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Abstract. Operational benefits and efficiencies generated using prevalent water industry methods and tech-
niques are becoming more difficult to achieve; as demonstrated by English and Welsh water companies’ static
position with regards the economic level of leakage. Water companies are often unaware of network incidents
such as burst pipes or low pressure events until they are reported by customers; and therefore use reactive
strategies to manage the effects of these events. It is apparent that new approaches need to be identified and ap-
plied to promote proactive network management if potential operational productivity and standards of service
improvements are to be realised.

This paper describes how measured flow and pressure data from instrumentation deployed in a UK water
distribution network was automatically gathered, checked, analysed and presented using recently developed
techniques to generate apposite information about network performance. The work demonstrated that these
technologies can provide early warning, and hence additional time to that previously available, thereby creating
opportunity to proactively manage a network; for example to minimise the negative impact on standards of
customer service caused by unplanned events such as burst pipes.

Each method, applied individually, demonstrated improvement on current industry processes. Combined
application resulted in further improvements; including quicker and more localised burst main location. Future
possibilities are explored, from which a vision of seamless integration between such technologies emerges to
enable proactive management of distribution network events.

1 Introduction

Internationally it is becoming difficult to improve upon the
effectiveness and efficiency of network operations such as
leakage management because the limits of current techniques
are being reached. The English and Welsh regulator Ofwat
concluded that all but two water companies have reached an
economic level of leakage (Pearson and Trow, 2005) using
traditional techniques (House of Lords, 2006). Consequently,
there is a need for water companies to be more innovative.
The technology required to fully understand, manage, and
automate distribution network operation either does not yet
exist, is only partially evolved, or has not yet been proven re-
liable and cost effective for live networks. New technologies
and asset management techniques therefore need to be ex-

plored if knowledge and understanding of water distribution,
and customer service, is to be improved.

The aim of this paper is to present the practical applica-
tion of findings from several related research areas. The tools,
techniques and methods discussed have previously been pre-
sented individually, and verified to different degrees; but they
have never been applied in combination to a single case study
to demonstrate their combined potential. This paper seeks
therefore to highlight the multiplicative benefit of combined
application, and the potential for proactive distribution net-
work management that these techniques could enable.
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2 Opportunity and case study

2.1 Opportunity

Flow and pressure instrumentation has evolved over many
years, and highly robust and accurate off the shelf designs
are readily available. The current placement of instrumenta-
tion in water distribution networks in the UK is to meet the
requirement to monitor and report leakage and low pressure;
but measurement locations are not always the most sensitive
for this purpose. Automated techniques have therefore been
developed to identify these optimal locations (Perez et al.,
2009, 2011; Farley et al., 2008, 2010a, b; Rosich et al., 2012;
Preis et al., 2011; Goulet et al., 2013) and continue to be im-
proved.

Until recently, the UK water industry norm for data collec-
tion from distribution network instrumentation was via man-
ual methods carried out during site visits, often only once a
month or even less frequently. One reason for infrequent data
collection was cost; data transfer via telephone systems being
particularly prohibitive in the past. However, as data gather-
ing and communication technologies steadily improved they
became less expensive to own and operate, and water com-
panies began to automate data collection. Data capture rate
remained the same, but transfer to central storage was typi-
cally increased to once every 24 h. Instrument communica-
tion and data transfer is now tending to shift positively to-
wards more advanced General Packet Radio Service (GPRS)
or low power radio hopping solutions, with some vendors
providing support for the widely used Internet Protocol (IP).
For the work reported here, GPRS technologies were em-
ployed which enabled the change from data downloads once
every 24 h, to once every 30 min; 48 times more frequent than
previously. This higher frequency flow and pressure data en-
ables network performance to be analysed in a short time
scale previously not possible. Rapid detection of burst pipe
and low pressure events allows proactive management of
their effects thereby minimising water loss and standards of
service failures.

Despite these improvements, some fractions of water use,
for example much domestic and small business consumption,
remain estimated. The next generations of instruments and
communication technologies will make data collection and
transfer more efficient and cost effective; even from remote
sites. Wireless, m-bus, z-wave, Wi-Fi, EDGE, 4G & 5G,
and data analytic techniques are in continuous development,
and have the potential to further revolutionise the way water
companies gather and hence analyse and use data. Also, in
the future, technologies such as Automated Meter Reading
(AMR), or Advanced Metering Infrastructure (AMI), will al-
low water companies to gather high frequency consumption
data directly from residential and commercial customers as
well as existing sites. This will remove the need to estimate
components of leakage calculations, and flow or demand in
hydraulic modelling applications; and provide a far better

understanding of distribution network flow and pressure dy-
namics.

