
Available online at www.sciencedirect.com
www.elsevier.com/locate/brainres

b r a i n r e s e a r c h 1 6 0 1 ( 2 0 1 5 ) 1 5 – 3 0
http://dx.doi.org/10
0006-8993/& 2014 T
(http://creativecomm

Abbreviations: α7
D-AP5, D-(� )-2-am

decarboxylase 67; G

PNU120596, N-(5-c
nCorresponding a

USA.
E-mail address:
Research Report
Functional alpha7 nicotinic receptors are expressed
on immature granule cells of the postnatal
dentate gyrus
Danielle Johna,n, Irina Shelukhinab, Yuchio Yanagawac,d,
Jim Deucharsa, Zaineb Hendersona

aSchool of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
bDepartment of Molecular Basis of Neurosignaling, Laboratory of Molecular Toxinology, Shemyakin and Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow V-437, Russia
cDepartment of Genetic and Behavioural Neuroscience, Gunma University Graduate School of Medicine,
Maebashi 371-8511, Japan
dJapan Science and Technology Agency, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
a r t i c l e i n f o

Article history:
Accepted 19 December 2014

Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and

postnatal-born granule cells migrate into the granule cell layer and extend axons to their
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target areas. The α7nnicotinic receptor has been implicated in neuronal maturation during

development of the brain and is abundant in interneurons of the hippocampal formation

of the adult brain. Signalling through these same receptors is believed also to promote

maturation and integration of adult-born granule cells in the hippocampal formation. We

therefore aimed to determine whether functional α7nnicotinic receptors are expressed in

developing granule cells of the postnatal dentate gyrus. For these experiments we used 2–3

week-old Wistar rats, and 2–9 week old transgenic mice in which GABAergic interneurons

were marked by expression of green fluorescent protein. Immunohistochemistry indicated

the presence of α7nnicotinic receptor subunits around granule cells close around the

subgranular zone which correlated with the distribution of developmental markers for

immature granule cells. Whole-cell patch clamp recording showed that a proportion of

granule cells responded to puffed ACh in the presence of atropine, and that these cells

possessed electrophysiological properties found in immature granule cells. The nicotinic

responses were potentiated by an allosteric α7nnicotinic receptor modulator, which were

blocked by a specific α7nnicotinic receptor antagonist and were not affected by ionotropic

glutamate or GABA receptor antagonists. These results suggest the presence of functional
1
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Fig. 1 – Polyclonal α7(8-25) nAChR antibod
purified with α-cobratoxin-sepharose. (A
stain). (A1) cell lysate, (A2) α-CTX affinity
Western blot analysis of α7 nAChR immu
and (B3) proteins non-specifically bound
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somato-dendritic α7nnicotinic receptors on immature granule cells of the postnatal dentate

gyrus, consistent with studies implicating α7nnicotinic receptors in dendritic maturation of

dentate gyrus neurons in adult brain.

& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The dentate gyrus (DG) of the hippocampal formation, a
region important for spatial and episodic memory (Lisman,
1999; Burgess et al., 2002), is a well-established site of
continual neurogenesis in the mammalian brain (Altman,
1962; Altman and Das, 1965; Kaplan and Hinds, 1977; Seki and
Arai, 1995; Gage, 2000; Cameron and McKay, 2001), where the
processes of ontogenetic developmental neurogenesis and
adult neurogenesis are considered to overlap (Amrein et al.,
2011). The DG is made up of a molecular layer, granule cell
layer, subgranular zone and the hilus. The molecular layer
consists mainly of the dendrites of the principal neurons of
the DG, i.e. the granule cells, and these dendrites receive
extensive glutamatergic input from the entorhinal cortex and
from mossy cells in the hilus. The granule cells themselves,
densely packed into the granule cell layer, target the principal
neurons in CA3 of the hippocampus and possess collaterals
that synapse onto mossy cells and local GABAergic inter-
neurons (Amaral and Dent, 1981). The GABAergic interneur-
ons of the DG are located in the subgranular zone, hilus and
molecular layer and their terminals are concentrated in the
granule cell and molecular layer of the DG (Halasy and
Somogyi, 1993; Houser, 2007).

