
This is a repository copy of Enabling decision support for the delivery of real-time services.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/83469/

Version: Accepted Version

Proceedings Paper:
Mckee, DW, Webster, D and Xu, J (2015) Enabling decision support for the delivery of
real-time services. In: 2015 IEEE 16th International Symposium on High Assurance
Systems Engineering (HASE). High Assurance Systems Engineering, 08-10 Jan 2015,
Daytona Beach, Florida, USA. IEEE , 60 - 67. ISBN 978-1-4799-8110-6

https://doi.org/10.1109/HASE.2015.18

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Enabling Decision Support for the Delivery of Real-Time Services

David McKee, David Webster, Jie Xu

School of Computing,

University of Leeds

Leeds, UK

{scdwm, D.E.Webster, J.Xu}@leeds.ac.uk

Abstract—The domain of high assurance distributed systems

has focused greatly on the areas of fault tolerance and

dependability. As a result the paradigm of service orientated

architectures (SOA) has been commonly applied to realize the

significant benefits of loose coupling and dynamic binding.

However, there has been limited research addressing the issues

of managing real-time constraints in SOAs that are by their

very nature dynamic. Although the paradigm itself is derived

from fundamental principles of dependability, these same

principles appear to not be applied when considering the timed

dimension of quality of service. As a result the current state-of-

the-art in SOA research only addresses soft real-time and does

not seek to provide concrete guarantees about a systems

performance. When a distributed system is deployed we do not

understand enough the emerging behavior that will occur. This

paper therefore proposes an approach that probabilistically

monitors system state within a given workflow’s execution
window. Utilizing a real distributed system we experiment with

services from the computer vision domain, with clear real-time

constraints, evaluating the performance of each system

component. Our approach successfully models the likelihood of

the service meeting providing various levels of QoS, providing

the basis for a more dynamic and intelligent approach to real-

time service orientation.

Keywords-real-time; SOA; QoS; workload patterns; workload

characterization; resource usage patterns

I. INTRODUCTION

In service orientated architectures (SOA) the provision of
services under real-time Quality of Service (QoS) constraints
has remained an elusive challenge. However with the
increasing usage of SOA in domains such as banking and
manufacturing [1] increasingly there have been attempts to
tailor SOA to industry specific domains with significant hard
real-time constraints with critical deadlines where failure to
meet them can result in issues of either safety, such as in-
vehicle SOA [2], or more often cause financial repercussions
[3].

In [4] we identified that one of the most significant
challenges in providing real-time capability through SOA is
the ability to guarantee that capability given variations that
occur in the host execution environment. It is therefore
necessary in real-time SOAs to provide the ability to manage
and guarantee the adherence to hard real-time deadlines
through management of processor and resource utilization

[4]. Existing approaches [5], [6] provide limited real-time
capability due to the static nature of defining QoS in service
definitions which are unable to provide online adaptation to
changing resource availability.

This paper expands a motivating case-study presented in
our previous work [7] which identified the following crucial
real-time constraints:

 The entire workflow has a critical deadline of
200ms.

 Individual services have deadlines of less than
200ms.

 A redundancy level of 3 or more is required in
order to provide “good-enough” accuracy of
results.

This paper extends that work by analyzing the system
level performance in light of those temporal resource
constraints. Specifically through the characterization of
servers and tasks we explore the relationship between system
resources and the realistic deliverable QoS. Previously [4]
we identified that other tasks executing on the same servers
as our system will affect the worst-case response time
(WCRT) of the services through shared cpu and memory
utilization. We adapt the M-VCR framework used in [7] to
provide a dynamic model of QoS which models the
likelihood of a given server having the capability to provide
the required WCRT for a given service instance. We utilize
both performance data from a real Google datacenter
tracelog [8] as well as from our own lab cluster in
combination with a dedicated SOA simulator to generate a
probabilistic model of the likely performance of a given
service which can then be used to adapt the system-wide
workload distribution.

