Daily 

Beas Discharge Modelling. 

    Now, we have applied reasonably optimised -SVR with 

polynomial kernel to the training and testing data. The modelling 

result during the training phase is shown in the Figure 8 and 

corresponding results during Testing or validation phase is 

shown in the Figure 9.  

 

Figure 8. Beas Daily River Flow Modelling Results on Scaled 

Data Sets during Training Phase using -SVR 

 

Figure 9. Beas Daily River Flow Modelling Results on Scaled 

Data Sets during Testing Phase using -SVR 
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    One can note from the pictorial results that the model has 

failed to simulate sudden variations of flood flow during 

monsoon season but has better agreement during the non-

monsoon months. The performance of the model was compared 

using major statistical indices like coefficient of correlation 

(CC), Nash and Sutcliffe Efficiency (NS) and percentage bias 

error. The Nash coefficient of efficiency of the conventional 

SVM model, which determines capability of the model in 

predicting discharge values, was calculated as 0.55 with a CC 

value of 0.76 and a bias value of 57.1% during training phase. 

The equivalent values during the validation phase are given in 

Table 2 along with the corresponding values of an ANN model. 

Considering the peculiar nature (highly skewed data with very 

high extreme values) of the hydrological data in the Beas region 

the conventional SVR gave a good fit with the data in the central 

area around the mean and the mode, but not in the tails. In other 

words, the whole data consists of some higher values which 

show a tendency to form clusters (i.e., for storm events) and the 

conventional model has failed to simulate those clusters of 

extreme values.  

Training Data 

 CC NS  

Efficiency 

Bias% 

SVM 0.76 0.55 57.10 

ANN 0.88 0.76 37.98 

Testing Data 

SVM 0.72 0.46 61.46 

ANN 0.87 0.75 37.82 

Table 2. Comparison of Some basic Performance Indices of 

SVM and ANN Models in Daily Discharge Modelling 

7 ARTIFICIAL NEURAL NETWORKS 

The story of ANNs started in early 1940’s when McCulloch and 

Pitts developed the first computational representation of a 

neuron [9]. Later Rosenblatt proposed the idea of perceptrons 

[10]; single layer feed forward networks of McCulloch-Pitts 

neurons, and focussed on computational tasks with the help of 

weights and training algorithm. The applications of ANNs are 

based on their ability to mimic the human mental and neural 

structure to construct a good approximation of functional 

relationships between past and future values of a time series. The 

supervised one is the most commonly used ANNs, in which the 

input is presented to the network along with the desired output, 

and the weights are adjusted so that the network attempts to 

produce the desired output. There are different learning 

algorithms and a popular algorithm is the back propagation 

algorithm that employs gradient descent and gradient descent 

with momentum that are often too slow for practical problems 

because they require small learning rates for stable learning. 

Algorithms like Conjugate gradient, quasi-Newton, Levenberg–

Marquardt (LM) etc. are considered as some of the faster 

algorithms, which all make use of standard numerical 

optimization techniques. Architecture of the model including 

number of hidden layers is also a very important factor. 

    This study has used a three-layer feed forward neural network 

(one input layer, one hidden layer and one output layer) which is 

the most commonly used topology in hydrology. This topology 

has proved its ability in modelling many real-world functional 

problems. The selection of hidden neurons is the tricky part in 

ANN modelling as it relates to the complexity of the system 

being modelled. In this study we have used 15 hidden neurons 

which was identified through a trial and error method. The 

performance of the developed ANN model was compared with 

SVM models using three global statistics (correlation efficiency, 

efficiency and bias error) as shown in Table 2.  Figures 10 and 

11 show resulting line plots of ANN computed and observed 

daily discharge values in the Beas basin during the training and 

validation periods. The estimated discharge values using the 

ANN model for 566 data points resulted in the higher NS 

efficiency value of 0.76, compare to observed daily discharge 

and the percentage bias error observed as 37.98%. The 

corresponding values during testing phase are 0.75 and 37.82% 

which are much better than that of the SVM predicted results. 

 

 

 

Figure 10. Beas Daily River Flow Modelling Results on Scaled 

Data Sets during Training Phase using ANN Model 

 

 

 

Figure 11. Beas Daily River Flow Modelling Results on Scaled 

Data Sets during Testing Phase using ANN model 

8 STATISTICAL BLOCKADE  

Statistical Blockade is an extension of extreme value distribution 

and its related theorem, in which we ‘block’ the values unlikely 

to fall in the low probability tails (hydrological peaks). Usually 

in rare event analysis approaches, , we may need to generate 
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enormous number of samples to obtain both samples and 

statistics for rare events. We normally use Monte Carlo (MC) 

simulation for efficiently simulating synthetic values based on 

the distribution. But the MC method is inefficient when we 

consider only the peak flood values (rare events) as MC still 

follows the complete distribution in generating synthetic 

samples. In contrast, Statistical Blockade uses a classifier 

(Support Vector classifier in our case) to filter out candidate MC 

points that will not generate values of our interest in the tail. In 

short, a SV classifier works in the tail portion of our distribution 

to pick the peak values (based on our threshold) from the MC 

generated values. In another way, we can say that this approach 

is partially similar to peaks over threshold (POT) method 

[generalized Pareto distribution (GPD) to the exceedances over 

some threshold]. In POT method, the used data are from 

historical record and not synthetically generated; whereas in 

statistical blockade ‘synthetically’ generated data are used [11]. 

A schematic representation of Statistical Blockade is given in the 

Figure 12 assuming that threshold value flood time series is at 

80%.   

 
Figure 12. The Representation of Statistical Blockade (Modified 

from [12]) 

 

    In our case study, the SB method was used to identify the 

occurrence of flood discharge events above a threshold value. 

The SB method produces MC simulated synthetic value input 

space which are likely to be fall in the tail region. The SVM 

based classifier ‘blocks’ the simulation in such a way that it 

won’t generate input space below the user defined threshold 

value.  It is accomplished by building the classification boundary 

at a classification threshold tc that is less than the tail threshold t. 

The four input space (wind speed, Humidity, Minimum 

Temperature and Precipitation) along with the observed Beas 

discharge values were used to train the Statistical Blockade 

with the SVM classifier which works by means of a radial 

basis function (RBF) kernel. As an example, the classified 

input space obtained from the Statistical Blockade at a 

threshold value of 90% is shown in the Figure 13. The blue 

dots are corresponding to the ‘non-tail region’ data and 

brown dots are corresponding to ‘tail region’ of the discharge 

data for a threshold value of 90%.  The modelling capabilities 

of SB has been assessed by comparing with that of the ANN 

and SVM models in predicting the number of flood flows 

that could exceed a range of threshold values (Table 3). 

 

 

Threshold 

limits  

ANN SB SVM 

90% 5% 4% 9% 

80% 6% 7% 10% 

70% 12% 9% 13% 

Table 3. Percentage Changes in Number Flood Events Predicted 

by Different Models 

   

The results show that the performance of Statistical Blockade 

is comparable to that of ANN model in predicting number of 

flood events falling above a threshold value at 90% and 80% 

limits. The SB has outperformed the ANN towards lower limits 

of the threshold. The high error values of SVM model can be 

related to the underestimation of the model during monsoon 

seasons; this highlights the facts that the SVM model requires 

much better tuning of its parameters for getting better 

performance.    

 

Figure 13. Classification of Monte Carlo Generated Samples at 

90% threshold value [the brown colour shown flood values that 

falls in tail region] 

    An important observation that can be used is that the 

conditional distribution of the events in the tail region tend 

toward a generalized Pareto distribution (GPD). The generalized 

Pareto distribution CDF generated in our case study for different 

peak values is shown in the Figure 14 . This graph could 

generate meaningful information about the tail region of the 

discharge in the study area. 

 

Figure 14. The CDF of generalized Pareto distribution (GPD) 

generated by SB on Scaled Data Sets . 
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9 CONCLUSIONS  

Beas River daily discharge modelling is highly relevant in the 

region for hydroelectricity generation/planning, irrigation and 

flood prevention. This paper has introduced a rare event analysis 

method called Statistical Blockade to the field of hydrology and 

applied this approach to the Himalayan Beas river. The study has 

also explored the capabilities of the Gamma Test utilizing the 

daily data from the Beas catchment in conjunction with 

mathematical models like SVM, SB and ANNs and identified 

suitable inputs and training data length from the study region.  

An inter-comparison between ANN and SVM has shown that 

ANN is a superior model in the Beas basin in predicting peak 

floods especially in the monsoon season. Although this study 

made an attempt to optimize the SVM model, it requires further 

refinements to enable it to tackle monsoon flows. A comparison 

of SB approach with ANNs and SVMs have highlighted its 

capabilities in identifying the number of flood events above a 

given threshold value, utilizing extreme value theorem. This 

work has introduced the SB method in a single case study, but it 

has wider applications in the field of hydrology and we urge 

more hydrology studies to focus on it.  
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Optimisation of Water Treatment Works using Static 

and Dynamic Models with an NSGAII Genetic 

Algorithm 
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Abstract.    This paper applies a genetic algorithm to static and 

dynamic models of a case study water treatment works to find near 

optimal designs. The mechanisms of these models, their calibration 

and accuracy are described. The models were used with stochastic 

data representative of conditions observed at the works and the 

NSGAII genetic algorithm was applied to minimise the size of the 

works and the failure likelihood. The dynamic model was found to 

predict more conservative designs than the static model. The 

genetic algorithm was found to require greater calibration to 
identify near-optimal solutions efficiently.