During the normal development of the DG the granule cells
are born in the ventricular germinal layer and in the subgranular
zone, and in the adult brain these cells occupy the outer two
thirds of the granule cell layer (Dayer et al., 2003). Neurogenesis
continues to occur throughout life in the subgranular zone, and
in the postnatal brain the newly formed neurons accumulate in
the inner third of the granular layer where they differentiate and
y specificity characteris
) SDS-PAGE of fractions
purified proteins; (A3)
nodetection capability f
by CH Sepharose 4B. A
become fully integrated into the adult circuitry (Gould et al.,
1999; Hastings and Gould, 1999; Wang et al., 2000; van Praag
et al., 2002; Schmidt-Hieber et al., 2004; Doetsch and Hen, 2005).

Whilst much is understood about the factors that influ-
ence neurogenesis in the postnatal DG (Hagg, 2005; Zhao
et al., 2008b), less is known about how the newly-generated
granule cells mature and integrate into the adult circuitry of
the brain. The α7 subunit-containing nicotinic receptor
(α7nnAChR) is known to support neuroplasticity (Broide and
Leslie, 1999; Mansvelder and McGehee, 2000; Ji et al., 2001;
Kang and Vaucher, 2009) and neurite outgrowth during
development (Lipton and Kater, 1989; Role and Berg, 1996;
Lauder and Schambra, 1999). The receptor also plays an
important role in learning, memory and attention (Dani and
Bertrand, 2007) and has been shown to be required for the
maturation and synaptic integration of adult-born neurons in
the DG (Campbell et al., 2010).

The most common nAChR subtypes expressed in the hippo-
campal formation are those based on α7 and α4β2 subunits
(Deneris et al., 1988; Wada et al., 1989; 1990; Seguela et al., 1993;
Dominguez del et al., 1994). They are located postsynaptically on
GABAergic interneurons (Alkondon et al., 1998; Frazier et al.,
1998a,b, 2003) and presynaptically on GABAergic and glutama-
tergic axonal terminals (Colquhoun and Patrick, 1997). Localiza-
tion of α7 nAChR and β2 nAChR subunits has been observed in
granule cells in the DG using receptor binding and immuno-
fluorescence respectively (Kaneko et al., 2006), but direct electro-
physiological evidence for functional α7nnAChRs has been
missing (Frazier et al., 2003). We therefore aimed to provide
evidence for functional α7nnAChRs on granule cells in the
postnatal DG and to ascertain if these receptors are expressed
ation by immunodetection of recombinant α7 nAChR affinity
of GH4C1 cells stably expressed human α7 nAChR (silver
proteins non-specifically bound by CH Sepharose 4B. (B)
or (B1) GH4C1 cell lysate, (B2) α-CTX affinity purified proteins
bbrevs. M; prestained protein ladder.



Fig. 2 – α7 nAChR subunit immunofluorescence is concentrated in the inner third of the granule cell layer of the dentate gyrus
and on GABAergic interneurons. (A1) α7 nAChR subunit immunofluorescence in the rat DG. (A2) Intensity peak plot of the
sample shown in (A1). (A3) Correlation between fluorescence intensity of α7nAChR subunit labelling and distance of granule
cells away from the subgranular zone. (B1) Control for (A1) involving omission of the α7 nAChR antibody. (B2) Intensity peak
plot of the sample shown in (B1). (B3) Correlation between fluorescence intensity and distance of granule cells away from the
subgranular zone. (C) α7 nAChR subunit immunofluorescence (red) in DG of GAD67-GFP mouse in which GABAergic cells
(arrowed) are labelled with GFP (green). (D1) α-bungarotoxin labelling in the rat DG. (D2) Lack of α-bungarotoxin labelling in the
rat DG after co-incubation with 1 mM nicotine. (D3) Rat DG incubated with vehicle alone. Abbrevs: GCL, granule cell layer; SGZ,
subgranular zone. Minor adjustments to contrast, brightness and colour balance have been made.
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only by immature granule cells in the dentate gyrus of Wistar
rats and in GAD67-GFP mice.
2. Results

2.1. α7(8-25) nAChR antibody characterisation

The first steps of characterisation of the rabbit α7(8-25) anti-
body had previously been undertaken, including a series of
ELISA of α7(8-25) peptide, a recombinant extracellular domain
of α7 nAChR subunit and Torpedo californica membranes as a
negative control (Shelukhina et al., 2006). In the presented
work, specificity of α7(8-25) antibody to the α7 extracellular
domain was confirmed by Western blot analysis (data not
shown). To test immunoreactivity of the antibody for the full-
length α7 subunit an approach combining α-cobratoxin affi-
nity purification and Western blot analysis of α7 nAChR was
carried out as a unique reliable knockout-proof method for
immunolabelling of the receptor (Moser et al., 2007; Orr-
Urtreger et al., 1997). α7(8-25) antibody did not show any
unspecific labelling of unpurified original sample (Fig. 1A1
and B1) and stained a single protein band of expected
molecular weight of α7 nAChR subunit (55 kDa) after its
affinity purification from transfected GH4C1 cells (Fig. 1A2
and B2). Due to the previously revealed unspecific immunor-
eaction of commercially available antibodies (Moser et al.,
2007), they were not used in this study.