This rest of this paper is organized as follows: Section II
provides a problem definition with key insights into the
effect of CPU and memory interference on the workflow and
services of interest. Section III proposes a scheme for
probabilistically modelling the utilization of CPU and
memory as well as the relevant requirements for a given task.
Section IV outlines the system model that we have adopted
as well as key assumptions that underpin the presented
research. Sections V and VI present the implementation and
experimental results respectively. The paper concludes
comparing the proposed approach against related state-of-
the-art followed by conclusions and our planned future work.

II. THE CHALLENGE OF DELIVERING REAL-TIME

SERVICES

In this section we briefly introduce the concept of service
orientation, identifying the key benefits and reasons for
adopting it as the architectural paradigm. We then consider
the limitations of statically defined QoS with reference to
experimental evidence.

A. Service Oriented Architectures

Service Oriented Architectures (SOA) (along with the
more general concept of Software-as-a-service) have
emerged in recent years as the de jure set of standards for
building cross-organizational distributed systems. The
motivation for SOA is to enable the cross-organizational
integration of loosely coupled networked systems using
clearly defined interfaces which support the concepts of
discovery and reusability [9]. Service interfaces are,
therefore, defined in terms of their abstract capability and
independently of the concrete platforms that provide them.

As a result the SOA paradigm allows us to more
effectively manage the levels of redundancy required at
runtime for any given service in light of system performance.
Figure 1(a) depicts the system presented in [7], (b) and (c)
present the corresponding service orientated model.

B. QoS in Service Provision

Given the workflow defined in Figure 1(c) service level
agreements defining the level of QoS are defined at each

service step with an overall workflow critical response time
of 200ms.

As can be seen in Figure 1(d) the underlying system has
significant variation in terms of both cpu and memory
utilization. The graph depicts a snapshot of a given server’s
utilization. Intuitively it can be seen that if a service was
requested either between time 2minutes or 13minutes there is
a significantly increased probability of the task being
blocked, resulting in delays that are unacceptable for the
overall workflow.

Figure 1: SOA representation of the case study and analysis of the system performance

Figure 2: Analysis of isolated performance of

individual services

In Figure 2 we also see that three different
implementations of a service definition (coming from our
previous work in gesture recognition [7]) provide
significantly differing execution times. This is due to
algorithmic differences, variations in the input data,
variations in inputs, and in inter-service communication
latencies even when running in isolated environments. As
with the work presented by [6], both data-centric levels of
QoS as well platform oriented QoS are modelled. However,
it can also be seen that the QoS cannot be statically defined
and there is clearly a relationship between the two types.

III. PROPOSED SCHEME

This section outlines a formalized abstract model of SOA
and is described with relation to the simulation environment.
It then proposes a scheme for modelling QoS in a non-static
fashion. And finally we describe how the QoS is specified
within that experimental environment.

A. System Model

As previously seen in Figure 1(c) the SOA paradigm
consists of multiple layers of abstraction. Garcia-valls et al.
[6], [10], [11] identify the need for an additional intermediate
layer between the abstract and concrete workflows. Figure 3
depicts this as the service workflow layer considering all the
possible workflows that adhere to the defined abstract
workflow. Given workflow input ‘X’ and output ‘Y’ the

workflow can be formally expressed as the functions {A, B,
C} operating on the data communicated data: 𝑊(𝑖𝑛: 𝑥, 𝑜𝑢𝑡: 𝑦) = �̅� (𝑐̅ (�̅�(𝑎(𝑥). 𝐴)) . 𝐵) . 𝐶

Figure 3 also introduces the concept that a service itself
may be composed of multiple tasks that work together to
provide a capability. According to the diagram we have three
possible formalized implementations of service ‘A’1

