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Abstract—The domain of high assurance distributed systems 

has focused greatly on the areas of fault tolerance and 

dependability. As a result the paradigm of service orientated 

architectures (SOA) has been commonly applied to realize the 

significant benefits of loose coupling and dynamic binding. 

However, there has been limited research addressing the issues 

of managing real-time constraints in SOAs that are by their 

very nature dynamic. Although the paradigm itself is derived 

from fundamental principles of dependability, these same 

principles appear to not be applied when considering the timed 

dimension of quality of service. As a result the current state-of-

the-art in SOA research only addresses soft real-time and does 

not seek to provide concrete guarantees about a systems 

performance. When a distributed system is deployed we do not 

understand enough the emerging behavior that will occur. This 

paper therefore proposes an approach that probabilistically 

monitors system state within a given workflow’s execution 
window. Utilizing a real distributed system we experiment with 

services from the computer vision domain, with clear real-time 

constraints, evaluating the performance of each system 

component. Our approach successfully models the likelihood of 

the service meeting providing various levels of QoS, providing 

the basis for a more dynamic and intelligent approach to real-

time service orientation. 

Keywords-real-time; SOA; QoS; workload patterns; workload 

characterization; resource usage patterns 

I.  INTRODUCTION 

In service orientated architectures (SOA) the provision of 
services under real-time Quality of Service (QoS) constraints 
has remained an elusive challenge. However with the 
increasing usage of SOA in domains such as banking and 
manufacturing [1] increasingly there have been attempts to 
tailor SOA to industry specific domains with significant hard 
real-time constraints with critical deadlines where failure to 
meet them can result in issues of either safety, such as in-
vehicle SOA [2], or more often cause financial repercussions 
[3]. 

In [4] we identified that one of the most significant 
challenges in providing real-time capability through SOA is 
the ability to guarantee that capability given variations that 
occur in the host execution environment. It is therefore 
necessary in real-time SOAs to provide the ability to manage 
and guarantee the adherence to hard real-time deadlines 
through management of processor and resource utilization 

[4]. Existing approaches [5], [6] provide limited real-time 
capability due to the static nature of defining QoS in service 
definitions which are unable to provide online adaptation to 
changing resource availability. 

This paper expands a motivating  case-study presented in 
our previous work [7] which identified the following crucial 
real-time constraints: 

 The entire workflow has a critical deadline of 
200ms. 

 Individual services have deadlines of less than 
200ms. 

 A redundancy level of 3 or more is required in 
order to provide “good-enough” accuracy of 
results. 

This paper extends that work by analyzing the system 
level performance in light of those temporal resource 
constraints. Specifically through the characterization of 
servers and tasks we explore the relationship between system 
resources and the realistic deliverable QoS. Previously [4] 
we identified that other tasks executing on the same servers 
as our system will affect the worst-case response time 
(WCRT) of the services through shared cpu and memory 
utilization. We adapt the M-VCR framework used in  [7] to 
provide a dynamic model of QoS which models the 
likelihood of a given server having the capability to provide 
the required WCRT for a given service instance. We utilize 
both performance data from a real Google datacenter 
tracelog [8] as well as from our own lab cluster in 
combination with a dedicated SOA simulator to generate a 
probabilistic model of the likely performance of a given 
service which can then be used to adapt the system-wide 
workload distribution. 

This rest of this paper is organized as follows: Section II 
provides a problem definition with key insights into the 
effect of CPU and memory interference on the workflow and 
services of interest. Section III proposes a scheme for 
probabilistically modelling the utilization of CPU and 
memory as well as the relevant requirements for a given task. 
Section IV outlines the system model that we have adopted 
as well as key assumptions that underpin the presented 
research. Sections V and VI present the implementation and 
experimental results respectively. The paper concludes 
comparing the proposed approach against related state-of-
the-art followed by conclusions and our planned future work. 



II. THE CHALLENGE OF DELIVERING REAL-TIME 

SERVICES 

In this section we briefly introduce the concept of service 
orientation, identifying the key benefits and reasons for 
adopting it as the architectural paradigm. We then consider 
the limitations of statically defined QoS with reference to 
experimental evidence. 