 

1 INTRODUCTION 

Traditionally, the uncertainties in water treatment works (WTW) 

design have been accounted for by empirical data or past 

experience instead of scientific understanding and rigorous 

empirical analysis. Computational modelling of WTWs can offer a 

means by which designers and operators can assess the likely 

impact of raw water quality, works design and operational 

conditions on final water quality. This helps to provide an 

indication of the likelihood of failure to meet water quality 

standards under conditions not previously experienced. 

Existing commercial programs are available for WTW 

simulation but they do not have the ability to assess WTW 

reliability under stochastic conditions. General static WTW models 

were assessed by Gupta and Shrivastava [1] who found that 

stochastic conditions produced more conservative designs than 

deterministic conditions when a genetic algorithm was used to 

identify cost effective solutions that achieved performance goals. 

This paper will compare the optimal designs identified by a 

genetic algorithm for a case study site modelled using static and 

dynamic models under stochastic conditions. Dynamic models are 

reasoned to be superior as key processes, such as filtration, are 

dynamic by nature.  

2 CASE STUDY WORKS 

At the works, water is abstracted from a lowland reach of river 

through bar and band screens before being impounded in a 

reservoir. Water to be treated is divided into two treatment streams, 

one of which has hopper bottomed clarifiers (HBC) and the other 

dissolved air flotation (DAF) clarifiers. In both streams the water 

has a ferric sulphate coagulant added before flocculation and 

clarification. Post clarification, the waters are blended together 

prior to being filtered through dual media (anthracite/sand) rapid 

gravity filters. The water then passes through a balance tank, to 
1Dept. of Civil Engineering, University of Birmingham, Edgbaston, 
Birmingham, B15 2TT, UK 

Email: {rxs884, j.bridgeman, m.sterling}@bham.ac.uk 

reduce the fluctuations in flow that are caused by the backwashing 

of the filters, before being treated by granular activated carbon 

(GAC) adsorbers. 

Chlorine dosed upstream of the contact tank is controlled by a 

feedback loop that is dependent on the free chlorine concentration 

entering and exiting the contact tank. The works has a reported 

maximum capacity of 60 Ml/d (2500 m3/h). 

3 MODEL DESCRIPTION 

3.1 Turbidity suspended solids relationship 

It was assumed that there is a 2:1 ratio between total suspended 

solids (mg/l TSS) and turbidity (NTU) as used in OTTER [2] and 

as suggested by Binnie et al. [3] where no other data are available. 

3.2 Coagulation and flocculation 

It is assumed that all of the iron in the ferric sulphate coagulant 

form iron hydroxide which precipitates out of solution. A 

stoichiometric calculation (see Equation 1) results in the amount of 

suspended solids added by ferric sulphate as being 1.9 g/g Fe3+. 

This assumption is expected to be approximately true if TOC-

coagulant formations are negligible, doses of coagulant are greater 

than 2 mg/l as Fe3+ and pH is such that iron has a low solubility 

(4.0 - 11.0) [4]. This calculation method agrees with that reported 

by Warden (1983) as reported by WRc  [2] and Binnie et al.[3].  

               (1) 

Flocculation is assumed to be effective resulting in flocs of an 

appropriate size for DAF treatment [5]. Other treatability 

characteristics of the water that are affected by coagulation and 

flocculation are taken into account by calibration constants in the 

process models. 

3.3 HBC clarification 

The static model uses a plug flow first degree decay equation to 

calculate the reduction in suspended solids. The dynamic model is 

similar to that presented in Head et al. [6] and uses the same 

calibrated parameters except for the flocculation efficiency factor. 

Others modifications of the Head et al. model are the use of two 

continuous stirred tank reactors (CSTRs) and the removal of the 

settlement removal mechanism, due to its insignificance. 
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3.4   DAF clarification 

Removal of solids in the static model was calculated using a plug 

flow first degree decay equation as presented in Edzwald [7] for 

attachment in the contact zone. Complete removal of flocs 

attached to bubbles is assumed due to the high retention times 

observed. 

The dynamic model uses a perfectly mixed model again based 

on Edzwald [7] where attachment occurs throughout the tank and 

again removal of flocs attached to bubbles is complete. 

3.5 Filtration 

The removal of solids by filtration was modelled in both models 

by the Bohart & Adams method [8]. Backwashing is assumed to 

be ideal removing all solids. Filter ripening is modelled using an 

initial exponential increase in the attachment coefficient as 

carried out in the OTTER WTW program [2]. The ripening 

period and initial attachment efficiencies were adjusted to be 

representative of works data. 

In the dynamic model, clean bed headloss was calculated 

using the Kozeny-Carman equation with adjustment made for 

solids build up using the method presented in Adin & Rebhun 

[9]. The static model differs from the dynamic model by using 

an empirical headloss equation based on flow and run time, and 

uses scheduled backwashes only. 

3.6 GAC 

Due to lack of adsorption removal efficiency measurements 

recorded at the WTW, GAC adsorption has not been modelled. 

Suspended solids (SS) removal was not modelled as this was not 

the process’s principle purpose at the works where it is a tertiary 

treatment. Dependency on GAC for SS removal would have 

resulted in an increased need to backwash which would disrupts 

the mass transfer zone and cause premature breakthrough of 

adsorbable pollutants [10]. 

3.7 Chlorination 

Chlorine is dosed upstream of the contact tank and any 

instantaneous demand is assumed to have occurred prior to 

entry. Chlorine decay was modelled by first order decay. In the 

static model plug flow was assumed and in the dynamic model 

the flow through the contact tank was modelled as a number of 

CSTRs identified by the relationship between t10:ttheoretical 

efficiency and the number of representative CSTRs presented in 

Denbigh and Turner [11]. The t10:ttheoretical efficiency was found 

from tracer tests carried out by the works employees. 

The magnitude of disinfection by-product formation is 

measured using trihalomethanes (THM) as a reference pollutant. 

A method which relates the formation of THMs to the 

consumption of chlorine is applied, as presented in Brown et al. 

[12], using a conservative formation parameter (50 µg/l THM 

per mg/l free chlorine consumed). 

4 FAILURE CONDITIONS 

The failure criteria identified were chosen to represent 

performance that the existing WTW occasionally experienced. 

Where applicable these conditions are stricter than legislative 

limits so the probability of them occurring is statistically more 

significant. The works failure likelihood is the fraction of the 

time that at least one of the failure criteria, shown in  

Table 1, were observed  

Failure parameter Failure condition 

Blended turbidity post clarification  > 1 NTU 

Filtered turbidity  > 0.1 NTU 

Individual filter headloss  > 1m 

Flow through filter No flow 

Free chlorine concentration 

multiplied by contact time (CT)  

< 60 mg.min/l 

Trihalomethanes (THM)  > 25 µg/l 

Flow through DAF clarification  > 300 m3/h 

Flow through HBC clarification  > 200 m3/h 
 

Table 1. Failure conditions 

5 ACCURACY OF MODELS 

5.1 Works data 

The models were both calibrated using quarter hourly data 

collected from in line sensors from the beginning of January 

2012 (n=2604). Calibration values were found by minimising the 

summative error squared of output values when compared to 

works data. The accuracy of the models was validated by 

applying observed works values of river water temperature, flow 

through the works and reservoir turbidity for the end of January 

2012 (n=2604). The accuracies of the models are comparable to 

quality assurance checks carried out and so are considered to be 

sufficient. 

5.2 Stochastic data 

5.2.1 Representative probability distribution functions 

and sampling rates of input data 

To analyse the performance of the works using Monte-Carlo 

methods, probability distribution functions (PDFs) representative 

of the conditions observed in January 2012 had to be identified. 

The input parameters observed did not accurately approximate to 

parametric distributions, such as normal or log normal, and so 

they were described using non-parametric general distributions. 

The variation from daily average turbidity was also described in 

the same way.  

The frequencies at which these distributions were sampled 

were chosen based on best visual representation of the observed 

works time series data as reported in  

Table 2. 

Parameter Sample rate Samples in 10,000 

hours 

Combined DAF and 

HBC flow 

4 hours 2500 

Reservoir turbidity 168 hours (1 week) 60 

Deviation from daily 
mean turbidity 

4 hours 2500 

River temperature 168 hours (1 week) 60 

Contact tank inlet 

concentration 

Quarter hourly 40000 

 

Table 2. Sample rate of distributions 
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5.2.2 Modelled and observed output data 

Probability distributions of outputs from the static and dynamic 

models were produced from a validation selection of works data 

and two stochastic (10000 hour) datasets. The modelled output 

distributions were analysed and found to be comparable to the 

observed distributions with the following notable observations. 

The static model was susceptible to high frequency variations in 

input parameters resulting in higher than observed variations in 

output parameters. This was due to plug flow assumptions. The 

dynamic model was found to dampen high frequency changes in 

raw water quality appropriately due to the application of CSTRs 

to represent partial mixing within processes. The effect of this 

partial mixing is particularly evident in the filter headloss and 

chlorine decay models. The dynamic and static models as 

calibrated overestimated the turbidity removal ability of the 

HBC and DAF processes. 

5.2.3 Modelled and observed failure likelihood 

The failure likeihood predicted by both models for observed and 

stochastic data was assessed and is shown in Figure 1. The lower 

than observed failure rates for both models is due to the over 

prediction of solids removal by the HBC and DAF processes. It 

can be seen that although the dynamic model did not experience 

any failure events when works data was applied that its 

prediction of failure events when using stochastic data was 

compariable to the static model and of the same magnituse as 

that observed. The dynamic model predicted failure due to 

headloss exceedance as was observed whereas the static model 

predicted failure due to unobserved inadequate disinfection (CT) 

and disinfection by-product formation (THMs) exceedance.  