: 𝐴′ ∈ 𝐴, 𝐴′(𝑖𝑛: 𝑥, 𝑜𝑢𝑡: 𝑏) = �̅�((𝑎(𝑥). 𝑇1). 𝑇2). 𝑇3 𝐴′′ ∈ 𝐴, 𝐴′(𝑖𝑛: 𝑥, 𝑜𝑢𝑡: 𝑏) = �̅�(𝑎(𝑥). 𝑇3). 𝑇4 𝐴′′′ ∈ 𝐴, 𝐴′(𝑖𝑛: 𝑥, 𝑜𝑢𝑡: 𝑏) = �̅�(𝑎(𝑥). 𝑇5). 𝑇4

Choosing a given implementation we result in a concrete
workflow (with only the implementation of service A shown
here) which must be mapped onto various servers which
should each be modelled. 𝐴′(𝑖𝑛: 𝑥, 𝑜𝑢𝑡: 𝑏) = �̅�(𝑡3̅(𝑡2̅(𝑎(𝑥){𝑡1/𝑎}. 𝑇1)). 𝑇2).T3

B. Simulation Environment

The simulator developed separately as part of this
research allows for a datacenter to be modelled in terms of
the servers, network connections, and tasks that execute
within it. It consequently allows collections of tasks to be
mapped to services and therefore also workflows as depicted
in Figure 3. This development was in response to the lack of
simulation tools in the real-time service orientated domain as
there are in the domain of cloud computing such as
CloudSim [12]. Simulation forms a necessary component in
analyzing large system performance due to the lack of access
to truly large-scale systems and the inadequacy of using only
formalization techniques to predict performance
characteristics such as long-tailing [13].

Typically in web based SOA services are merely
described using a name, their inputs and outputs, ignoring
the importance of QoS. Various approaches have been
considered such as the work by [14] which considers the
impact of collaboration on task performance. Similar to our
own approach the work by [15] uses a probability
distribution to estimate the performance of web services
(WS) and can be combined with the review of real-world
WS-QoS by [16]. [17] proposes an approach that considers
both the underlying infrastructure as well as the service layer
to estimate response time and success rate. However, each of
these approaches is not evaluated in light of real-time
constraints. The work in [18] however considers non-safety-
critical soft real-time in the context of media systems and
allows for varying degrees of QoS to be delivered. That
work, however, does not consider the impact of the
underlying platform performance on capability provision.

To analyze the relationship between tasks and resource as
well as our ability to closely monitor the simulator we
propose capturing, for each individual server within the
specified datacenter and each specified task, the:

 Server cpu utilization

1 Inter-function channels not shown

Figure 3: Extended SOA layers of abstraction

considering their link to the physical infrastructure

 Server memory utilization

 Task cpu utilization

 Task memory utilization

 Task execution time
As can be seen in the model depicted in Figure 4, for each of
these values the mean and the standard deviation are
considered providing a probabilistic model of performance
and for tasks the worst case execution time is considered.

IV. METHODOLOGY

Given the models described previously, this section
outlines the methodology by which QoS is monitored as well
as the probabilistic model which extends our prior work on
M-VCR [7]. It highlights the underlying assumptions which
exist in these models and consequently results of these.

A. Assumptions

This research is underpinned by a set of key assumptions:

 Service failures are restricted to execution and
publishing faults.

 The servers and services are crash free.

 Network latencies are out of scope.

 Service discovery is not an option.
According to the SOA fault taxonomy presented by [19]
there are at least 30 distinct types of service fault that can
occur. We are concerned with faults relating to the
specification of QoS at the publishing stage as well as the
effect of performance degradation resulting in late timing.

Server failure falls outside of scope which would not
result in a performance degradation of a service but rather
causes an instantaneous service crash. For the same reason
we assume that the implementations of the services are
correct as this would invalidate the performance metrics.

Given that the network latencies within a datacenter are
near negligible we assume that modelling of network
latencies is out of scope at this stage of the research.
Additionally there is a lack of data surrounding the actual
observed latencies that exist in large scale datacenters.