Negative controls such as preincubation of the α7(8-25)
antibody with excess of corresponding peptide and substitu-
tion of normal rabbit serum immunoglobulins for primary
antibody eliminated any positive staining in Western blot
analysis (data not shown).

2.2. α7 nAChR immunofluorescence is concentrated in the
inner third of the granule cell layer of the dentate gyrus

In rat (n¼12) there was a higher intensity of immunofluores-
cence for the α7 nAChR subunit in the inner third of the granule
cell layer and subgranular zone than in the outer two thirds of
the granule cell layer of the DG (Fig. 2A1, A2, B1, and B2). When
quantified, there was a significantly inverse correlation in the
granule cell layer between the intensity of the labelling for the α7
nAChR subunit and distance from the subgranular zone
(Fig. 2A3. Pearson's correlation test; Po0.005). When the primary
antibody was omitted, there was no significant fluorescence and
as such, no correlation (Fig. 2B3).

GABAergic interneurons in the subgranular zone of the DG,
identified by GFP fluorescence in GAD67-GFP mice, possessed
labelling for the α7 nAChR subunit (Fig. 2C), as expected as
previous studies have indicated that GABAergic interneurons of
the hippocampal formation express functional α7nnAChRs
(Frazier et al., 1998a,b; Son and Winzer-Serhan, 2008). As with
the data shown for rats, GAD67-GFP mice also displayed a higher
intensity of immunofluorescence for the α7 nAChR subunit in
the inner third of the granule cell layer and subgranular zone
than in the outer two thirds of the granule cell layer of the DG
(Fig. 2C). Faint label for GFP, readily distinguishable from the
intense GFP label of the interneurons, was observed in a
subpopulation of granule cells, as has been reported previously
(Tamamaki et al., 2003). This may be a remnant of the dual
GABAergic-glutamatergic nature of granule cell cells during early
development (Maqueda et al., 2003).

As a further control for the positive α7nAChR subunit
immunofluorescence in the DG, α-bungarotoxin (α-btx) recep-
tor binding was carried out (rats, P21, n¼4). α-btx identifies
α7nnAChR binding sites in the CNS, and fluorescent labelling
for these sites was concentrated in the subgranular zone of
the granule cell layer and in the hilus (Fig. 2D1). α-btx binding
was absent when 1 mM nicotine (a competitive antagonist of
α7nnAChRs at this concentration) was included (Fig. 2D2), or
when α-btx was omitted from the protocol (Fig. 2D3). α-btx is
known to label the muscle-type nAChRs as well as neuronal
α7nnAChRs, and intense α-btx labelling was seen at the
neuromuscular junction in tongue sections as expected
according to previously published literature (Shelukhina
et al., 2009; data not shown).

2.3. Distribution of α7 nAChR subunit
immunofluorescence coincides with that of markers of
immature granule cell neurons

In rats (n¼5) and GAD67-GFP mice (n¼5, not illustrated), the
nuclei of granule cells in the DG in the outer two thirds of the DG
stained more intensely for NeuN, a nuclear marker for mature
neurons (Kim et al., 2009), than the inner layer of the DG (Fig. 3A),
as has been observed previously in both rats and mice (Mullen
et al., 1992; Pleasure et al., 2000; Brandt et al., 2003; von Bohlen
und Halbach, 2007; Snyder et al., 2009). This was reflected by the
ratio of intensity of labelling of NeuN to DAPI in nuclei which
was lower in the inner granule cell layer (0.6, rats, N¼3, n¼102;
0.6, GAD67-GFP mice, N¼3, n¼88) than in the outer granule cell
layer (1.2, rats, N¼3, n¼146; 1.1, GAD67-GFP mice, N¼3, n¼258).
In both rats and mice, the difference in the ratio of intensity of
labelling was found to be statistically significant (Po0.001,
Mann�Whitney rank sum test). In rats (n¼3) and GAD67-GFP
mice (n¼3, not illustrated), immunostaining for the α7 nAChR
subunit was stronger in the part of the granule cell layer with
weak or no label for NeuN (Fig. 3B).