Data analytical tools are also evolving rapidly. The need
to efficiently manage and analyse increasing numbers of data
streams has spawned numerous techniques, many new to
the water industry (Srirangarajan et al., 2010; Zan et al.,
2011; Romano et al., 2013; Michalak et al., 2012). Artificial
intelligence and network hydraulic simulation methods are
able to automatically verify, process, and continually analyse
large amounts of data. They convert data into information
and present it in a time frame completely impossible using
manual or semi-automatic systems (Gama, 2010; Preis et al.,
2012, Machell et al., 2010).

This study took the opportunity to apply several state of
the art methods to a single case study; as individual tech-
niques and then in combination.

2.2 Case study

The water company collaborating in this work had recently
implemented a remote communication/data transfer evalua-
tion project in a complex distribution network that was de-
fined by a number of interconnected District Metered areas
(DMAs). A DMA is a hydraulically bounded area within a
distribution network that typically contains 500–5000 cus-
tomer properties. The hydraulic operation of the network was
not well understood, and relative performance measures such
as leakage per property were high; providing significant chal-
lenge. The project involved the installation of 490 data log-
gers to gather data from DMA inlet flow meters, and pres-
sure measurements from incorporated transducers. Flow and
pressure data was sampled at 15 min intervals. Measurements
were also taken at 1 min intervals from some locations to de-
termine whether a higher data resolution could provide any
useful extra information. The loggers were equipped with a
GSM modem and were, at the time, unique in the industry
in that they communicated via GPRS and transferred data to
a mobile telephony provider’s data centre. 2 measurements,
15 min apart, were transferred from each instrument every
30 min. From there, the data was relayed to the water com-
pany via a high speed broadband connection known as a
pipeline, into a central data store.

Access to the water company’s project study area, instru-
mentation and data, provided an ideal opportunity to apply
and evaluate the methods used in this work. An overview of
the individual state of the art for these methods is now pre-
sented.

3 Overview of the state of the art techniques applied

3.1 Instrument location & DMA subdivision

Typically, pressure data is used to identify low pressure
events within a DMA, or for their retrospective analysis. The
point of highest elevation is often accepted as a pragmatic
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and reasonably indicative location to monitor pressure. How-
ever, a monitoring location may also be selected because of
a history of known low pressure events in a specific area of
a network. In the UK, this pressure monitoring location is
commonly known as the DG2 point, and is primarily used
to report against the regulatory minimum pressure levels of
service requirement. The current approach does not necessar-
ily identify the most sensitive location for detecting pressure
fluctuations. If the most sensitive locations were determined,
more fluctuations and events would be detected and aware-
ness of system performance increased; for example, more
burst pipes can be identified, and more accurate estimates of
the number of customers suffering low pressure, over what
duration, can be determined. A method to identify optimal lo-
cations for pressure instruments used for detection and loca-
tion of leak/burst events was developed by Farley et al. (2008,
2010a, b). The approach utilised a methodology that searches
a Jacobian sensitivity matrix produced by sequentially mod-
elling leak/burst events at all nodes in a 1-D hydraulic model,
and evaluating the change in pressure response at all possi-
ble instrument locations. The matrix was then searched (fo-
cussing on detection) to maximise overall system sensitiv-
ity and to minimise the number of instruments required in a
given network; or where appropriate, to complement existing
instrumentation to increase detection sensitivity.

To validate the approach, a number of pressure instru-
ments where deployed in selected DMAs and a series of burst
events were simulated by opening a number of fire hydrants
inside DMAs. Data was collected from the pressure instru-
ments located inside each DMA, including the current DG2
location, and at the most sensitive (or optimal) location pre-
viously identified by a Jacobean matrix approach. Analysis
of pressure measurements recorded before, during, and af-
ter the burst events were used to evaluate the sensitivity of
each instrument location to the pressure changes caused by
the simulated burst events (Farley et al., 2010a). Figure 1
shows model predicted, and actual sensitivities for 5 simu-
lated bursts at eight instrumentation points in a single DMA
highlighting the correlation between predicted (model) and
actual (real) sensitivities. Predictions were made using typ-
ical UK industry standard hydraulic models with no addi-
tional calibration.