Due to the limitations of the physical infrastructure and
the critical real-time constraints under which we are
operating we consider that mechanisms for service discovery
are not relevant and would introduce additional challenges to
providing a guaranteed response time. Finally an additional
assumption is that the data publicly provided by Google is
representative of other datacenters [20].

B. System Model

Figure 5 depicts the both the system model as well as the
prior steps that are necessary to create a workflow:

1. Given task implementations (that already exist)
need to be wrapped as services with service
definitions. In our approach we use isolated
performance data from these tasks to specify the
resource utilization. If the services are
compositions of multiple functions these must
be captured prior to service wrapping.

2. Given a set of services a workflow is defined, as
described earlier in this paper, and can then be
passed to the system for execution.

A concrete workflow the system performs two parallel
sequences of operation: the first monitoring the system state
with regards to resource utilization and provides this as an
update to the workflow engine.

The second thread of execution takes the system state
information along with stored information about prior states
and predicts the likelihood of a given next state. Through the
use of M-VCR we allow for uncertainty by providing a
ranked set of next states. Given the likelihood of an
upcoming state the system should adjust levels of service
redundancy and if possible overall system workload
distribution, although we do not address this.

C. Formalization

In previous work [7] we mathematically modelled the
likelihood of a prior result based on the accuracy of various
observations we modelled the likelihood of a given result.
For the purposes of performance monitoring we capture the
probability of any given server’s resource utilization.

We first model the prior probability of cpu and memory
utilization, including the most recent observations:

Figure 4: Probabilistic resource and

performance model

Figure 5: Proposed system model

𝑃𝑠 = 𝑓(𝜇(𝑐𝑝𝑢)𝜎(𝑐𝑝𝑢)𝜇(𝑚𝑒𝑚)𝜎(𝑚𝑒𝑚))

This is used to provide the likelihood of the resources
required by the specified task being available: 𝑃𝒮 = (|𝑐𝑝𝑢⟩|𝑚𝑒𝑚⟩|𝑃𝑠)

From historical data we model the probability of a task
meeting its deadline:

𝑃𝑡 = 𝑓 (𝜇(𝑐𝑝𝑢)⋮𝑤𝑐𝑒𝑡)

And the likelihood of the given task meeting its deadline
given a specific hosting server is therefore: 𝑃𝑇 = 𝑃𝑡|𝑃𝒮

This can be expressed completely as:

∴ 𝑃𝑇 = (
 𝑓 (𝜇(𝑐𝑝𝑢)⋮𝑤𝑐𝑒𝑡) || (

 |𝑐𝑝𝑢⟩|𝑚𝑒𝑚⟩||𝑓 (𝜇(𝑐𝑝𝑢)𝜎(𝑐𝑝𝑢)𝜇(𝑚𝑒𝑚)𝜎(𝑚𝑒𝑚)))

)

The following sections provide detail on the
implementation and evaluation of the approach.

V. IMPLEMENTATION

This section presents our implementation of the service
oriented system and the document format that is used for
logging the performance of servers and tasks.

A. Implementing the use case

The case study touched upon earlier in this paper, formed

a gesture recognition system utilizing multiple cameras to
increase the reliability of results under strict real-time
constraints, and consists of the following components:

 Cameras providing input data

 Various feature detectors implemented using
either SURF, MSER, or ASIFT algorithms

 An aggregator that collates the results using M-
VCR

 And a database that is used by the detectors for
feature matching

B. Experimental set-up

As can be seen in Figure 6, in addition to the case study
components we simulate 6 servers on which the system runs
using performance profiles from real-world data. As the
simulator models a physical infrastructure, we also capture
the network links between servers and the network switch.

Each low level component within the simulator can
produce log data in the format presented in Figure 7. For the
purposes of this paper only server data, represented as
system nodes, and task data is collected in the format that

Figure 6: Experimental System Model

Figure 7: XML representation of the

probabilistic model

corresponds to the earlier presented model (see Figure 4).