Figure 1. Failure likelihood 

6 OPTIMISATION OF DESIGN 

For operating conditions defined as being comparable to those 

observed at the case study WTW a near-optimal design was 

sought with the multiple objectives of minimum surface area and 

minimum failure likelihood. Five decision variables with ten or 

eleven possible integer values (0 or 1, to 10) were used. 

6.1 Objectives and decision variables 

Surface area was used as a cost function due to the lack of 

available data for costing WTWs based on their size. It was 

reasoned that where the same processes were used that a smaller 

WTW would equate to a lower cost design. The optimisation 

assumed that process units of the same size as those present at 

the case study works could be applied from typically a minimum 

of zero up to a maximum of ten units (Filtration and disinfection 

had a minimum value of one unit). For consistency of approach 

the flow ratio between DAF and HBC processes streams was 

variable in 10% increments and the size of the contact tank was 

variable in 400 m3 increments up to a maximum of ten units. The 

performance of different designs was assessed by their 

likelihood of failure over 10000 hours using stochastically 

generated conditions as described in section 5.2. The 

optimisation was completed by using the NSGAII genetic 

algorithm over as many generations as was possible (for the 

more computationally more demanding dynamic model) on a 

single node (dual-processor 8-core (16 cores/node) 64-bit 2.2 

GHz Intel Sandy Bridge E5-2660 worker nodes with 32 GB of 

memory) on the University of Birmingham’s BlueBEAR 

computer cluster over 48 hours. 

6.2 Genetic Algorithm 

Genetic Algorithms (GAs) are the most popular group of 

techniques known as evolutionary algorithms. All of these 

techniques apply the theory of natural selection to identify near 

optimal solutions. A random group of initial parent solutions are 

produced and offspring solutions are produced by applying 

crossover and mutation functions. Together these parent and 

offspring solutions make up the first generation of solutions. 

These solutions have their performance assessed and then a 

second generation of parent solutions is identified. This process 

continues with the intention that as the number of generations 

increases the performance of the population should improve.  

The Non-dominated sorting genetic algorithm II (NSGAII) 

[13], a type of second generation multi objective evolutionary 

algorithm (MOEA) was used to identify the near optimal 

solutions.This method finds and preserves the best solutions 

through the use of an elite preserving operator, application of a 

fast algorithm to sort non-dominated fronts and use of a two 

level ranking method to assign effective fitness to solutions. 

Solutions are first ranked by Pareto set and then by crowding so 

that dissimilar solutions are preferential. NSGAII was used due 

to its good diversity preservation in comparison to other GAs 

[13-14] and due to its ability to identify Pareto fronts in both 

constraint and non constraint problems (which allowed 

flexibility of approach). A drawback to the NSGAII is that it 

allows non dominated solutions to replace each other which over 

time can result in deterioration of the population’s performance 

and therefore not guarantee convergence. The NSGA was 

programmed in Matlab, based on a description by Deb et al. 

[13]. The genetic operators applied were tournament selection, 

simulated binary crossover (SBX) [15] and polynomial mutation 

operators [16]. The NSGAII internal parameters used in this 

study are shown in Table 3. These have been chosen based on 

previous use by Sharifi [17] in a water based application and 

expert opinion [18] for the current problem. They will eventually 

be identified through a sensitivity analysis of their impact on 

quality of solutions identified. 

 
Parameter Value 

Maximum number of generations 500 

Population size 50 

Crossover probability 0.9 

Crossover distribution index 10 

Mutation probability 0.05 

Mutation distribution index 20 

Table 3. NSGAII Internal parameters 
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7 RESULTS 

The genetic algorithm was applied to both models for seven 

generations and the following graphs (Figure 2 and Figure 3) 

show the smallest design, for each generation, that failed less 

than 1% of the time when run for 10000 hours with stochastic 

data. Figure 4  shows the evolution of the entire population of 

solutions for the dynamic model. For the dynamic model, by the 

twentieth generation 78% of solutions were for the minimum 

size solution possible. 

Figure 2. Evolution of near optimal static solution 

Figure 3. Evolution of near optimal dynamic solution 

The static solution identified, after twenty generations, had a 

failure likelihood of 0.2% whereas the dynamic model 

experienced no failure events.  

The computationally less demanding static model achieved 

289 generations in the allotted time. The smallest solution 

identified in this time was 1180 m2 which was not conserved. 

Figure 4. Populations of dynamic model solutions 

  

8 ANALYSIS 

After twenty generations the static model identified a smaller 

area solution (1220 m2), with below 1% failure likelihood, than 

the dynamic model (1340 m2). The smaller size of the static 

solution can partly be explained by its higher failure likelihood 

but the results are in agreement (in terms of relative sizes) with 

the best known solutions for this problem (static 1060 m2, 

dynamic 1160 m2). These results suggest that the dynamic model 

tends to identify more conservative estimates of works design 

than the static model. 

The static model’s smallest area solutions showed greater 

evolution throughout the GA’s application than the dynamic 

model’s. The small amount of evolution in dynamic model’s 

solutions, the inability of the GA to identify the best known 

solution for the static model after 289 generations and the early 

dominance of minimal possible size solutions are indicative of 

premature convergence of the solution population. 

Greater calibration of NSGAII internal parameters is required 

to ensure near-optimal solutions are identified for both models 

with acceptable computational demands. 
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Abstract. 1 This paper describes the application of Artificial 

Neural Networks (ANNs) as Data Driven Models (DDMs) to 

predict urban flooding in real-time based on weather radar and/or 

raingauge rainfall data. A time-lagged ANN is configured for 

prediction of flooding at sewerage nodes and outfalls based on 

input parameters including rainfall. In the absence of observed 

flood data, a hydrodynamic simulator may be used to predict 

flooding surcharge levels at nodes of interest in sewer networks 

and thus provide the target data for training and testing the ANN. 

The model, once trained, acts as a rapid surrogate for the 

hydrodynamic simulator and can thus be used as part of an urban 

flooding Early Warning System (EWS). Predicted rainfall over 

the catchment is required as input, to extend prediction times to 

operationally useful levels. Both flood-level analogue and flood-

severity classification schemes are implemented. An initial case 

study using Keighley, W Yorks, UK demonstrated proof-of-

concept. Three further case studies for UK cities of different 

sizes explore issues of soil-moisture, early operation of pumps as 

flood-mitigation/prevention strategy and spatially variable 

rainfall. We investigate the use of ANNs for nowcasting of 

rainfall based on the relationship between radar data and 

recorded rainfall history; a feature extraction scheme is 

described. This would allow the two ANNs to be cascaded to 

predict flooding in real-time based on current weather radar 

Quantitative Precipitation Estimates (QPE). We also briefly 

describe the extension of this methodology to Bathing Water 

Quality (BWQ) prediction. 

 

Keywords. ANN, early warning system, flood risk, machine 

learning, neural network, nowcasting, prediction, rainfall, urban 

flood. 

1 INTRODUCTION 

Recent studies [1], [2] have documented the increased frequency 

and likelihood of extreme precipitation events. In the UK, the 

existing installed base of combined drainage systems is huge. 

This means that a large proportion of urban rainfall runoff is 

immediately mixed with effluent, increasing the potential public 

health risks from urban flooding. Even flooding from separate 

storm sewers is in any case destructive and costly. An ageing 

network and increasing urbanisation further exacerbate these 

problems. Therefore models are required, which can provide 

predictions of location, severity and/or risk of flooding. In order 

to be operationally useful, these need to provide 2+ hour lead-

time [3] and be able to operate rapidly in real-time. 

Hydrodynamic simulators are used as standard to model the 

response of Urban Drainage Networks (UDNs) to rainfall events. 

However, especially for large UDNs, these can be slow and 
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computationally expensive. A faster surrogate method is sought, 

which would permit modelling of very large networks in real-

time, without unacceptable degradation of accuracy. However, if 

actual rainfall is used as input, the predictive ability of such 

models is limited by the Time of Concentration (ToC) for the 

sewer network, with the possibility of flooding at any node 

commencing from zero time onwards, following the start of 

precipitation. In practice, ToC would normally be of the order of 

minutes, rather than hours for all but the downstream sections of 

the very largest UDNs.  

Therefore prediction of rainfall is a requirement to achieve 

the lead-times sought. Many papers have been written on rainfall 

nowcasting methods from radar rainfall images [3–11]. A novel 

machine-learning based approach to this is currently at an early 

stage of development within the Centre for Water Systems. 

2 APPROACH USED ('RAPIDS') 

As part of University of Exeter’s research under Work Package 

3.6 of the Flood Risk Management Research Consortium Phase 

2 (FRMRC2) [12] project , we developed the ‘RAdar Pluvial 

flooding Identification for Drainage System’ (RAPIDS) using 

ANN’s to predict flooding in sewer systems. This was described 

in our paper [13] and was further developed for an UKWIR-

funded joint industry / University of Exeter project [14] in which 

three case studies were carried out for UDN's in South London, 

Portsmouth and Dorchester, with promising results. 

The RAPIDS software (currently in MATLAB) includes two 

programs: RAPIDS1, which addresses the need for a faster 

surrogate for hydrodynamic simulators as well as classifier 

models for flood and other hydrological parameters, and 

RAPIDS2 (under development), which aims to provide 

nowcasting for rainfall over the catchment containing the 

modelled UDN. It is hoped to be able to demonstrate the 

cascading of these two systems to provide the required urban 

flood predictive model. 