From Fig. 1 it is clear that hydraulic models can be used to
accurately predict pressure changes caused by burst mains,
and can therefore be applied to support the optimal location
methodology. Additional analysis of the data demonstrated
that data from optimally located pressure instrument(s) can
be used to detect more low pressure and leak/burst events
within a DMA than data from current DG2 locations, and
how to selectively supplement existing instrumentation to
improve detection.

The methodology to identify the most sensitive locations
for instruments can be extended to provide event location in-
formation. Further work (Farley et al., 2013) explored an ap-
proach to search the Jacobian sensitivity matrix to provide

Figure 1. Model predicted vs. actual data sensitivity (for looped
DMA).

differential location information, requiring the integration of
a Genetic Algorithm (GA) search routine to improve effi-
ciency. Single, and multiple, optimally (providing selected
levels of overlapping or different zones of sensitivity) lo-
cated instruments can be selected to identify sub-areas within
a DMA, without the need for network reconfiguration or
closed valves. This method has great potential, not only for
detecting new leaks/burst events, but also steering leak loca-
tion efforts.

3.2 Data quality and checking

If maximum benefit is to be obtained from investment in col-
lecting large volumes of data, management, storage and ac-
cess to both current and historical data sets is required.

The distribution network flow and pressure data quality
gathered for this study can generally be classed as “dirty”.
Dirty data is manifest as large chunks of missing, corrupt or
out of range values from faulty loggers and/or the presence
of erroneous date and time stamps. A methodology for deal-
ing with these issues was developed as an integral part of the
online Artificial Intelligence (AI) system (Sect. 3.3) in or-
der to more easily manage large amounts of data of varying
quality. Data checking included statistical tests for stationar-
ity (Mounce et al., 2010).

7-Technology’s data warehouse product, Data Manager,
was used in this study to pre-process and make data accessi-
ble to the Automated Data Analysis system (AI system) and
online hydraulic models described later. Data Manager was
used to perform the following functions:

– Receive flow, pressure and service reservoir level data

– Perform checks and conversions on the data received
(using a pre-processor) and data emulation where mea-
sured data was not available for some reason

– Maintain cyclic buffers of weekly profiles for selected
instruments

www.drink-water-eng-sci.net/7/1/2014/ Drink. Water Eng. Sci., 7, 1–11, 2014



4 J. Machell et al.: Processing for proactive UK water distribution network operation

– Make the pre-processed data available for online AI sys-
tem analysis and hydraulic simulations (historical and
current)

– Automatically create and back up a database of historic
flow and pressure data

Pre-processing involved automatic data checks for missing
or corrupt data and/or data values that fell outside a normal
value distribution at each instrument location. This was done
using either absolute values or rate of change of values in the
data time series. Where a data check failed, error messages
were created and, if required, data emulation was performed.
Emulation was used to replace missing or corrupt data with
a fixed or an average value for the measurement site or, by
reference to another site that usually has very similar time
series values. In this way, Data Manager was configured to
interface the real network measured values with its equiva-
lent in an online AI system (Sect. 3.3) and hydraulic models;
the latter used the data as boundary conditions for simula-
tions (Sect. 3.4).

Data quality was a significant issue especially when ob-
taining long period time series. The quality and continuity
of data is essential for online modelling and AI systems. Al-
though a hydraulic model can deal with missing data using
substituted values, as the number of substitutions increases
the accuracy of the model decreases and, eventually, a point
is reached where the resultant error is so large simulation re-
sults cannot be relied on to be fit for purpose.