VI. RESULTS

Using the developed simulator and the generated logs
from monitoring both the physical infrastructure and the
tasks associated with the previously specified workflow in
this section we present performance analysis and an example
probabilistic model of a service’s behavior.

A. Performance Interference

Figure 8 depicts the execution time of a specific instance
of a service running on server [192.168.0.3] using the SURF
implementation communicating with the database executing
on server [192.168.0.5]. The graphs begin at the instance the
service was requested and depict:

 The server’s utilization of cpu and memory with
the task.

 The cpu and memory utilized by the task itself.
The particular instances shown follow the behavior
demonstrated in Figure 10. It is observed that the database
task is itself delayed for nearly 2ms (1ms being the fidelity
of our monitoring tools) which will have a cascading effect
on the execution time of the SURF service. Consequently
due to interference by cohosted tasks on the server the SURF

service is interrupted on two occasions resulting in a further
delay in its response time of nearly 7ms.

As a result the response time observed by this service
instance is just under 20ms for a single iteration of the
execution loop.

B. Average Performance

Over approximately 15000 service calls that were made
to a SURF service the average execution times for each
iteration within the loop are depicted in Figure 9. Notably the
average execution time is 17ms with worst case times of
30ms. [21] outlines a real-time deadline model which allows
for tolerated degrees of response time:

 A technical deadline, i.e. the soft deadline

 Tolerance deadline, i.e. the firm deadline

 Critical hard deadline
Figure 8 shows these deadlines with respect to the execution
of the service instance whilst Figure 9 shows the likelihood
of each deadline being met:

 Only 3% of instances meet the technical deadline
which is traditionally used when defining
performance metrics and QoS.

 A subsequent 23% meet the tolerance deadline.

 A majority of 46% miss the above deadlines but
complete within the critical time.

 The remaining 28% miss the specified deadlines.

Figure 8: Task interference due to server behavior and task communication

Figure 9: M-VCR generated likelihood of service

performance

Figure 10: SURF service instance

Due to the cascading complexity of modelling each
communicating service in this manner the results depicted in
this paper assume that the modelled QoS for other services,
excluding the SURF instances, use traditional static methods.
As a result the probability of a SURF service responding
within the tolerance deadline is:

𝑃𝑇 = (𝑓 (0.2615𝑚𝑠) | (|𝑐𝑝𝑢: 0.43⟩|𝑚𝑒𝑚: 0.32⟩|𝑓 (𝑐𝑝𝑢: 0.39𝑚𝑒𝑚: 0.22)))

𝑃𝑇 = (𝑓 (0.2615𝑚𝑠) | 𝑐𝑝𝑢: 0.45𝑚𝑒𝑚: 0.91) ≤ 0.12
When compared with the original performance metric that
specifies a WCET of 20ms we see the likelihood of actually
achieving that deadline is at best 12%.

Therefore with these performances statistics it is clearly
essential that a metric that considers the real-world
performance of the service, given interference, needs to be
defined. It is also necessary to develop mechanisms that
utilize these statistics to adapt the system workload in an
attempt to increase the likelihood of responding in-time.

VII. RELATED WORK

The table depicted in Figure 11shows a comparison of
our work against related state-of-the-art. Work by the likes of
[22] focusses on estimating the WCET however in order to
do so it requires knowledge about the internal method calls
of the service which are typically not known by those
responsible for deployment of the service.

The work referenced previously by [6] on the iLand
project identifies several additional QoS parameters that
have not been considered in our work. However their
approach is limited due to the fact that those QoS values are
statically defined prior to deployment. [23] proposes another

approach that consider the history of execution as well as the
environment in which the services must execute. Previous
work does not consider that these technical defined values
are not representative of real-world execution.

[5] and [24] both propose approaches which are partially
dynamic. In the former case the a single measure of success
likelihood is computed, however it does not take into
account environmental conditions or therefore react to them.
[24] however does provide a reactive system that uses fuzzy-
logic at a high level of abstraction to dynamically define, to
an extent, the level of QoS that can be delivered. This does
not, however, lend itself to real-time environments where
changes are required within milliseconds.