A. Service Oriented Architectures 

Service Oriented Architectures (SOA) (along with the 
more general concept of Software-as-a-service) have 
emerged in recent years as the de jure set of standards for 
building cross-organizational distributed systems. The 
motivation for SOA is to enable the cross-organizational 
integration of loosely coupled networked systems using 
clearly defined interfaces which support the concepts of 
discovery and reusability [9]. Service interfaces are, 
therefore, defined in terms of their abstract capability and 
independently of the concrete platforms that provide them. 

As a result the SOA paradigm allows us to more 
effectively manage the levels of redundancy required at 
runtime for any given service in light of system performance. 
Figure 1(a) depicts the system presented in [7], (b) and (c) 
present the corresponding service orientated model. 

B. QoS in Service Provision 

Given the workflow defined in Figure 1(c) service level 
agreements defining the level of QoS are defined at each 

service step with an overall workflow critical response time 
of 200ms. 

As can be seen in Figure 1(d) the underlying system has 
significant variation in terms of both cpu and memory 
utilization. The graph depicts a snapshot of a given server’s 
utilization. Intuitively it can be seen that if a service was 
requested either between time 2minutes or 13minutes there is 
a significantly increased probability of the task being 
blocked, resulting in delays that are unacceptable for the 
overall workflow.  

 
Figure 1: SOA representation of the case study and analysis of the system performance 

Figure 2: Analysis of isolated performance of 

individual services 



In Figure 2 we also see that three different 
implementations of a service definition (coming from our 
previous work in gesture recognition [7]) provide 
significantly differing execution times. This is due to 
algorithmic differences, variations in the input data, 
variations in inputs, and in inter-service communication 
latencies even when running in isolated environments. As 
with the work presented by [6], both data-centric levels of 
QoS as well platform oriented QoS are modelled. However, 
it can also be seen that the QoS cannot be statically defined 
and there is clearly a relationship between the two types. 

III. PROPOSED SCHEME 

This section outlines a formalized abstract model of SOA 
and is described with relation to the simulation environment. 
It then proposes a scheme for modelling QoS in a non-static 
fashion. And finally we describe how the QoS is specified 
within that experimental environment. 

A. System Model 

As previously seen in Figure 1(c) the SOA paradigm 
consists of multiple layers of abstraction. Garcia-valls et al. 
[6], [10], [11] identify the need for an additional intermediate 
layer between the abstract and concrete workflows. Figure 3 
depicts this as the service workflow layer considering all the 
possible workflows that adhere to the defined abstract 
workflow. Given workflow input ‘X’ and output ‘Y’ the 

workflow can be formally expressed as the functions {A, B, 
C} operating on the data communicated data: 𝑊(𝑖𝑛: 𝑥,  𝑜𝑢𝑡: 𝑦) = �̅� (𝑐̅ (�̅�(𝑎(𝑥). 𝐴)) . 𝐵) . 𝐶 

Figure 3 also introduces the concept that a service itself 
may be composed of multiple tasks that work together to 
provide a capability. According to the diagram we have three 
possible formalized implementations of service ‘A’1

: 𝐴′ ∈ 𝐴,  𝐴′(𝑖𝑛: 𝑥,  𝑜𝑢𝑡: 𝑏) = �̅�((𝑎(𝑥). 𝑇1). 𝑇2). 𝑇3 𝐴′′ ∈ 𝐴,  𝐴′(𝑖𝑛: 𝑥,  𝑜𝑢𝑡: 𝑏) = �̅�(𝑎(𝑥). 𝑇3). 𝑇4 𝐴′′′ ∈ 𝐴,  𝐴′(𝑖𝑛: 𝑥,  𝑜𝑢𝑡: 𝑏) = �̅�(𝑎(𝑥). 𝑇5). 𝑇4 

Choosing a given implementation we result in a concrete 
workflow (with only the implementation of service A shown 
here) which must be mapped onto various servers which 
should each be modelled. 𝐴′(𝑖𝑛: 𝑥,  𝑜𝑢𝑡: 𝑏) = �̅�(𝑡3̅(𝑡2̅(𝑎(𝑥){𝑡1/𝑎}. 𝑇1)). 𝑇2).T3 

B. Simulation Environment 

The simulator developed separately as part of this 
research allows for a datacenter to be modelled in terms of 
the servers, network connections, and tasks that execute 
within it. It consequently allows collections of tasks to be 
mapped to services and therefore also workflows as depicted 
in Figure 3. This development was in response to the lack of 
simulation tools in the real-time service orientated domain as 
there are in the domain of cloud computing such as 
CloudSim [12]. Simulation forms a necessary component in 
analyzing large system performance due to the lack of access 
to truly large-scale systems and the inadequacy of using only 
formalization techniques to predict performance 
characteristics such as long-tailing [13]. 