The RAPIDS1 program is based on a lagged-input, 2-layer, 

feedforward Artificial Neural Network (ANN), used to relate 

incoming rainfall data to the extent of flooding present at each 

node in the UDN. It has the same number of output neurons as 

sewerage nodes of interest – i.e. there is no requirement to model 

nodes identified from hydrodynamic modelling as never 

flooding, making an immediate computational saving. The ANN 

architecture is varied to establish an optimum. The supervised 

training regime uses either backpropagation of error quasi-

Newton gradient-descent or NSGA-II [15] Evolutionary 

Algorithm method. A moving time-window approach is 

implemented whereby lagged time-series signals (e.g. rainfall 

intensity, cumulative rainfall, soil moisture, pump states, tidal 

levels etc) are provided in parallel over the time-window as 

inputs to the ANN. If no direct observation data is available for 

the UDN to be modelled, output target signals for training and 

evaluation of ANN model performance are provided from the 

flood-level, volume or flow hydrographs generated by 
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hydrodynamic simulator outputs for each sewerage node to be 

modelled. This only needs to be done for the training dataset of 

rainfall events. The trained ANN thus aims to generate the same 

hydrographs for new rainfall events as would the UDN itself, 

based on having learned and generalised the (non-linear) 

relationship between the provided input signals and observed or 

simulator-generated targets. Figure 1 illustrates the architecture 

of the RAPIDS1 system to predict sewer network outputs. The 

target signals selected are the flood levels at each sewerage node 

at a time-step that corresponds to the desired prediction lead-

time (i.e. up to network ToC).  

 
Figure 1. Architecture of RAPIDS1  

 

Event profile data arrays of the input-signals are prepared for use 

as the time-series input to the ANN as illustrated in Figure 2. In 

line with best practice, all input data are normalised. 
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Figure 2. Selected ANN Input signals for a typical rainfall event 

 

A selection of (historic) rainfall events is needed for the training 

dataset. These need to be representative of the envelope of likely 

intensities and rainfall totals for the future events to be modelled. 

If sufficient of these are not available, existing events can be 

augmented by factorally increasing rainfall intensity and 

modelling resulting target hydrographs using a hydrodynamic 

simulator. 

Rainfall radar images are sourced from the UK Met Office 

NIMROD system [16], [17], which produces a composite 1km 

resolution Quantitative Precipitation Estimate (QPE) image 

covering the whole UK, every 5-minutes. A live RSS feed is 

available on request. Historic data images (from April 2004 to 

present) are available for download from [18].  Treatment of 

radar QPE images 1km pixel-by-pixel by an ANN is 

computationally prohibitive since, for example, for a 3-h 

prediction there would be 36-images, each with at least 3602-

pixels (allowing for a maximum storm advection velocity of 

60 km/h). This would potentially require ~5  106 neurons (at 1-

neuron per pixel). Therefore features are extracted from the rain 

echoes in each time-step and associated with features from 

previous time-steps. These can then be applied to the inputs of 

an ANN as time-series signals. The feature extraction approach 

proposed is similar to Discrete Wavelet Transforms (DWT) 

using Haar wavelets [19], but using different sized grids 

depending on the proximity to the catchment being modelled. 

The mean rainfall for the whole area is evaluated; then residuals 

of mean rainfall over each sub-grid square are computed: see 

Figure 3. Standard deviations show that information is contained 

at all spatial scales [20].  

 

 
Figure 3. RAPIDS2: Rainfall Event 2007-06-14 – QPE snapshot 

at 22:30 showing original image (top left) and feature extraction 

of residuals at finer grid resolutions (128 to 1 km) 

 

The extracted residuals from multiple images over the duration 

of each event become time-series signals, which can be applied 

as input signals to ANNs: see Figure 4. 

 

 
Figure 4. RAPIDS2: Rainfall Event 2007-06-14 – Time-series 

ANN input signals over 24-hours at spatial resolutions as shown; 

x-axis is radar image no.; y-axis is Δ rainfall intensity in mm/hr. 
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It is proposed to implement a similar time-windowed ANN 

framework as for RAPIDS1. Target rainfall for training and 

evaluating the ANN is derived from the rainfall intensities in 

grid squares covering the required catchment containing the 

UDN to be modelled, advected into the future by the required 

prediction period.  

In summary, the proposed methodology is to cascade the two 

stages together (RAPIDS2 providing predicted rainfall, which 

can be applied to RAPIDS1 inputs) and thus provide flood 

predictions for each node of interest in the UDN, hopefully with 

operationally useful lead-times of 2+ hours. 

3 CASE STUDIES 

An initial "proof-of-concept" case study for RAPIDS1 was 

conducted as part of FRMRC2. An ANN with 123-outputs was 

used to model the Stockbridge sub-section of the combined 

rain/wastewater drainage system for the town of Keighley, West 

Yorkshire, containing 122 manholes and one combined sewer 

overflow (CSO). Design rainfall was used. The neural network 

gave a floating-point estimate of the level of flooding at each 

node. However, this level of accuracy is unlikely to be required 

for flood-warnings. Therefore a classification scheme to provide 

predictions of flood severity was implemented by post-

processing ANN outputs. Results were reported in [13]. 

Under the UKWIR-funded joint-industry Real-time Machine 

Learning (RTM) project [14] the following 3 case studies were 

implemented, in a two-stage project to evaluate effectiveness in 

different sized catchments under different conditions; stage 1 

used design rainfall and stage 2 used real rainfall: 

Dorchester: small urban catchment (6km2); evaluation of the 

significance of use of soil moisture as ANN input. 

Portsmouth: medium urban catchment (30km2); island 

location; tidal effects; need for pumping; evaluation of 

effectiveness of ANN models to provide early starting of pumps 

– as a flood-mitigation / prevention strategy. 

Crossness (South London): large urban catchment (230km2); 

evaluation of model effectiveness using spatially varying rainfall 

as ANN inputs. 

In order to allow all partners to present results consistently, 

the MS Excel-based 'HydroMAT' model analysis tool was 

developed to provide automated assessment of ANN output 

using a number of metrics 2  including those recommended in 

[21]. Results below (Figures 7-9) were assessed using this tool. 

4 RESULTS & DISCUSSIONS 

Figure 5 shows average ANN training times of around 115 

seconds for the 123-node network used in the FRMRC case-

                                                 
2 Nash-Sutcliffe Efficiency Coefficient (NSEC); RMSE-Observations 

Standard Deviation Ratio (RSR) ; Percentage Bias (PBIAS) ; Total 

Volume Error (TVE) ; ANN Normalised Root Mean Square Deviation 

(NRMSD); % Samples in Limits - All Nodes; Amplitude Error of 
Hydrograph Peak ; Timing Error of Hydrograph Peak; R-Squared - All 

Nodes; Pearson Correlation Coefficient - All Nodes; ANN Output vs 

Target X-Y Plot (ATXY) - Single Node; ANN Output & Target 
Hydrographs - Single Node; Confusion Matrix for Peak Flood Depth 

Categories; Confusion Matrix for Flood Positives & Negatives; 

Confusion Matrix Accuracy Band summary analysis 

 

study. Fifteen 6-hour events (rainfall + runoff) were used for 

training. In comparison, hydrodynamic simulation for each took 

approx 240 seconds (total 3600 seconds). Once the ANN was 

trained, however, test run times were of the order of 0.1 seconds 

for each 6-hour event (Figure 6). Figures 7-9 illustrate the 

reporting of metrics provided by the HydroMAT tool; Figure 7 

shows a typical spread of NSEC values over a 20-node sample 

for a single test rainfall event; Figure 8 compares ANN-

generated hydrograph with the target hydrograph for a single 

node for a single test event; Figure 9 shows flood severity 

classification matrix for peak flood depths for a 20-node sample 

for a single event. This compares target classifications (rows A 

to C) with ANN-generated classifications (columns A to C). It 

also shows a colour-coded assessment of 3 'Accuracy bands'.   
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Figure 5. RAPIDS1 – typical 123-node ANN training times for 

FRMRC study. 
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Figure 6. RAPIDS1 – typical 123-node ANN test times for 

FRMRC study. 

 

In summary, results for UKWIR case studies demonstrated the 

following:  

(Dorchester): Use of soil moisture levels (NAPI) as ANN input 

demonstrated a small improvement in model performance, but 

this was probably not sufficient to offset additional costs of data 

gathering, preparation and application to ANN model. 
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Figure 7. RAPIDS1 – typical spread of ANN output NSEC 

scores over 20-nodes for a single real rainfall event (Portsmouth 

case study) 
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Figure 8. RAPIDS1 – typical target hydrograph and ANN 

response for a single manhole and rainfall event (Portsmouth 

catchment) 

 

 
Figure 8. RAPIDS1 – typical classification matrix for three peak 

flood depth categories (A|B|C) at 20-sewer nodes, for a single 

rainfall event (Portsmouth catchment). Colour-coded accuracy 

bands for all nodes are also shown. 

(Portsmouth): Use of ANN models were demonstrated 

successfully to prevent flooding in the 'Morass' area of 

Portsmouth, when used as a trigger for early initiation of 

pumping at the Eastney pumping station. 

(Crossness): Results for the entire 230km2 catchment using 23 

raingauges as ANN input were poor. Spatial rainfall input 

worked best when applied to smaller areas (4-5 raingauges 

subcatchments). Further work is needed. 

Work on RAPIDS2 rainfall nowcasting is at too early a stage 

to present results beyond those shown in Figures 3-4 for the 

proposed feature extraction approach; the methodology is still 

under development. 