This paper has outlined a methodology for dynamically
modelling QoS in a probabilistic fashion in the context of a
changing environment. This work will in future empirically
compare the approach against related work.

VIII. CONCLUSION

This paper has presented a probabilistic modelling
approach to capture the relationship between service
performance and the underlying environment. Furthermore,
in experimental validation of the work real server utilization
data has been used from both Google Cloud and also our
own local server cluster. Through the use of a dedicated
simulator for real-time service orientated architectures we
find that services can fail to meet their advertised worst-case
response times on nearly 90% of occasions. The proposed
approach builds on our prior work on the M-VCR framework
adapting it take into consider the perspectives:

 Individual server utilization of:
o CPU and Memory

 Individual task utilization of:
o CPU and Memory

Figure 11: Related Work Comparison

With respect to the technical soft, tolerated firm,
and critical hard deadlines.

Finally this paper has demonstrated the importance of
modelling service QoS with respect to its real performance
on real systems as they change during the execution window.

A. Future Work

Currently the probabilistic model has only been applied
to a single service in the workflow and the results have not
been utilized to allow for online system adaptation. As future
work, we will apply the methodology to the whole set of
services in the workflow as well as consider workflows from
other domains. We will empirically evaluate our approach
against the state-of-the-art research using the developed
simulator which is agnostic to any particular real-time SOA
solution. Further work may include development of the
simulator itself to provide greatly accuracy in modelling the
execution times of services as well as allowing for additional
environmental parameters to be considered, including but not
limited to: network bandwidth and latency, inter-service
communication models, and power consumption.

ACKNOWLEDGMENT

The work is supported in part by the National Basic
Research Program of China (973) (No.2011CB302602), the
U.K. EPSRC WRG platform project (No. EP/F057644/1),
and other EPSRC and RC grants.

REFERENCES

[1] I. Scheeren and C. E. Pereira, “Combining Model-Based Systems

Engineering, Simulation and Domain Engineering in the

Development of Industrial Automation Systems: Industrial Case
Study,” 2014 IEEE 17th Int. Symp. Object/Component/Service-

Oriented Real-Time Distrib. Comput., pp. 40–47, Jun. 2014.

[2] M. Wagner, D. Zobel, and A. Meroth, “SODA: Service-Oriented
Architecture for Runtime Adaptive Driver Assistance Systems,”
2014 IEEE 17th Int. Symp. Object/Component/Service-Oriented

Real-Time Distrib. Comput., pp. 150–157, Jun. 2014.
[3] B. Mueller, G. Viering, F. Ahlemann, and G. Riempp, “Towards

Unverstanding the Sources of the Economic Potential of Service-

Orientated Architecture: Findings from the Automotive and
Banking Industry,” in ECIS, 2007, pp. 1608–1619.

[4] D. McKee, D. Webster, P. Townend, and D. Battersby, “Towards
a Virtual Integration Design and Analysis Enviroment for
Automotive Engineering,” in Workshop on Real-Time

CyberPhysical Systems, 2014.

[5] G. Zou, Q. Lu, Y. Chen, R. Huang, Y. Xu, and Y. Xiang, “QoS-
Aware Dynamic Composition of Web Services Using Numerical

Temporal Planning,” IEEE Trans. Serv. Comput., vol. 7, no. 1,
pp. 18–31, Jan. 2014.

[6] M. García-valls, P. Basanta-val, M. Marcos, and E. Estévez, “A
bi-dimensional QoS model for SOA and real-time middleware,”
Int. J. Comput. Sci. Eng., 2013.

[7] D. McKee, P. Townend, D. Webster, and J. Xu, “M-VCR : Multi-
View Consensus Recognition for Real-Time Experimentation,”
in 2014 IEEE 17th International Symposium on

Object/Component/Service-Oriented Real-Time Distributed

Computing, 2014.