Typically in web based SOA services are merely 
described using a name, their inputs and outputs, ignoring 
the importance of QoS. Various approaches have been 
considered such as the work by [14] which considers the 
impact of collaboration on task performance. Similar to our 
own approach the work by [15] uses a probability 
distribution to estimate the performance of web services 
(WS) and can be combined with the review of real-world 
WS-QoS by [16]. [17] proposes an approach that considers 
both the underlying infrastructure as well as the service layer 
to estimate response time and success rate. However, each of 
these approaches is not evaluated in light of real-time 
constraints. The work in [18] however considers non-safety-
critical soft real-time in the context of media systems and 
allows for varying degrees of QoS to be delivered. That 
work, however, does not consider the impact of the 
underlying platform performance on capability provision. 

To analyze the relationship between tasks and resource as 
well as our ability to closely monitor the simulator we 
propose capturing, for each individual server within the 
specified datacenter and each specified task, the: 

 Server cpu utilization 

                                                           
1 Inter-function channels not shown 

 

Figure 3: Extended SOA layers of abstraction 

considering their link to the physical infrastructure 



 Server memory utilization 

 Task cpu utilization 

 Task memory utilization 

 Task execution time 
As can be seen in the model depicted in Figure 4, for each of 
these values the mean and the standard deviation are 
considered providing a probabilistic model of performance 
and for tasks the worst case execution time is considered. 

IV. METHODOLOGY 

Given the models described previously, this section 
outlines the methodology by which QoS is monitored as well 
as the probabilistic model which extends our prior work on 
M-VCR [7]. It highlights the underlying assumptions which 
exist in these models and consequently results of these. 

A. Assumptions 

This research is underpinned by a set of key assumptions: 

 Service failures are restricted to execution and 
publishing faults. 

 The servers and services are crash free. 

 Network latencies are out of scope. 

 Service discovery is not an option. 
According to the SOA fault taxonomy presented by [19] 
there are at least 30 distinct types of service fault that can 
occur. We are concerned with faults relating to the 
specification of QoS at the publishing stage as well as the 
effect of performance degradation resulting in late timing. 

Server failure falls outside of scope which would not 
result in a performance degradation of a service but rather 
causes an instantaneous service crash. For the same reason 
we assume that the implementations of the services are 
correct as this would invalidate the performance metrics. 

Given that the network latencies within a datacenter are 
near negligible we assume that modelling of network 
latencies is out of scope at this stage of the research. 
Additionally there is a lack of data surrounding the actual 
observed latencies that exist in large scale datacenters. 

Due to the limitations of the physical infrastructure and 
the critical real-time constraints under which we are 
operating we consider that mechanisms for service discovery 
are not relevant and would introduce additional challenges to 
providing a guaranteed response time. Finally an additional 
assumption is that the data publicly provided by Google is 
representative of other datacenters [20]. 

B. System Model 

Figure 5 depicts the both the system model as well as the 
prior steps that are necessary to create a workflow: 

1. Given task implementations (that already exist) 
need to be wrapped as services with service 
definitions. In our approach we use isolated 
performance data from these tasks to specify the 
resource utilization. If the services are 
compositions of multiple functions these must 
be captured prior to service wrapping. 

2. Given a set of services a workflow is defined, as 
described earlier in this paper, and can then be 
passed to the system for execution. 

A concrete workflow the system performs two parallel 
sequences of operation: the first monitoring the system state 
with regards to resource utilization and provides this as an 
update to the workflow engine. 

The second thread of execution takes the system state 
information along with stored information about prior states 
and predicts the likelihood of a given next state. Through the 
use of M-VCR we allow for uncertainty by providing a 
ranked set of next states. Given the likelihood of an 
upcoming state the system should adjust levels of service 
redundancy and if possible overall system workload 
distribution, although we do not address this. 

C. Formalization 

In previous work [7] we mathematically modelled the 
likelihood of a prior result based on the accuracy of various 
observations we modelled the likelihood of a given result. 
For the purposes of performance monitoring we capture the 
probability of any given server’s resource utilization. 