5 CONCLUSIONS & FUTURE WORK 

Results for RAPIDS1 show that ANNs can provide a very 

significant speed improvement over conventional hydrodynamic 

simulators without excessive degradation in performance. They 

can moreover be used for flood severity classification. The 

RAPIDS1 method presents opportunities for automated 

generation of flood alarms / warnings right down to the 

individual sewer node, including potentially for networks of 

considerable size, without being computationally expensive. 

However, flood prediction based on actual rainfall alone 

cannot provide operationally useful lead-times. Instead, 

prediction is limited in the worst case by the ToC for each node 

(typically <30 min). However, possibilities for stand-alone use 

of ANNs for rainfall nowcasting are being explored through a 

process of radar rainfall echo feature extraction and feature time-

series prediction using ANNs (RAPIDS2). More work is needed 

to determine the value of this approach.  

Extending prediction time to operationally useful values of 

2+ hours could potentially be achieved by using Met Office 

rainfall prediction products in place of RAPIDS2.   

Assuming that RAPIDS2 achieves satisfactory results, the 

possibility of cascading the two systems to provide flood-level 

prediction at manholes based on live radar rainfall images will 

be tested. 

The RAPIDS1 package has been written to allow tailoring to 

other catchments and water-related EWS requirements to be 

readily achieved. At present a version of RAPIDS1 is being 

adapted to early warning of bathing water quality exceedances to 

comply with the EU directive [22], using a variety of ANN input 

parameters; principally antecedent rainfall over the catchment. 

 

Acknowledgment. The research reported in this paper was 

conducted as part of the FRMRC2 and the UKWIR RTM 

projects, with support from the Engineering and Physical 

Sciences Research Council, the Department of Environment, 

Food and Rural Affairs/Environment Agency Joint Research 

Programme, UK Water Industry Research, Office of Public 

Works Dublin, and Northern Ireland Rivers Agency. Data were 

provided by the British Atmospheric Data Centre, Environment 

Agency, Halcrow, HR Wallingford, Met Office, Mouchel, 

Ordnance Survey, Richard Allitt Associates and Yorkshire 

Water. Our thanks go to all the above organisations for their 

support. 

 

 

 



29

REFERENCES 

[1]  S.-K. Min, X. Zhang, F. W. Zwiers, and G. C. Hegerl, “Human 

contribution to more-intense precipitation extremes,” Nature, pp. 
378–381, 2011. 

[2]  P. Pall, T. Aina, D. A. Stone, P. A. Stott, T. Nozawa, A. G. J. 

Hilberts, D. Lohmann, and M. R. Allen, “Anthropogenic 
greenhouse gas contribution to flood risk in England and Wales 

in autumn 2000,” Nature, pp. 382–386, 2011. 

[3]  T. Einfalt, K. Arnbjerg-Nielsen, C. Golz, N.-E. Jensen, M. 
Quirmbach, G. Vaes, and B. Vieux, “Towards a roadmap for use 

of radar rainfall data in urban drainage,” Journal of Hydrology 

299, pp. 186–202, 2004. 
[4]  L. Li, W. Schmid, and J. Joss, “Nowcasting of Motion and 

Growth of Precipitation with Radar over a Complex Orography,” 

Journal of Applied Meteorology, vol. 34, no. 6, pp. 1286–1300, 
Jun. 1995. 

[5]  W. F. Krajewski and J. A. Smith, “Radar hydrology: rainfall 

estimation,” Advances in Water Resources, vol. 25, no. 8–12, pp. 
1387–1394, Aug. 2002. 

[6]  N. E. Bowler, C. E. Pierce, and A. W. Seed, “STEPS: A 

probabilistic precipitation forecasting scheme which merges an 
extrapolation nowcast with downscaled NWP,” Quarterly 

Journal of the Royal Meteorological Society, vol. 132, no. 620, 

pp. 2127–2155, 2006. 
[7]  S. Achleitner, S. Fach, T. Einfalt, and W. Rauch, “Nowcasting 

of rainfall and of combined sewage flow in urban drainage 

systems,” Water Science and Technology, vol. 59, no. 6, p. 1145, 
2009. 

[8]  A. N. A. Schellart, M. A. Rico-Ramirez, S. Liguori, and A. J. 

Saul, “QUANTITATIVE PRECIPITATION FORECASTING 
FOR A SMALL URBAN AREA: USE OF RADAR 

NOWCASTING,” in 8th INTERNATIONAL WORKSHOP on 

PRECIPITATION IN URBAN AREAS, St Moritz, CH, 2009, pp. 
22–26. 

[9]  P. Wang, A. Smeaton, S. Lao, E. O’Connor, Y. Ling, and N. 

O’Connor, “Short-Term Rainfall Nowcasting: Using Rainfall 
Radar Imaging,” Eurographics ireland, p. pp, 2009. 

[10]  S. THORNDAHL, T. Bøvith, M. R. Rasmussen, and R. S. Gill, 

“On comparing NWP and radar nowcast models for forecasting 
of urban runoff,” in Proceedings of IAHS symposium held in 

Exeter, UK, April 2011, Exeter, UK, 2011, vol. 351, pp. 620–

625. 
[11]  S. Liguori, M. A. Rico-Ramirez, A. N. A. Schellart, and A. J. 

Saul, “Using probabilistic radar rainfall nowcasts and NWP 

forecasts for flow prediction in urban catchments,” Atmospheric 
Research, vol. 103, no. 0, pp. 80–95, Jan. 2012. 

[12] “Flood Risk Management Research Consortium 2.” 2012-2009. 

[13]  A. Duncan, A. S. Chen, E. Keedwell, S. Djordjevic, and D. A. 
Savic, “Urban flood prediction in real-time from weather radar 

and rainfall data using artificial neural networks,” in IAHS Red 

Book series no. 351, Exeter, UK, 2011, vol. 351. 
[14]  R. Kellagher, “The Use of Artificial Neural Networks (ANNs) 

in Modelling Sewerage Systems for Management in Real Time: 
Volume 1 - UKWIR Main Report (12/SW/01/2).” UKWIR, 

2012. 

[15]  K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and 
elitist multiobjective genetic algorithm: NSGA-II,” Evolutionary 

Computation, IEEE Transactions on, vol. 6, no. 2, pp. 182–197, 

2002. 
[16]  B. W. Golding, “Nimrod: a system for generating automated 

very short range forecasts,” Meteorological Applications, vol. 5, 

no. 1, pp. 1–16, 1998. 
[17]  N. BADC, “Met Office - Rain radar products (NIMROD).” 

http://badc.nerc.ac.uk, 2011. 

[18]  N. BADC, “BADC UKMO Nimrod Data,” British Atmospheric 
Data Centre. 2013-2004. 

[19]  I. Daubechies, “Orthonormal bases of compactly supported 

wavelets,” Communications on Pure and Applied Mathematics, 

vol. 41, no. 7, pp. 909–996, 1988. 

[20]  I. Tchiguirinskaia, D. Schertzer, C. T. Hoang, and S. Lovejoy, 
“Multifractal study of three storms with different dynamics over 

the Paris region,” in Proceedings of Weather radar and 

hydrology symposium, Exeter, UK, 2011. 
[21]  D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. 

D. Harmel, and T. L. Veith, “Model evaluation guidelines for 

systematic quantification of accuracy in watershed simulations,” 
Transactions of the Asabe, vol. 50, pp. 885–900, 2007. 

[22]  European Commission, “Revised Bathing Water Directive 

(2006/7/EC).” European Commission, 15-Feb-2006. 

 



30

Dynamically Integrated Project Portfolio Planning to 

Accommodate Asset Management Plan Cycles in the UK 

Water Industry

Alireza Pakgohar
1
, David Z. Zhang

1
, Sarah Ward

1
 

 

 
Abstract. Project Portfolio Planning (PPP) is a hierarchical 

decision-making process that has been frequently studied in a 

number of sequential phases such as Project selection, 

contractor/resource selection, Project scheduling and 

rescheduling and Supply chain configuration. This paper 

proposes an integrated approach for modelling and simulating 

PPP systems to evaluate the behaviour of the portfolio as quickly 

as possible in response to demand changes and desires of 

counterpart supply chain. In this work an agent based 

architecture, is developed, wherein each portfolio resource is 

represented by an agent. Using autonomous agent methodology 

enables the resources to manage themselves efficiently and 

effectively. The agent-based modelling and interaction approach 

enables a multi layer supply chain of contractors to be allocated 

to the selected projects dynamically in an optimal manner. By 

using an agent based discrete event simulation, project selection, 

resource allocation and project scheduling can occur 

simultaneously. This paper introduces a novel methodology for 

integration of agent-based modelling, multi project 

planning/scheduling, rescheduling, identification of alternative 

portfolio counterpart supply chain configurations, simulation and 

analysis of the configurations within an integrated framework for 

UK water companies in particular, in order to accommodate the 

Asset Management Plan (AMP) cycle. 

 
Keywords: Asset Management Planning, Project portfolio 

planning, Agent based modelling, Genetic algorithm 

1 INTRODUCTION 

Regulation and investment in the water sector in the UK is 

undertaken in 5 year cycles, known as the Asset Management 

Plan (AMP) cycle. Traditionally, the majority of investment by 

water companies is made at the beginning or towards the middle 

of the AMP cycle, as companies strive to achieve regulatory 

compliance by the end of the AMP cycle. Capital outlay then 

decreases as the cycle enters its final stage [1]. The oscillating 

cycles is adapted from ofwat’s report [2] and depicted in Figure 

1. It also covers an approved projected cycle plan. 
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Figure 1. The AMP Cycle in the UK water sector [2] 

Consequently, the AMP cycle has been criticised for creating 

a ‘boom and bust’ cycle, where expertise is recruited at the 

beginning of a cycle, once tenders have been won, and laid off at 

the end of a cycle  [1], [3], [4] . This results in not only the loss 

of jobs, skills and experience (as employees move to the 

international job market), but also in a cyclical pattern of huge 

recruitment, laying off and retraining costs (in the region of 

£600M). Additional costs arise from inefficiencies in 

maintaining overheads, purchasing, stock control and borrowing. 