In rats (n¼4) and GAD67-GFP mice (n¼4, not illustrated),
the cytoplasm of somata and dendrites of granule cells in the
inner third of the DG and in the subgranular zone showed
intense label for doublecortin, a marker for immature granule
cells (Francis et al., 1999; Gleeson et al., 1999; Brown et al.,
2003; Friocourt et al., 2003; Moores et al., 2004; Koizumi et al.,
2006). The outer two thirds of the DG, where intense nuclear
label for NeuN is observed, were bereft of doublecortin except
in the dendrites of the underlying cells (Fig. 3C) as has been
observed previously in the DG (Nacher et al., 2001). A higher
level of staining for α7 nAChR subunit immunofluorescence
in the DG overlapped the region with doublecortin-labelled
somata; i.e. the subgranular zone and inner third of the
granule cell layer on granule cells (Fig. 3D).

2.4. Immature but not mature granule cells possess
functional α7nnAChRs

Electrophysiological recordings were made from neurons in
live slices from both rats and GAD67-GFP mice. Neurons were
identified as interneurons, immature granule cells or mature



Fig. 3 – Correspondence of α7 nAChR subunit immunofluorescence with markers of immature granule cell neurons. (A) Differential
intensity of labelling for NeuN (green), a marker for mature neurons, compared to DAPI (blue) between the inner and outer granule
cell layer of rat DG. (B) Double label for NeuN (green) and the α7 nAChR subunit (red) in rat DG. (C) Double label for doublecortin (DCX,
green) and NeuN (red) in rat DG. (D) Double label for DCX (green) and α7 nAChR subunit (red) in rat DG. Abbrevs: GCL, granule cell
layer; SGZ, subgranular zone. Minor adjustments to contrast, brightness and colour balance have been made.
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granule cells based on a number of criteria in the live slice
and during post hoc analysis. The criterion for neuronal
identification during recording was based on known position
and appearance of the neuron in the DG (Ming and Song,
2011), and additionally on GFP content in the GAD67GFP
mouse (Tamamaki et al., 2003). Interneurons are relatively
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large and found in the hilus, subgranular zone and molecular
layer. Granule cells are relatively small, circular in shape and
are confined to the granule cell layer, and previous work has
indicated that postnatal-born immature granule neurons are
located only in the inner third of the granule cell layer
(Crespo et al., 1986). In the GAD67GFP mouse, GABAergic
interneurons were identified as those that possess high levels
of GFP fluorescence. Cells were recorded from and filled with
biocytin and further had their identity confirmed based on
their morphology as defined by previous work (Freund and
Buzsaki, 1996; Wang et al., 2000; Lledo et al., 2006; Overstreet-
Wadiche and Westbrook, 2006; Zhao et al., 2006). For
Fig. 4 – Example nAChR responses of identified cell types in the
interneuron (A1), immature granule cell (B1) and mature granule
from each cell type to highlight the processes (A2, B2, C2).
example, interneurons are known to possess both basal and
apical dendrites and have spiny or beaded dendrites (Fig. 4A1
and A2). Granule cells have only apical dendrites; those of
immature granule neurons are poorly branched and lack
spines (Fig. 4B1 and B2) whilst the dendrites of mature
granule neurons are richly branched and are covered with
spines (e.g. Fig. 4C1 and C2). Taking all these criteria into
account, it is possible to reliably identify all cells recorded
from as immature granule cells, mature granule cells or
interneurons.

In rats (n¼24) and GAD67-GFP mice (n¼55), a puff of 3 mM
ACh in the presence of 5 mM atropine elicited nAChR-like
DG. Example flattened z-stack of biocytin fills from an
cell (C1), with a corresponding single high-resolution image
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responses in a proportion of interneurons (43%, n¼22) and
immature granule cells in the inner granule cell layer (17%,
n¼60) but not in mature granule cells (0%, n¼36) in the
outer two thirds of the granule cell layer (Fig. 5A1–3, black
traces). The nAChR responses of the interneurons were
significantly larger than those of the granule neurons
Fig. 5 – Cells of the dentate gyrus display nAChR-like responses
Example inward current responses to puff ACh (3 Mm, arrowhead
(grey trace, 10 μM) in (A1) interneuron, (A2) inner granule cell, a
neuron; holding potential �60 mV; in the presence of 5 lM atro
ACh for interneurons (n¼9), inner granule cells (n¼10), and out
Percentage of inner granule cells that respond to puff ACh versu
n¼4/17; 3–5 weeks postnatal, n¼4/21; 5–10 weeks postnatal, n¼
3 mM ACh before and after 10 μM PNU120596 application in inte
Mann�Whitney rank sum test). All responses were recorded in
�60 mV. Abbrevs: IN, interneuron; GC, granule cell.
(Fig. 5B). Furthermore, when the proportions of ACh-
responding granule cells in the inner granule cell layer were
considered according to age of the animal in the GAD67-GFP
mice, there was a trend towards a decrease in the number of
cells that responded to an ACh puff appeared with age,
although the results were not statistically significant (Fig. 5C).
to acetylcholine that can be potentiated by PNU120596.
) before (black trace) and after bath application of PNU120596
nd (A3) outer granule cell; same conditions of puff for each
pine). (B) Mean values for inward current responses to puff
er granule cells (n¼10) in GAD67-GFP mice, nPo0.001. (C)
s the postnatal age (GAD67-GFP mice, 2-3 weeks postnatal,
2/14). (D) Size of the nAChR current in response to puff of
rneurons (n¼8) and granule cells (n¼9) (nPo0.05
the presence of 5 lM atropine and at a holding potential of