We first model the prior probability of cpu and memory 
utilization, including the most recent observations: 

 
Figure 4: Probabilistic resource and 

performance model 

 
Figure 5: Proposed system model 



𝑃𝑠 = 𝑓( 𝜇(𝑐𝑝𝑢)𝜎(𝑐𝑝𝑢)𝜇(𝑚𝑒𝑚)𝜎(𝑚𝑒𝑚) ) 

This is used to provide the likelihood of the resources 
required by the specified task being available: 𝑃𝒮 = ( |𝑐𝑝𝑢⟩|𝑚𝑒𝑚⟩|𝑃𝑠) 

From historical data we model the probability of a task 
meeting its deadline: 

𝑃𝑡 = 𝑓 (𝜇(𝑐𝑝𝑢)⋮𝑤𝑐𝑒𝑡 ) 

And the likelihood of the given task meeting its deadline 
given a specific hosting server is therefore: 𝑃𝑇 = 𝑃𝑡|𝑃𝒮 

This can be expressed completely as: 

∴ 𝑃𝑇 = (  
 𝑓 (𝜇(𝑐𝑝𝑢)⋮𝑤𝑐𝑒𝑡 ) || ( 

 |𝑐𝑝𝑢⟩|𝑚𝑒𝑚⟩||𝑓 ( 𝜇(𝑐𝑝𝑢)𝜎(𝑐𝑝𝑢)𝜇(𝑚𝑒𝑚)𝜎(𝑚𝑒𝑚) )) 
 
)  
 

 

The following sections provide detail on the 
implementation and evaluation of the approach. 

V. IMPLEMENTATION 

This section presents our implementation of the service 
oriented system and the document format that is used for 
logging the performance of servers and tasks. 

A. Implementing the use case 

The case study touched upon earlier in this paper, formed 

a gesture recognition system utilizing multiple cameras to 
increase the reliability of results under strict real-time 
constraints, and consists of the following components: 

 Cameras providing input data 

 Various feature detectors implemented using 
either SURF, MSER, or ASIFT algorithms 

 An aggregator that collates the results using M-
VCR 

 And a database that is used by the detectors for 
feature matching 

B. Experimental set-up 

As can be seen in Figure 6, in addition to the case study 
components we simulate 6 servers on which the system runs 
using performance profiles from real-world data. As the 
simulator models a physical infrastructure, we also capture 
the network links between servers and the network switch. 

Each low level component within the simulator can 
produce log data in the format presented in Figure 7. For the 
purposes of this paper only server data, represented as 
system nodes, and task data is collected in the format that 

 
Figure 6: Experimental System Model 

 
Figure 7: XML representation of the 

probabilistic model 



corresponds to the earlier presented model (see Figure 4). 

VI. RESULTS 

Using the developed simulator and the generated logs 
from monitoring both the physical infrastructure and the 
tasks associated with the previously specified workflow in 
this section we present performance analysis and an example 
probabilistic model of a service’s behavior. 

A. Performance Interference 

Figure 8 depicts the execution time of a specific instance 
of a service running on server [192.168.0.3] using the SURF 
implementation communicating with the database executing 
on server [192.168.0.5]. The graphs begin at the instance the 
service was requested and depict: 

 The server’s utilization of cpu and memory with 
the task. 

 The cpu and memory utilized by the task itself. 
The particular instances shown follow the behavior 
demonstrated in Figure 10. It is observed that the database 
task is itself delayed for nearly 2ms (1ms being the fidelity 
of our monitoring tools) which will have a cascading effect 
on the execution time of the SURF service. Consequently 
due to interference by cohosted tasks on the server the SURF 

service is interrupted on two occasions resulting in a further 
delay in its response time of nearly 7ms. 

As a result the response time observed by this service 
instance is just under 20ms for a single iteration of the 
execution loop. 

B. Average Performance 

Over approximately 15000 service calls that were made 
to a SURF service the average execution times for each 
iteration within the loop are depicted in Figure 9. Notably the 
average execution time is 17ms with worst case times of 
30ms. [21] outlines a real-time deadline model which allows 
for tolerated degrees of response time: 

 A technical deadline, i.e. the soft deadline 

 Tolerance deadline, i.e. the firm deadline 

 Critical hard deadline 
Figure 8 shows these deadlines with respect to the execution 
of the service instance whilst Figure 9 shows the likelihood 
of each deadline being met: 

 Only 3% of instances meet the technical deadline 
which is traditionally used when defining 
performance metrics and QoS. 