This subsequently impacts production, innovation and 

diversification due to uncertainties in planning, supply chain 

management and long-term business practices [4]. 

One of the major challenges for water companies is how to 

react rapidly and cost-effectively to dynamic variations in 

demand patterns derived from AMP cycles: in essence, how do 

they ‘smooth’ the impact of the cycle? Moreover changes in 

capabilities, capacities and desires of multi layer Water 

suppliers/contractors is another challenge in each AMP Cycle 

that causes turbulence in water specialist renewable resources. 

Therefore, the most difficult parts of the project portfolio 

planning processes in water companies and across different 

layers of their counterpart supply chain are related to how they 

can make strategic, tactical and operational decisions. These 

decisions include selecting contractors and configuring the 

supply chain, collaborating with them to achieve a plan/schedule 

for each individual project and rescheduling them if it is needed. 

Furthermore, project selection and resource restructuring are two 

major interrelated issues that first tire suppliers such as Atkins 
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and Balfour Beatty are involved with. However, in the long term, 

the other issue that will be raised in these companies to 

accommodate AMP is system adaptation. This adaptation could 

be partially done by developing training programmes for human 

resources as well as supply reconfiguration for external 

resources.  

At the operational level, while each project manager is asked 

to select pre-assessed contractors and provide a schedule of the 

work packages based on the collaboration between traders in a 

decentralised manner, in tactical and strategic level, principal 

managers are facing the problem of how a decentralized decision 

could affect overall performance of the Water Company.  How 

are the contractors affected by these sorts of decisions? What is 

the impact of these decisions on the total supply chain and its 

reaction to the market demand derived from AMP? 

This paper sets out an investigation to address and highlight 

these challenges and design a framework for decision making 

processes. The aim is to understand how portfolio managers 

could dynamically and cost-effectively optimize the enterprise in 

order to cope with dynamic variations in demand patterns of the 

projects and the unpredictable reactions of the traders in 

tendering processes across the supply chain. It will also 

investigate how they could achieve partnership agreements 

among traders and what the effect would be on an enterprise’s 

clients.  

2 RESEARCH QUESTIONS 

1. At all levels of the water supply chain hierarchy – both prime 

and sub-contractors: How to consider decisions for rescheduling 

and reconfiguration of resources across the hierarchies of a 

distributed project supply chain concurrently, with minimum 

change to existing contracting structures, to cope with 

unexpected delays in project progress?  

 2. How to design and optimise a project supply chain that is 

robust to changes and uncertainties (lead-time uncertainties, 

unexpected delays and events in the supply and logistic network) 

whilst being able to satisfy quality and delivery requirement at 

minimum cost, both at the contract formation and resource 

reconfiguration stages?  

 3. How to identify the optimum time and option for upgrading 

resource and skills matrix in a project oriented business in 

response to changing needs from the market? How does this feed 

into the human and organisational decisions of the business?  

3 LITRATURE REVIEW 

Complex project portfolio planning (PPP) has been a crucial part 

of a wide range of studies for more than 6 decades. According to 

the necessity of having a powerful model to cope with diverse 

aspects of PPP many scholars and practitioners proposed several 

hierarchical planning frameworks for decision making in PPP 

[5], [6],[7], [8]. 

The framework that has been presented by Hans et al. [6] 

includes operational, tactical and strategic levels of decision 

making.  Figure 2 depicts this framework.  

Figure 2.  Integrated hierarchical multi-project planning  [6] 

At the operational level of this framework, there are ample 

studies for Resource-constrained project scheduling and resource 

allocation. There are two different approaches used by research 

undertaken in this area, including centralized and decentralized 

decision-making methods. The former approach has been 

considered across more than six decades. Pritsker et al. [9] 

presented the generic model of scheduling projects by 

introducing a super network consisting of multiple projects, 

Vercellis [10] proposed a “Lagrangean decomposition approach” 

for solving the PPP in multi-mode conditions. She relaxed two 

groups of constraints that interrelate among themselves across 

the projects, by introducing two set of multipliers and presented 

Lagrangean relaxation of the resource constrained multi project 

scheduling problem (RCMPSP). Gonçalves et al. [11] Proposed 

a heuristic approach for modelling and solving a multi project 

problem. In the stream of the centralized modelling, some 

scholars consider each single project among the portfolio 

independently so-called truly multi-project modelling. Kurtulus 

and Davis [12] could be considered the pioneers of modelling 

multiple projects by individual networking. They showed that 

this kind of modelling outperforms super network modelling. 

Further, Kumanan [13] proposed the use of a heuristic and a 

genetic  algorithm (GA) for scheduling a multi-project 

environment. They consider multiple projects the activities of 

which can be performed in one of several modes where for 

performing an activity there are several options available. We 

were unable to find out any other papers in multi-mode multi-

project planning and scheduling problem. 

State-of-the-art approaches have started to consider the use of 

agent-based modelling and simulation, which has been applied in 

a range of research areas [14], [15]. Using the notion of agent 

based modelling, Knotts [16] for the first time proposed agent-

based project scheduling. Under the umbrella of this idea, some 

scholars have modelled PPP by using a multi agent system as a 

part of artificial intelligence systems. The concept has been 

developed into that of decentralized multi project planning. In 

fact, the idea of decentralizing multi-project scheduling problem 

can be identified in 2003 when Lee et al. [17] claimed that, as a 

result of large improvement in technology of Internet and 

globalization of the business, multi-project firms performed 

more distributed organisationally and geographically. They 

believed that centralized project management, where all the 

projects are managed by a single manager, is no longer suitable 

for this environment. Therefore, they established the term 

“decentralized or distributed multiple projects (DMP)” 

environment and proposed the Decentralized Multi-project 

Scheduling Problem (DMPSP). DMPSP is a complex 
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combinatorial approach, which employed Multi-Agent Systems 

(MAS) to simulate the genuine multi-project problem. It was a 

distributed approach based on informational and geographical 

aspects in project portfolio organizations. Following this 

research, Confessore et al. [18] illustrated a Decentralized 

Resource Constrained Multi-project Scheduling Problem 

(DRCMPSP). 

The models proposed by Lee et al. [17]  and Confessore et al. 

[18] are based on modern electronic auctions for resource 

allocation and simple heuristics for scheduling activities.  

Homberger [19] introduced a restart evolution strategy (RES) 

- a meta-heuristic approach- that could find the solution for 

resource constrained scheduling problem centrally as well as a 

MAS – that could solve DRCMPSP (solving the problem 

decentrally). He showed that “decentralized MAS approach is 

competitive with a central solution using the RES.” Araúzo et al. 

[20] proposed a model for project selection and scheduling based 

on MAS as an integration of tactical level and operational level 

of decision making in project portfolio environment. This shows 

that MAS is a capable methodology for modelling and covering 

several layers of hierarchical planning in multi-project 

environments. However, as far as could be identified from the 

literature reviewed, none of the research on utilising a 

decentralized approach take into consideration multi-mode case 

as well as the dynamic nature of the portfolio [21]. 

At the strategic layer of Hans et al.’s framework  [6], supply 

chain designing  has been addressed. There is a number of 

studies in the field of project portfolio supply chain 

design/optimisation [22], [23], [24], [25]. Furthermore, Xue et 

al. [26, 27] introduced Multi Agent Systems for the construction 

supply chain in particular. These research aimed to facilitate 

communication between different parties involved in an 

Engineering, Procurement and Construction (EPC) enterprise.  

Although the research in the field of supply chain design indicate 

that the planning and scheduling of the project plays a critical 

role in all the processes of the project based organizations, it has 

not covered the integration of project planning with supply chain 

design and configuration. 

In summary, it can be concluded that there is limited research 

that devoted to integration of different aspects of hierarchical 

PPP. 

4 PROPOSED FRAMEWORK FOR PPP 

In this research, we proposed an MAS for PPP that is able to 

cope with multi-project planning in multi mode condition and 

each decision is made by individual project manager in a 

decentralized way rather than taking all the decisions by a single 

portfolio manager. In addition, projects enter the portfolio in a 

dynamic way. Furthermore, in conformity with Araúzo et al. 

[20] and beyond, our proposed  MAS architecture could address 

all three layers of decision making framework of Hans et al. [6] 

in an integrated way such that, while in the operational layer, 

decisions of resource allocations and project scheduling are 

made, in the tactical layer, the architecture could accommodate 

the decisions such as project selections and resource 

restructuring decisions. Finally, the decisions regarding long 

term resource planning such as supply chain reconfiguration and 

partnership agreement decisions will be accommodated at the 

strategic layer where multi layers of the framework work 

together as an integrated and dynamic system. Figure 3 depicts 

our dynamic integrated framework that has been adopted to 

demonstrate its applicability to the Water Supply Chain in the 

water industry in the UK.  

Figure 3. Dynamic Integrated PPP framework 

  

5 PPP AGENT-BASED ARCHITECTURE  

The concept is to simulate the behaviours of a complex project 

portfolio enterprise along with all of its internal and external 

resources in its counterpart supply chain by implementing a 

multi agent-system model. The model could enable enterprise 

managers to concurrently generate and evaluate alternative 

scenarios of planning and control using an agent-based bidding 

process. This framework and its architecture are able to integrate 

decision making processes at operational, tactical and strategic 

levels. The role and behaviour of the project and portfolio 

managers in this framework will be investigated with regard to 

contractor selection, communication to achieve planning, 

scheduling and rescheduling, if required. 