Table 1 – Membrane properties for ACh-responding and non-responding granules cells in mouse DG.

ACh-responding granule cells from
the inner third of the granule cell layer

Non-responding granule cells from
the outer third of the granule cell layer

Resting membrane potential (mV) �5573 (n¼10) �6573 (n¼23)n

Input resistance (MΩ) 9767136 (n¼10) 463733 (n¼23)nn

Action potential height (mV) 6675 (n¼10) 7377 (n¼23)n

Action potential width (ms) 2.270.1 (n¼10) 1.970.2 (n¼23)n

Action potential rise time (ms) 0.970.1 (n¼10) 0.770.04 (n¼23)n

Action potential height measured from voltage threshold to peak. Action potential width measured as the width at voltage threshold. Action
potential rise time measured as the time from voltage threshold to peak of action potential. The ACh-responding granule cells were in the
inner third of the granule cell layer and the non-ACh-responding granule cells were in the outer third of the granule cell layer.
n Pr0.05, Mann�Whitney rank sum test.
nn Pr0.01, Mann�Whitney rank sum test.
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Fig. 6 – β2nAChRs are not potentiated by PNU120596.
(A) Response of an interneuron to a puff of 3 mM ACh
(arrowhead). (B) Response is unchanged after bath
application of 10 μM PNU120596 and then puffing on 3 mM
ACh (arrowhead). (C) Adding DhβE to the bath abolishes the
response to 3 mM ACh (arrowhead).

+ PNU120596
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+ Methyllycaconitine
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A

Atropine + PNU120596
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Fig. 7 – α7*nAChRs on immature dentate granule cells are
somato-dendritic. Responses of a granule cell neuron to puff
3 mM ACh (A) in the presence of 5 lM atropine, (B) after
addition of 10 μM PNU120596, (C) after addition 10 μM NBQX,
25 μM D-AP5 and 10 μM bicuculline, (D) after addition of 4 nM
methyllycaconitine, and (E) after wash in the presence of
5 lM atropine and 10 μM PNU120596 alone.
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In the inner granule cell layer, nAChR responses were
observed in a subset of cells that possessed action potentials,
but not in cells that did not possess action potentials. Cells
without action potentials in the inner granule cell layer have
been shown previously to be extremely immature granule
cells or glial cells (Overstreet et al., 2004), and these were not
included further in the analyses. The comparison of active
and passive properties of ACh-responding and non-
responding neurons in the granule cell layer of rats and mice
indicated that ACh-responding neurons had a significantly
less hyperpolarised membrane potential, larger input resis-
tance and a smaller and broader action potential than those
of the non ACh-responding granule cells (Table 1), suggesting
they are less mature than those granule cells in the inner
granule cell layer that are non-responsive to ACh.
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2.5. Nicotinic receptors of immature granule cells are of
the α7nnAChR type and are somato-dendritic

PNU 120596 (1–10 μM), a positive allosteric modulator of
α7nnAChRs (Hurst et al., 2005), significantly potentiated the
nAChR current amplitudes in interneurons (n¼8) that had
α7nnAChR-like responses (Fig. 5A), and all granule cells (n¼9)
with nAChR-like responses to ACh (Fig. 5B). These responses
were blocked the α7nnAChR antagonist methyllycaconitine
(4 nM, e.g. Fig. 6D) but not by the β2nnAChR antagonist DHβE
(data not shown). PNU 120596 had no effect on non ACh-
responding granule cells (Fig. 5C; n¼19).