 A subsequent 23% meet the tolerance deadline. 

 A majority of 46% miss the above deadlines but 
complete within the critical time. 

 The remaining 28% miss the specified deadlines. 

 
Figure 8: Task interference due to server behavior and task communication 

 
Figure 9: M-VCR generated likelihood of service 

performance 

 
Figure 10: SURF service instance 



Due to the cascading complexity of modelling each 
communicating service in this manner the results depicted in 
this paper assume that the modelled QoS for other services, 
excluding the SURF instances, use traditional static methods. 
As a result the probability of a SURF service responding 
within the tolerance deadline is: 

𝑃𝑇 = (𝑓 ( 0.2615𝑚𝑠) | ( |𝑐𝑝𝑢: 0.43⟩|𝑚𝑒𝑚: 0.32⟩|𝑓 ( 𝑐𝑝𝑢: 0.39𝑚𝑒𝑚: 0.22))) 

𝑃𝑇 = (𝑓 ( 0.2615𝑚𝑠) | 𝑐𝑝𝑢: 0.45𝑚𝑒𝑚: 0.91) ≤ 0.12  
When compared with the original performance metric that 
specifies a WCET of 20ms we see the likelihood of actually 
achieving that deadline is at best 12%. 

Therefore with these performances statistics it is clearly 
essential that a metric that considers the real-world 
performance of the service, given interference, needs to be 
defined. It is also necessary to develop mechanisms that 
utilize these statistics to adapt the system workload in an 
attempt to increase the likelihood of responding in-time. 

VII. RELATED WORK 

The table depicted in Figure 11shows a comparison of 
our work against related state-of-the-art. Work by the likes of 
[22] focusses on estimating the WCET however in order to 
do so it requires knowledge about the internal method calls 
of the service which are typically not known by those 
responsible for deployment of the service. 

The work referenced previously by [6] on the iLand 
project identifies several additional QoS parameters that 
have not been considered in our work. However their 
approach is limited due to the fact that those QoS values are 
statically defined prior to deployment. [23] proposes another 

approach that consider the history of execution as well as the 
environment in which the services must execute. Previous 
work does not consider that these technical defined values 
are not representative of real-world execution. 

[5] and [24] both propose approaches which are partially 
dynamic. In the former case the a single measure of success 
likelihood is computed, however it does not take into 
account environmental conditions or therefore react to them. 
[24] however does provide a reactive system that uses fuzzy-
logic at a high level of abstraction to dynamically define, to 
an extent, the level of QoS that can be delivered. This does 
not, however, lend itself to real-time environments where 
changes are required within milliseconds. 

This paper has outlined a methodology for dynamically 
modelling QoS in a probabilistic fashion in the context of a 
changing environment. This work will in future empirically 
compare the approach against related work. 

VIII. CONCLUSION 

This paper has presented a probabilistic modelling 
approach to capture the relationship between service 
performance and the underlying environment. Furthermore, 
in experimental validation of the work real server utilization 
data has been used from both Google Cloud and also our 
own local server cluster. Through the use of a dedicated 
simulator for real-time service orientated architectures we 
find that services can fail to meet their advertised worst-case 
response times on nearly 90% of occasions. The proposed 
approach builds on our prior work on the M-VCR framework 
adapting it take into consider the perspectives: 

 Individual server utilization of: 
o CPU and Memory 

 Individual task utilization of: 
o CPU and Memory 

 
Figure 11: Related Work Comparison 



With respect to the technical soft, tolerated firm, 
and critical hard deadlines. 

Finally this paper has demonstrated the importance of 
modelling service QoS with respect to its real performance 
on real systems as they change during the execution window. 

A. Future Work 

Currently the probabilistic model has only been applied 
to a single service in the workflow and the results have not 
been utilized to allow for online system adaptation. As future 
work, we will apply the methodology to the whole set of 
services in the workflow as well as consider workflows from 
other domains. We will empirically evaluate our approach 
against the state-of-the-art research using the developed 
simulator which is agnostic to any particular real-time SOA 
solution. Further work may include development of the 
simulator itself to provide greatly accuracy in modelling the 
execution times of services as well as allowing for additional 
environmental parameters to be considered, including but not 
limited to: network bandwidth and latency, inter-service 
communication models, and power consumption. 
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