Our proposed integrated decision platform would enable 

changes to be captured and scheduling, planning, configuration, 

restructuring and adaptation options to be created virtually and 

evaluated concurrently in a co-ordinated manner by continuous 

interactions amongst individual supply chain activities. This 

platform is based on a multi agent system to simulate and also 

enable the entire Water Supply Chain, including design and 

consultancy, construction and manufacturing companies that are 

involved in AMP cycles, to be optimised dynamically in an 

integrated way.  

The architecture of the proposed MAS has been adapted from 

previous studies in the Exeter Manufacturing Enterprise Centre 

(XMEC) [28] [29], [30], to capture the feature of the PPP is 

demonstrated in Figure 4. 

The major aim of the work presented in this paper is to 

provide a cost-effective approach that would enable the Water 

Industry to integrate and coordinate planning and control 

operations and improve awareness and responsiveness to the 

changes derived from AMP cycle.  

For scheduling of each project, a coordinated iterative bidding 

process, inspired by the negotiation process between sellers and 

buyers has been proposed and tested in XMEC [21], [28].  
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               Figure 4. PPP agent network architecture  

This process provides an optimal combination of resources 

for a project by implementing several bidding iterations. The 

process starts when a particular project with corresponding 

activities comes to the portfolio dynamically. All of the 

resources are informed, through their blackboard, when a new 

project enters the portfolio. The resources update their local 

times and their previous activities in their buffers according to 

the current time. Then the project agent initializes virtual prices 

for activities and minimum virtual profits for all resources. 

Iterative loops can then be started for achieving an optimal 

resource combination for conducting the project. For performing 

each activity of a project agent, resource agents evaluate 

corresponding cost and if the cost is more than the allocated 

virtual price, which means that there is no profit for them, they 

do not participate in the bidding process. However, if there is a 

reasonable profit, which means that the virtual minimum profit 

has been satisfied, they put forward the bid in the auction 

process.  Therefore, in performing each activity there are several 

possible bids at each iteration. Having received bids from 

resources where their virtual profits have been satisfied, the 

project manager collects all of the bids for activities, evaluates 

the makespan of the project and chooses the best combination if 

and only if the collective plan satisfies the project deadline. The 

cost of the project is then calculated and stored in its blackboard 

in the first iteration. In the next iteration, virtual prices and 

minimum profits are updated by a GA that has been developed at 

the University of Exeter [28]. This is to encourage more 

resources to put forward their bids. It is clear that, by increasing 

virtual prices more resources will be involved in auction and 

vice versa. Therefore time-cost trade off will be evaluated at 

each iteration and virtual parameters updated to achieve the 

minimum cost that satisfies the due date of the project. In other 

words, the virtual prices for activities of each project and 

minimal virtual profits for a portfolio’s resources act as governor 

for the bidding process, so that each resource achieves its local 

goal while the global goal of the portfolio agent may be achieved 

by calculating the minimum cost of each project. 

The procedure is finished when a given number of iterations 

have been run. Finally, the project manager agent selects the 

minimum cost and its associated combination of resources.  

The platform is implemented by a multi-layer hierarchical 

agent-based modelling and simulation architecture for modelling 

complex heterogeneous systems i.e. organisation along with its 

multi-tiers suppliers/contractors as well as Project work 

breakdown structure. The agent-based architecture facilitates the 

implementation and the execution of a hierarchical and optimally 

controlled agent-based bidding process including a method for 

identifying, simulating and evaluating system restructuring 

options to accommodate changes in AMP cycles. This approach 

attempts to improve the performance of the Water Industry and 

facilitate adaptation to the changes in the AMP Cycles. In this 

way, changes can be utilised as opportunities for further 

improvement and adaptations. 

6 CONCLUSIONS  

A dynamic integrated framework for hierarchical PPP has been 

proposed. Using MAS allows the system to simulate the water 

supply chain environment and find out the effect of each AMP 

transition. Based on the amount of turbulence in the water 

industry, what-if analyses and reconfiguration options could be 

evaluated to optimize the best supply chain configuration (long 

term period). In this framework, optimal project planning - as 

short term decisions - could be achieved by coordination 

between project agents and contractor agents. These agents 

negotiate collaboratively with each other to achieve a project 

schedule where minimum cost and no due date violation occurs. 

In other words, this paper introduces an evolutionary way of 

optimising distributed the water supply chain where 

Engineering, Procurement and Construction resources involved 

in projects are coordinated to offer best resource planning and 

supply chain structuring simultaneously. 
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Abstract.  In this work, we present a hybrid approach to 

modelling dynamic systems, which combines a typical 

conceptual modelling approach with machine learning, enabling 

the construction of process-based models tailored to specific 

modelling requirements. The key element of the proposed 

methodology is a domain specific library capable of storing 

background knowledge about the modelling task. Here we 

present two such libraries, namely an aquatic ecosystem 

modelling library and a watershed modelling library. Both 

libraries are written in a formalism compliant with the equation 

discovery tool ProBMoT, which can automatically construct 

models from the components in the library, given a conceptual 

model specification and measured data. We applied the proposed 

modelling methodology to the Lake Bled to induce a 

phytoplankton model, and to the Ribeira da Foupana catchment 

to extract a semi-distributed hydrologic model. Finally, we 

present the outlook for the integration of both libraries under a 

common framework. 

1 INTRODUCTION 

Models of dynamic systems are often formulated in terms of 

basic processes that govern the dynamic behaviour of the 

observed system. Each basic process influences the change of 

one or more system variables, while the model of a basic process 

specifies the equations used to model its influence.12 

Equation discovery (ED) is an area of machine learning (ML) 

that aims to automatically discover a model stated as equations 

from measured data. In contrast to the conceptual, knowledge-

driven approach, where the modeller formulates the equations 

based on theoretical principles, i.e., composes "white-box" 

models, ED, unless hybridized with some knowledge 

introduction procedures, composes so called "black box" models, 

where the structure of the model is not transparent and clear. 

Quite a few successful attempts have been made towards the 

introduction of domain knowledge into the procedure of model 

discovery from data. Langley et al. [1] proposed a formalism, 

which uses generic processes to present the general domain 

modelling knowledge and specific processes to present the 

specific modelling task. This formalism is supported by the IPM 

system [2]. Todorovski and Dzeroski [3] introduced the concept 

of grammars in the system LAGRAMGE, where grammars were 

used to introduce the domain knowledge into the ED procedure 

and, in that way, limit the search space of all possible solutions. 

The development proceeded towards more general knowledge 

representation. Dzeroski and Todorovski [4] introduced the 

                                                 
1
 University of Ljubljana, Faculty of Civil and Geodetic Engineering, 

Slovenia. Email: {mateja.skerjanec, boris.kompare, 
natanasa.atanasova}@fgg.uni-lj.si 
2
 Jozef Stefan Institute, Department of Knowledge Technologies, 

Slovenia. Email: {darko.cerepnalkoski, 
saso.dzeroski}@ijs.si 

formalism for modelling knowledge libraries supported by 

LAGRAMGE 2.0. Using this formalism, Atanasova et al. [5] 

developed a library for modelling food webs in aquatic 

ecosystems, which was successfully applied for discovering 

models of lake ecosystems for the lakes Glumsø [6] and 

Kinneret [7]. 

ProBMoT [8] is a further development of the above systems 

in terms of the knowledge representation formalism, as well as, 

support for more advanced model optimization procedures. 

Using the ProBMoT formalism, two modelling libraries were 

developed, i.e., the upgraded library for aquatic ecosystems, 

initially introduced by Atanasova et al. [5], and a catchment 

modelling library developed anew. 

In this paper, we present both libraries and their use in the 

automated modelling (AM) tool ProBMoT for model discovery. 

Although different in their structure, the libraries can be used 

within the same framework, which opens the potential of their 

integrative use, i.e., for integrating catchment models with 

aquatic food web models. Bellow we present the AM 

methodology, the libraries, two applications and conclusions. 

2 AUTOMATED MODELING 

METHODOLOGY: ProBMoT 

ProBMoT [8] automatically generates a set of viable process-

based models of the system under study by using a library of 

domain knowledge and a user-specified conceptual model, 

which constrain the space of candidate model structures. The 

candidate models are transformed to equations and calibrated 

against measurements to obtain the best model of the system, 

i.e., the model that fits the measurements best (see Figure 1).  

The background knowledge about the modelling task is 

captured into a domain specific library. The library represents a 

repository of template components, namely entities and 

processes that serve as building blocks for ProBMoT. Entities 

correspond to the actors of the observed system, while processes 

define the relationships among them. Each template component 

is specified as one data structure, which has its own unique name 

and a set of properties. The main goal of the templates is to 

capture some general knowledge that applies to many different 

entities or processes and can be reused when dealing with 

different specific tasks. 

In order to apply the AM methodology to a specific case 

study, a conceptual model of the observed system has to be 

provided. The basic elements of the conceptual model are 

instances – specific entities and processes that follow the 

templates encoded in the library. From the AM point of view, the 

conceptual model represents a set of constraints that any specific 

model must obey. In contrast to the theoretical modelling 

approach, where a conceptual model represents a completely 

determined system with fully specified system variables and 

processes that relate these variables, here we can provide either a 
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complete or an incomplete conceptual model of the observed 

system. 