3.3 Automated data analysis for burst detection

The challenge of timely data analysis can be met using au-
tomated computation methods. Event detection algorithms
work by obtaining data, performing some analysis and then
returning outputs such as probabilities or fuzzy values. These
are then processed into a binary classification i.e. gener-
ate an alarm or not. Despite some software offering profile
alarm levels, there has been very little application to date in
the water industry. Existing state of the art systems use flat
line alarm thresholds for key measurement sites, which are
then continuously monitored to enable identification of large
bursts. The collaborating water company established and im-
plemented site specific high and low thresholds for DMA in-
let flow and pressure flat line alarms, to provide simple data
analysis of absolute, individual values. At the time, imple-
menting these flat line alarms was a significant move forward
for detecting network events and represented a step change in
awareness of network hydraulic performance. In particular,
they proved useful for detecting sudden catastrophic bursts,
and acting as a failsafe. However, due to continual adjust-
ment of alarm level settings over time the flat-line system
started to generate a high number of false alarms (ghosts)
that did not correlate with any known events, also many pipe
bursts were still not detected and no action was taken. A sig-
nificant issue with flat-line alarm thresholds is the trade-off

between false alarms (alarms with no identifiable cause) and
non-detection of smaller burst events. Although this is an is-
sue for all event detection systems, it is more significant for
flat lines where the level has often been set arbitrarily, with-
out any of the positive aspects of data driven methodologies.

More sophisticated data analysis methodologies using Ar-
tificial Neural Network (ANN) and Fuzzy Logic (FL) tech-
nology were therefore applied. Recorded flow and pressure
data from each measurement location was sorted by DMA
name and stored in a database. Assembled data sets which
passed data quality checks were first pre-processed to deal
with any missing data using well proven time series analy-
sis techniques for filling, then normalised by re-scaling to a
range required by the ANN, and finally restructured into the
format required by the analysis system. A single model was
used for each data stream. The pre-processed data sets were
used to train a Mixture Density Network (MDN) ANN to
make time series predictions based on a lag of past time se-
ries values. Importantly, this prediction was not a particular
value; the MDN architecture learns the distribution (through
a mixture model) for a particular instrument from past data,
and assigns a confidence level to the observed flow val-
ues. A Fuzzy Inference System (FIS), consisting of a set of
fuzzy rules, analysed this mixture model and the observed
value over a suitable time window and generated classifica-
tion fuzzy values (an indication of abnormal events such as
burst pipes) such that a % confidence could be assigned to
alerts and, in addition, an accurate estimate of likely burst
size could be determined. Figure 2 shows how this continu-
ally updated model constructs the probability density at time
steps into the future horizon.

The algorithms and software employed, as well as further
background on system integration, are described in more de-
tail in Mounce et al. (2003) and Mounce et al. (2010). Ab-
normal classifications by the FIS were entered into an alerts
database, and automated email alerts were sent to the water
company’s control room staff.

A first quarter (three month) evaluation of the system,
when leak/burst rates are usually highest in the UK (com-
monly attributed to freeze/thaw cycles), was conducted us-
ing manual data inspection, and correlation to repair infor-
mation recorded on the water company’s Work Management
System (WMS) and customer contact database. During this
period the online AI system was analysing flow and pres-
sure data from as many as 156 flow and 255 pressure instru-
ments, the actual number being dependent upon changes in
data quality over time. A total of 227 alerts generated by the
AI system were reviewed, 78 for flow and 149 for pressure.
(For comparison it should be noted the flat line system gen-
erated 47 853 alarms for the same data streams and the same
three month period. It should be stated however, that the flat
line alarm thresholds were probably valid at the time of ini-
tial set up of. Nonetheless, they were not re-assessed often
enough to keep them valid through changes in network op-
erational characteristics and/or changes in demand patterns.)
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Figure 2. Mixture model for future flow prediction and fuzzy interpretation.

Their classifications are shown in Fig. 3. The class “abnor-
mal” includes all cases where the AI system produced an
alarm, and subsequent manual data interpretation confirmed
that a noteworthy change in the data stream did occur, but
for which there was no correlation with mains repairs or
customer contacts i.e. the result of an unknown cause that
did not fall into one of the other 5 (normal) categories that
correlated with a known causes. The signature of some of
these abnormal events such as large industrial demands, or
closure and opening of valves, could not necessarily be dif-
ferentiated from that of bursts using the AI analysis system.
However, their detection was still of significant interest to
the water company in that it provided important operational
information that was previously undetected. Unexpected or
unlicensed water use such as for the filling of private fire
tanks, increased industrial use for new processes, unautho-
rised filling of street cleaning equipment and water bowsers,
or illegal connections, can all generate abnormal flow events
and are all activities that water service providers need to be
made aware of if proactive management and control of the
network is to be realised. Detections can also be produced by
network rezoning activities, changes to valve arrangements
or pump schedules and other operational scenarios, thereby
providing an additional check of the timing, magnitude and
effect of such activities. This information is particularly im-
portant when such activities have been outsourced to third
party contractors.