[8] Google, “Google Cluster Data V2.” [Online]. Available:
http://code.google.com/p/googleclusterdata/wiki/ClusterData201
1_1.

[9] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,

“Service-Oriented Computing: State of the Art and Research
Challenges,” IEEE Comput. Soc., vol. 40, no. 11, pp. 38–45,

Nov. 2007.

[10] M. García-valls, P. Basanta-val, and I. Estévez-Ayres,
“Supporting Service Composition and Real-Time Execution

through Characterisation of QoS Properties,” in SEAMS ’11
Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, 2011, pp.

110–117.

[11] M. Garcia Valls, I. R. Lopez, and L. F. Villar, “iLAND: An
Enhanced Middleware for Real-Time Reconfiguration of Service

Oriented Distributed Real-Time Systems,” IEEE Trans. Ind.

Informatics, vol. 9, no. 1, pp. 228–236, Feb. 2013.
[12] R. N. Calheiros, R. Ranjan, A. Beloglazov, and A. F. De Rose,

“CloudSim : a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms,” no. August 2010, pp. 23–50, 2011.

[13] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM,

vol. 56, no. 2, p. 74, Feb. 2013.
[14] D. Kuc, “Confucius: A Tool Supporting Collaborative Scientific

Workflow Composition,” IEEE Trans. Serv. Comput., vol. 7, no.

1, pp. 2–17, Jan. 2014.
[15] H. Zheng, J. Yang, and W. Zhao, “QoS probability distribution

estimation for web services and service compositions,” 2010
IEEE Int. Conf. Serv. Comput. Appl., pp. 1–8, Dec. 2010.

[16] Z. Zheng, Y. Zhang, and M. R. Lyu, “Investigating QoS of Real-
World Web Services,” IEEE Trans. Serv. Comput., vol. 7, no. 1,
pp. 32–39, Jan. 2014.

[17] P. Mcburney, D. Efstathiou, S. Zschaler, and J. Bourcier,

“Flexible QoS-Aware Service Composition in Highly
Heterogeneous and Dynamic Service-Based Systems,” in IEEE

Conference on Wireless and Mobile Computing, Networking and

Communications (WiMob), 2013, vol. 2013.
[18] P. Xue, I. Yen, and K. M. Cooper, “QoS-driven dynamic

adaptation in media intensive systems,” in 2011 IEEE

International Conference on Service-Oriented Computing and
Applications (SOCA), 2011, pp. 1–8.

[19] S. Bruning, S. Weissleder, and M. Malek, “A Fault Taxonomy
for Service-Oriented Architecture,” in 10th IEEE High Assurance
Systems Engineering Symposium (HASE’07), 2007, pp. 367–368.

[20] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu, “An
Approach for Characterizing Workloads in Google Cloud to
Derive Realistic Resource Utilization Models,” 2013 IEEE

Seventh Int. Symp. Serv. Syst. Eng., pp. 49–60, Mar. 2013.

[21] R. Kirner, “A Uniform Model for Tolerance-Based Real-Time
Computing,” 2014 IEEE 17th Int. Symp.

Object/Component/Service-Oriented Real-Time Distrib. Comput.,

pp. 9–16, Jun. 2014.
[22] J. Whitham and M. Schoeberl, “WCET-Based Comparison of an

Instruction Scratchpad and a Method Cache,” 2014 IEEE 17th

Int. Symp. Object/Component/Service-Oriented Real-Time
Distrib. Comput., pp. 301–308, Jun. 2014.

[23] G. Pardo-castellote, “OMG Data-Distribution Service (DDS):

Architectural Overview,” 2005.
[24] S. D. G. Avila and K. Djemame, “Fuzzy Logic Based QoS

Optimization Mechanism for Service Composition,” in 2013

IEEE Seventh International Symposium on Service-Oriented
System Engineering, 2013, pp. 182–191.