 

 
 

Figure 1. The proposed automated modelling methodology  

 

In the case of complete conceptual model, we completely 

specify the entities and processes between them, defining a 

unique conceptualization of the system. At the level of 

mathematical models, each of the processes in the conceptual 

model can be described with different formulations, resulting in 

various mathematical models generated from a single complete 

conceptual model.  

The proposed AM methodology allows the specification of a 

model beyond the level of a conceptual model. It can go to the 

level of mathematical formulations of the processes, and further, 

to the specification of the process parameters. In the case of 

complete specification of the mathematical formulations of the 

processes, the search space of candidate models is reduced to a 

single model structure. Furthermore, if the user provides the 

exact parameter values, the AM tool can skip both structure and 

parameter identification, and proceed directly to model 

simulation.  

An incomplete conceptual model can represent multiple 

conceptualizations of the system, each contributing to the 

generation of at least one mathematical model. The 

incompleteness of the conceptual model can be determined at 

two levels. The processes that relate the variables can be given 

as general high-level process, where various process 

conceptualizations (with different complexities) can fulfil the 

requirements. The other option is to include an "empty" process 

among the alternatives, indicating that the process doesn’t exist. 

In both cases, the AM tool needs to perform structure 

identification and parameter calibration. 
This level of specification of the conceptual model directly 

influences the number of generated candidate models to be later 

optimized against measured data. The more the conceptual 

model structure is defined, the smaller the number of candidate 

models.  

The model structure identification task is presented in Figure 

1. In the first stage, using the components from the library, the 

equation discovery tool ProBMoT generates candidate model 

structures that adhere to the conceptual model. In the second 

stage, each model structure is translated into a set of algebraic 

and/or ordinary differential equations. The last stage consists of 

estimating the numerical parameters of the equations. 

The numerical parameters are estimated as to minimize the 

discrepancy between the observed data and the model 

simulation. ProBMoT supports different objective functions for 

quantifying the discrepancy, such as root mean squared error 

(RMSE). Differential evolution [9], which is a non-linear 

metaheuristic optimization method, is used for estimating the 

parameters. 

The result of the AM procedure is a list of candidate models 

with fully specified structure and parameter values, ranked 

according to their RMSE values. 

3 DOMAIN LIBRARIES 

Domain libraries are the key element to the entire AM 

procedure. In this section, we present two libraries for two 

related domains, i.e., a library for aquatic ecosystem modelling 

and a library for watershed modelling. 

3.1 Aquatic ecosystem library 

The aquatic ecosystems library comprises typical food-web 

modelling processes, such as nutrient uptake, growth, grazing, 

mortality, respiration, etc. The generic scheme of the processes 

and their relations with the system variables is given in Figure 2.  
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Figure 2. Generalized scheme of state variables (boxes) and 

relations or processes (arrows) in aquatic ecosystems, as 

captured in the modelling knowledge library 

 

Each process is encoded with its alternative formulations. For 

example, the growth process has three alternatives: exponential, 

Library 

Best model 

ProBMoT 

Transformation 
to equations 

Parameter 
estimation 

and 
optimization  

Conceptual 
model 

 Measurements 

RMSE = 0.5 

RMSE = 2.1 

RMSE = 3.8 

Generation of 
candidate 

model 
structures 



37

logistic or food-limited equation. Furthermore, the limitation 

functions in the food-limited equations are formulated with 

several alternatives, such as the Monod model or the exponential 

limitation model. For more details, please refer to Atanasova et 

al. [5] and Cerepnalkoski et al. [8]. 

3.2 Watershed modelling library 

The watershed modelling library represents the key element for 

automatic generation of semi-distributed watershed models. For 

the initial setup of the library, a watershed modelling concept 

similar to the one introduced by Haith and Shoemaker [10] was 

used, because it offers an acceptable level of complexity, taking 

into account all the basic watershed processes. The library 

allows us to sufficiently model hydrologic and constituent 

generation processes on a watershed scale (see Figure 3). The 

entities encoded in the watershed modelling library correspond 

to different pools within the water cycle, climate variables and 

various types of constituents (namely nutrients and sediment). 

Examples of processes include water fluxes, i.e., transfer 

processes that are involved in the water cycle, and constituent 

loadings. 

 

 
 

Figure 3. Processes (arrows) encoded in the watershed 

modelling library. Numbers indicate hydrologic processes, while 

letters are used to symbolize different constituent loadings. 

4 APPLICATIONS 

4.1 Lake Bled 

The aquatic ecosystem library was used to induce a 

phytoplankton model for the Lake Bled. Lake Bled is a typical 

subalpine lake of glacial-tectonic origin. It occupies an area of 

1.4 km2 with a maximum depth of 30.1 m and an average depth 

of 17.9 m. The data set about the lake (obtained from the 

Slovenian Environmental Agency) comprises measurements of 

physical, chemical and biological parameters from 1995 to 2002 

with a monthly frequency. The data used for modelling are as 

follows: temperature, light, dissolved inorganic nutrients in the 

lake (phosphorus, nitrogen and silica), total phytoplankton 

biomass, and the biomass of zooplankton species Daphnia 

hyalina. 

Previous work on this data set included phytoplankton model 

discovery with LAGRAMGE 2.0 [5], which was successful in 

identifying different model structures for each year of the 

observed period, but failed to optimize a single structure for the 

entire period.  

The model induction with ProBMoT was performed through 

the following steps: (1) preparing the domain knowledge about 

the lake by specifying a conceptual model (2) preparing the 

measured data for the optimization procedure, and (3) collecting 

and simulating the "best" model. 

The conceptual model was prepared by specifying the entities 

for which we have measurements and the conceptual top-level 

processes appropriate for modelling phytoplankton dynamics: 

growth, respiration, mortality, sedimentation, and grazing by 

zooplankton. The entities involved are Nitrogen, Phosphorous, 

Silica, Phytoplankton and Zooplankton. 

Given the data set and the modelling task specification 

ProBMoT improved the accuracy of the phytoplankton models 

previously discovered with LAGRAMGE 2.0 [8]. Further 

experiments are being developed towards the discovery of a 

model that would successfully simulate the entire period (not just 

one year), as well as to the discovery of a food-web model 

including equations for nutrients, phytoplankton and 

zooplankton. In Figure 4, we present the simulation of the model 

discovered on the data from year 2000.  
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Figure 4. Simulation of the model discovered from the year 

2000 data 

4.2 Ribeira da Foupana 

The watershed modelling library was used to generate a semi-

distributed hydrologic model of the Ribeira da Foupana 

catchment, covering an area of 140 km2. The study area included 

three experimental subcatchments, each composed of several 

functional units characterized by homogeneous land use. 

Altogether, seven functional units were considered for the entire 

catchment.  

The conceptual model was prepared by specifying the entities 
and processes for each sub-compartment, corresponding to a 

single functional unit. Given the conceptual model and the 

watershed modelling library, the search algorithm generated 128 

hydrologic models for the selected study area. This number of 

models was obtained because all seven sub-compartments could 

use one of the two alternative formulations for the calculation of 

the potential evapotranspiration (PET). Consequently, a number 

of alternatives (i.e., two) had to be raised to the power of the 
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number of sub-compartments (i.e., seven), resulting in 128 

different candidate models. 

Afterwards, the search space of candidate model structures 

was limited by introducing an additional constraint to the 

conceptual model, allowing the application of uniform 

evapotranspiration model structure for the entire experimental 

catchment. This resulted in just two candidate models, namely 

one using the Hammon PET equation [11] and the other using 

the Hagreaves PET equation [12] in all seven sub-compartments. 

For the optimization (calibration) phase of the AM procedure, 

the daily values of the following independent variables were 

provided for each sub-compartment: precipitation, minimum, 

maximum and average temperature, solar radiation, daylight 

hours and saturated vapor pressure. The above mentioned data 

were obtained from the SNIRH3 database for the meteorological 

station Malfrades and for the period of December 22, 1999 to 

December 21, 2000. During the optimization phase, the selected 

parameters (namely curve number, cover coefficient, 

groundwater recession constant and seepage constant) were 

automatically calibrated against measurements based on a 

comparison of the calculated outflows from the selected study 

area to the flows measured at the hydrological station Tenencia. 

For each model the RMSE values were generated. The model 

with the lowest RMSE value was selected as the best hydrologic 

model for the selected study area. As it turned out, the model 

that used the Hargreaves equation (RMSE 3.625) performed 

slightly better than the model that used the Hammon equation 

(RMSE 3.665). Figure 5 shows the best model simulation 

results, namely the comparison between the measured and 

calculated outflows from the selected study area. 
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Figure 5. Simulation results: comparison between measured and 

calculated flows at the Tenencia hydrological station 

5 CONCLUSIONS & FUTURE WORK 

This paper demonstrates the use of domain modelling knowledge 

(in form of libraries) in the procedure of automated model 

discovery. Two related modelling domains, i.e., aquatic food 

web modelling and watershed modelling were encoded into 

libraries and integrated in the AM tool ProBMoT. The tool was 

successfully applied in two domains, i.e., the Lake Bled for 

discovery of phytoplankton model (part of a food web) and the 

catchment of Ribeira da Foupana for discovery of a hydrologic 

model. 

                                                 
3
 http://www.snirh.pt 

Future work will be focused on the improvement of the 

existing models, i.e., the discovery of a long term phytoplankton 

equation and a more complete food web model in the case of 

Lake Bled. In the case of Ribeira da Foupana we foresee the 

calibration of the nutrient loading model. Further, options for 

integration of both libraries into a common framework will be 

explored and demonstrated on additional case studies, including 

related catchment and aquatic ecosystem, where the catchment 

model shall provide an input for the aquatic ecosystem food web. 
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