From Fig. 3 it can be seen that during the period of analy-
sis a good correlation was found between the AI system gen-
erated alerts and company WMS/customer contact informa-
tion. This was very good for flow where 95 % of flow alerts
corresponded to WMS/contact information or known engi-
neered events with only 5 % ghosts. The pressure data anal-
ysis was found to produce more ghosts (38 %), which was
expected based on previous work and other researcher’s find-
ings which highlight the non-stationary nature of the pressure
profile over time (Mounce et al., 2011, Ye and Fenner, 2010).

3.4 Combination of optimal location and automated
analysis technology

The effectiveness of combining optimally located instru-
ments and the AI event detection system was tested for detec-
tion and location of simulated bursts. Simulated bursts were
used to negate the delays and uncertainty associated with
real events. Optimal instrument locations were identified and
instruments installed across 16 DMAs. Hydrants were then
flushed by water company Field Teams in several DMAs cho-
sen at random; the research team being unaware of the hy-
drant flushing locations or times. In this way 6 system blind
test events were created in 5 different DMAs; all of which
were positively detected by the instrumentation and the AI
system; which correctly identify which DMA the event had
been created in, and accurately reported the magnitude of the
flow of each hydrant flush (simulated burst flow).
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Figure 3. 3-month summary of AI flow and pressure alerts (January to March).

5 of the 6 blind tests were conducted in 4 different DMAs
that had additional (optimally located) pressure instrument(s)
installed. Results confirmed that the methodology developed
to divide a DMA into a number of sub-zones to reduce the
search area and improve burst location worked well. The cor-
rect sub area within each DMA in which a simulated burst
occurred was correctly identified. 3 out of the 5 blind tests
produced exact agreement between the model simulated and
actual instrument responses; and therefore the correct zone
of the burst event could be identified (Farley et al., 2012). In
the other 2 DMAs, factors beyond the control of the method,
such as instrumentation or logger failure, prevented this.

A successful example result of how pressure instruments
can be deployed to provide sub-DMA event location is shown
in Fig. 4.

For the case shown in Fig. 4, alerts for the DMA inlet flow
meter and DG2 pressure instrument were generated, but not
for the additional pressure instrument in the yellow (verti-
cal lined) sub-zone. The pressure instrument at the inlet also
did not detect the event, as predicted by the methodology.
By reference to the DMA sub-zone sensitivity matrix, it was
confirmed that this combination of alerts correctly identi-
fied that the hydrant flush had occurred in the blue (hori-
zontal lined) sub-zone, hence demonstrating how this com-
bination of event detection and optimal location can provide
sub-DMA location. Field tests also demonstrated the poten-
tial for application of the method to multiple DMAs, and
that subdivision of DMAs with very differing characteristics
was possible. A reduction in search area was achieved for
all but one DMA. The number of zones the DMAs were di-
vided into was dependent on their individual characteristics.
Results suggested that subdivision of typical DMAs into 4
zones can be achieved through the deployment of only one
additional pressure instrument.

An extension of optimal instrument location approaches
could be the creation of monitoring areas without the need for
closed valves; virtual DMAs. This would enable more open
systems with less dead-ends and the inferred water quality
issues.

3.5 Online modelling

Aquis, supplied by 7-Technologies A/S, Denmark, was used
to build and develop several hydraulic models for 1-D

application. These models were used to populate the Ja-
cobean sensitivity matrices for instrument location methods
(Sect. 3.1), and to present network flow and pressure infor-
mation superimposed on a street map background showing
network assets and customer properties. Measured flow and
pressure inputs and model simulation outputs were used to
generate alarms and warnings when flow(s) or pressure(s)
anywhere in a network and/or at specific network locations
moved outside normal operational values.

A hydraulic network model is most useful when it displays
up to date information and, ideally, predictions for the next
few hours. The former is governed by the age of available in-
put data. The latter can be achieved by simulation and extrap-
olation of current state using inbuilt predicted and normalised
patterns for non-measured demand components. When mea-
sured data is regularly streamed into a model to set sim-
ulation boundary conditions the model is termed “online”.
Online model boundary conditions are continually updated
with the most recent data available; in this case the data was
30 min old. An online model is not constrained by fixed (his-
toric) 24 h flow and pressure profiles used as boundary con-
ditions in conventional extended period simulation models.
This means that non-diurnal flow and pressure patterns are
accounted for and reflected in simulation output.

A 2 DMA model was built and used to demonstrate the
effects of changes in network flow and pressure on customers
during a real network event when a hydrant was opened by
unknown persons in one of the study DMAs (Machell et al.,
2010). The effects of changes in flow and pressure could be
viewed as they rippled through the network.

A 3 DMA model was used for the evaluation of the opti-
mal pressure instrument number and location methodology
and provided flow, pressure, and velocity results for GIS vi-
sualisation. Figure 5 shows the extent of this model on a GIS
display with results overlaid showing the pressure in each
pipe in the network. The time shown in the legend of Fig. 5
is arbitrary. The legend is fully populated to be fully explicit
with regard to what is presented in the figure.

A 16 DMA model was configured to simulate every
30 min. The 30 min interval between simulations was appro-
priate for this work but could have been reduced; the lower
limit being dictated by the time taken to capture, transfer,
and pre-process raw data. 77 flow and pressure instruments
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Figure 4. Sub-DMA location of blind event in the pilot area (after Farley et al., 2012).

Figure 5. 3 DMA online model showing pressure in pipes at 10:45 GMT.

at the inlets and outlets of 16 DMAs, 4 service reservoirs,
2 pumping stations and a number of DG2 pressure monitors
provided boundary condition data for this model. Data Man-
ager pre-processed raw data from these sites and passed it to
the model. This model was used to support the DMA subdivi-
sion work and instrument/AI system tests (Sect. 3.4) and test
alarm and warning functionality of the modelling system.

Pressure data was found to be extremely useful for the on-
line modelling system. It was a powerful resource for model
calibration and fault finding, and was used to generate alarms
for low or unnecessarily high pressure detections. Availabil-

ity of a stream of continuously updating flow and pressure
data enabled calibration to current, rather than historic mea-
surements, and to make it a continuous and iterative process,
reflecting ever changing dynamics in the network caused, for
example, by changes to valve positions, the timing of pump
operations or the turnover rate of service reservoirs.

Simulation results demonstrated that the online models
could accurately calculate the magnitude of flow and pres-
sure fluctuations caused by simulated bursts (Sect. 3.1)
and hence the effect on standards of service. This func-
tionality can be used to identify faulty instrumentation or

www.drink-water-eng-sci.net/7/1/2014/ Drink. Water Eng. Sci., 7, 1–11, 2014
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corrupt/missing data, unexpected flows or pressures, and
pump failure for example. It can also generate warnings
when flow or pressure is persistently moving towards an
alarm situation. This enables fast response and proactive ac-
tion to minimise the effect on customers.

On-line simulation of a water distribution network pro-
vides a tool that can offer tangible and significant operational
benefits for network managers. It allows network operators
to progress beyond the reactive and develop a proactive ap-
proach to network management. For example, the prelimi-
nary effects of a burst main can be detected at an early stage
which, in turn, can allow the operators to minimize the later
effects and sometimes pre-empt and avoid many standards of
service failures by manipulating valves, providing an alterna-
tive supply or making other appropriate operational change.
Pressure effects on every pipe in a network can be captured to
gather knowledge about which customers were affected by an
event and for how long – a UK standards of service reporting
requirement. With optimally located instrumentation, online
models provide a visual overview of all flows and pressures
across an entire network. Online models can be used to gen-
erate timely warnings of unusual flow and pressure events.
They can monitor for persistent changes such as slow but
continuous reduction in pressure. Then, in combination with
the specialised detection and analysis of the AI system, can
be used to help to locate burst pipes and unusual network
flow and pressure events.

3.6 Data sampling rate

The unofficial UK industry standard for the temporal resolu-
tion of flow and pressure data, at most locations, is 15 min
(Mounce et al., 2012). To some extent the use of 15 min hy-
draulic data is pragmatic (storage space of loggers and re-
ceiving systems), but it also reflects a trade-off between the
volume of information collected and the detail of flow or
pressure fluctuations that can be captured. A good represen-
tation of the overall dynamics within a network can be ob-
served with fifteen minute data, although the shape and am-
plitude of pressure transients cannot be resolved with data
points more than a tenth of a second apart. Higher frequency
sampling potentially also allows component analysis in or-
der to gain an understanding of the different contributions
to the total flow from different types of demand such as do-
mestic and industrial, or flow due to leakage. However, little
published work has investigated the benefit of using logging
intervals in the sub-fifteen minute range. Data sample rates
of 1, 5 and 15 min were evaluated for their suitability when
used for flow and pressure event detection by the systems
developed in this study; Table 1.

From results shown in Table 1, Mounce et al. (2012) con-
cluded that, at the present time, sampling intervals of 1 or
5 min do not improve event detection sufficiently to justify
the extra resources required to gather the data. For example;
the increase in power required for battery powered instru-

Table 1. Summary of average improvement in detection times (min-
utes) over multiple instruments relative to 15 min instantaneous data
in each case (Mounce et al., 2012).

Flow Flow Pressure
pressure only only

Inst. Avg. Inst. Avg. Inst. Avg.

15 min 0 44 0 45 0 43
5 min 29 49 38 52 26 48
1 min 53 54 53 53 53 54

ments and loggers (all the loggers used in this study were
battery powered), and the data management overheads. Simi-
larly, current online modelling approaches do not yet require
data at these higher frequencies. However, this is likely to
change in the future as the density of sensing of water dis-
tribution system parameters increases due to reducing cost
and improving logging capacity and communications op-
tions. Pressure transients can cause, and be an indicator of,
burst pipes and result in contamination intrusion (Ebacher
et al., 2010; Misiunas et al., 2005). Once systems can deal
with high frequency, high sample rate data, it will be possi-
ble to monitor and analyse transient pressure fluctuations to
improve burst detection, identify the cause of transients and
prevent contamination events (Jung et al., 2011; Yang et al.,
2011).

Data value averaging, inherent in how flow is commonly
measured but unusual for pressure, was found to be a useful
strategy for both flow and pressure data. A simple, low cost,
firmware upgrade to the loggers is recommended so that the
data averaging can be performed on the logger in order to
reduce the amount of data transmitted via GPRS and provide
the following significant benefits:

– Improved detection time compared to using instanta-
neous data with event detection software

– Eradication of errors associated with short-term vari-
ations leading to more accurate hydraulic model cali-
bration and simulations when using values for model
boundary conditions and therefore the likely provision
of more accurate regulatory compliance data/reporting.

4 Discussion

The goal of this work was to demonstrate how online data
processing can benefit proactive water distribution network
operation. One of the aims was to free staff from man-
ual interpretation of data, multiple and/or false alarms, and
leakage/burst event data. Several individual approaches have
been explored, developed and designed to improve some as-
pect of current industry processes.

Each of the individual methods presented have been shown
to provide specific benefits, but their true worth is only
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realised when all these components are applied in combina-
tion. Figure 6 shows an idealised application schematic for
all the components.

The system would be initialised by using offline hydraulic
models, driven by historic data, to generate pipe sensitivity
matrices from which to identify optimal locations for instru-
mentation within the network. The minimum number of in-
struments required to meet identification and location sensi-
tivity constraints could then be installed in the field.

The instruments would provide a constant stream of
flow and pressure data which would be checked, and pre-
processed, before being stored for access by the analyti-
cal components of the system. This data would be stored
in a “warehouse” and made available to online hydraulic
modelling and artificial intelligence based analysis systems,
and/or end users.

Once the data was being streamed into the system, the on-
line hydraulic model would be started. The sensitivity matri-
ces could then be recreated using this new, current data, and
reviewed to check that instrument locations are still optimal.
If they were not, instrument locations could then be moved to
the new optimal sites for current network operation. Follow-
ing network changes such as DMA rezoning, further review
would be undertaken to ensure maximum detection sensitiv-
ity is maintained at all times; if necessary, by moving, adding
or removing instruments. The online system could then be
allowed to run continually providing an overview of current
flows and pressures in all pipes within the network, and the
ability to generate new sensitivity matrices on demand.

The model could then be configured to provide warnings
or alarms when unusual flows or pressures were detected by
specific instruments. Multiple instruments could be used in
combination to generate specific alarms such as pump fail-
ure. The impact of a pump failure could be modelled, the
effects mapped, and the characteristics used to identify the
event should it happen in the future. For example; if flow at
A dropped by X%, and pressure at B and C dropped by Y%,
display the alarm “The pump at D is not operating within nor-
mal parameters”. In this way the performance of many dy-
namic components of a network, for example PRVs and ser-
vice reservoirs could be continually monitored using a very
small number of instruments.

At the same time, data would be streamed into the AI event
detection system. This component would automatically anal-
yse large amounts of data, and generate burst pipe (and other
hydraulic anomalies) detection alarms and flow estimates,
along with a measure of certainty; soon after the event oc-
curred (the actual time to generate an alarm would be de-
pendent upon a number of factors). Combined use of the AI
system with dynamic sensitivity matrices generated by the
online model would quickly provide location information fa-
cilitating quicker repairs.

During an event, the online model would reflect the effect
of any event across the entire network highlighting which
customers were impacted. If the model was configured to do

so, it could identify all pipes with flows and pressures below
a definable threshold, record and report them. In this way it
would be possible to realise continuous low flow/interruption
to supply (DG2/DG3) reporting. The data collected could
also be used when investigating an event and its effects on
customers.

System performance, and hence the benefits realised,
would of course depend upon the performance characteristics
of the instrumentation and it being correctly installed. Simi-
larly, online model output would reflect the effort expended
in calibration; although tools for this purpose are becoming
sophisticated, efficient and cheaper to use. It is not irrational
to expect that, with the need for water efficiency coming to
the fore, all usage will be metered in the future to minimise
loss and waste, and this is reflected in the development of
automatic meter reading (AMR), smart metering technolo-
gies, and smart water networks. This will benefit hydraulic
modelling greatly by reducing uncertainty and making model
calibration easier. AI systems will also benefit greatly from
this additional measurement data as such systems can be ex-
panded to accommodate almost any number of time series
inputs enabling very accurate network flow mapping which
will in turn provide better detection and location information.
The loop is completed when this information is assimilated
into hydraulic models enabling more accurate calibration and
the creation of improved sensitivity matrices. The whole pro-
cess becomes iterative resulting in a stable, very accurate,
and sensitive detection and location system.

The vision, that is the natural progression of the work
presented here, is seamless integration between a vari-
ety of instrumentation types, automated data gathering and
online processing, analysis and interpretation/presentation
technologies, allied with decision support systems to provide
a truly proactive management and control capability. Wa-
ter quality performance monitoring and reporting would be
integrated and automated hydraulics would be programmed
to minimise residence time to maintain residual disinfectant
and maximise water quality. Automatic remote control of dy-
namic assets and valves would ensure supply and route it op-
timally to support unexpected demand from burst events, and
to further ensure high water quality.

The vision would be particularly enabled by emerging
technologies such as Smart Sensors (Frank, 2013), and Smart
Pipes (Metje et al., 2011; Cheng et al., 2006) which will
include built in, smart flow, pressure, transient and stress,
leakage detection, and water quality parameter measurement
and monitoring. A substantial improvement in the availabil-
ity and ownership cost of instrumentation, data collection,
and communications, and the way they are applied will also
impact on other distributed infrastructure; for the water sec-
tor, this includes sewerage systems. Such work is already un-
derway, for example, on CSO analytics (Guo and Saul, 2011;
Mounce et al., 2014) and GA optimised fuzzy logic pump
control (Ostojin et al., 2011).
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Figure 6. Schematic of idealised combined application.

5 Conclusions

This paper summarises the development, application and ver-
ification of a number of different methods/approaches de-
signed to obtain value/benefit from measurements of flow
and pressure within water distribution networks.

The individual techniques have shown how network data
can be gathered from optimally located instrumentation and
automatically checked, analysed and presented, to provide
timely information for network operation decision making,
and for flow and pressure event detection and location. Each
of the methods presented can improve current distribution
network knowledge, and are valuable steps towards improv-
ing network management.

When the individual methods explored are applied in com-
bination, as shown in Fig. 6, the composite system enables a
step change in proactive information network management,
including the potential to generate improvements in network
performance, customer standards of service, and the eco-
nomic level of leakage.

In future, entire water supply (and sewerage) networks
should be proactively managed from source to tap, using
state of the art measurement and control technologies backed
by data analysis and decision support systems; much of
which will be programmed and analysed by artificial intel-
ligence methods, making life much simpler for system oper-
ators and industry decision makers.
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