A small number of interneurons recorded from displayed
cholinergic responses with β2nnAChR characteristics (n¼3), i.
e. their responses to puffed ACh was characterised by a
rounded downward current with a much slower upstroke
than the α7nnAChR-like response (Fig. 6A). These responses
were not potentiated by 1–10 μM PNU120596 (Fig. 6B) and
were blocked by 20 nM DhβE, a specific antagonist of the
β2nnAChRs (Fig. 6C).

nAChR responses in granule cells that were potentiated by
PNU120596 were not blocked by the ionotropic glutamate
receptor blockers 10 μM NBQX and 25 μM D-AP5, or by the
ionotropic GABA receptor blocker 10 μM bicuculline (n¼3), but
were readily inhibited by the α7nnAChR antagonist methylly-
caconitine (4 nM, Fig. 7; n¼8). These results suggest that
immature granule cells in the postnatal dentate gyrus pos-
sess functioning somato-dendritic α7nnAChRs.
3. Discussion

3.1. Conclusions

Using immunohistochemistry we have shown, in both rats and
mice, the presence of α7 nAChR subunits around granule cells
close to the germinal layer in the subgranular zone. These
findings were confirmed with α-bungarotoxin labelling. This
immunohistochemical labelling corresponds with the distribu-
tion of developmental markers for immature granule cells such
as weak nuclear label for NeuN and presence of doublecortin.
Electrophysiology using whole-cell patch clamp recording indi-
cated that a proportion of granule cells in the inner granule cell
layer with electrophysiological properties of immature neurons
(such as relatively broad action potentials and high input
resistance), respond to puffed ACh in the presence of atropine.
These responses are nicotinic in nature and are mediated by
α7nnAChRs since they are potentiated by PNU 120596 (a known
positive allosteric modulator of α7nnAChRs), inhibited by methyl-
lycaconitine but not DHβE, and not affected by ionotropic
glutamate or GABA receptor antagonists. The same nAChR
responses were not seen in granule cells in the outer granule
cell layer that are presumed to be mature and possess mature
electrophysiological properties. These results suggest the pre-
sence of functional somato-dendritic α7nnicotinic receptors on
immature granule cells of the dentate gyrus.

Although concern has been raised over the specificity of
certain commercially available antibodies directed against epi-
topes in the α7 nAChR subunit (Herber et al., 2004; Moser et al.,
2007), our non-commercially produced antibody was well
characterised by ELISA and Western blot analysis. Furthermore,
the obtained immunohistochemical results were substantiated
with α-bungarotoxin labelling, and is in agreement with previous
work in rat that indicates that principal cells of the DG express
α7nnAChR subunit mRNA (Adams et al., 2002; Son and Winzer-
Serhan, 2008). Furthermore, our electrophysiology and receptor
binding results reflected the receptor binding expression
obtained with autoradiographic methods for rats of the same
age as we used (Adams et al., 2002).

Previous electrophysiology studies have indicated the pre-
sence α7nnAChR responses in a proportion of CA1 principal
neurons, and which were accentuated in transgenic mice that
expressed a mutant form of α7nnAChR that does not desensitize
as rapidly as the native receptor (Ji and Dani, 2000). DG granule
cells, however, were apparently unresponsive to focal somatic or
dendritic application of ACh, irrespective of whether their soma
was located in the inner or outer granule cell layer (Frazier et al.,
2003). A possible reason for the discrepancy is that we found the
responses of the native receptors to ACh on granule cells were
small and only in a proportion of granule cells in the inner layer.
These responses however were accentuated by PNU 120596, a
positive allosteric modulator of α7nnAChRs with little or no
activity on most other nAChRs (Hurst et al., 2005; Gronlien
et al., 2007; Young et al., 2008) and which acts as a cognitive
enhancer in vivo (Ng et al., 2007;Timmermann et al., 2007). Our
studies also indicated that the ACh-responsive cells in the
granule cell layer of the DG have the active and passive
membrane properties expressed by immature adult-generated
granule cells (Ambrogini et al., 2004; Schmidt-Hieber et al., 2004;
Esposito et al., 2005; Doetsch and Hen, 2005; Lledo et al., 2006;
Overstreet-Wadiche and Westbrook, 2006).

In our study we used doublecortin as a developmentalmarker
for immature granule cells. Alternative markers to doublecortin
are PSA-NCAM (Wang et al., 2000; Cameron and Mckay, 2001)
and TOAD-64/TUC-4/CRMP4 (Cameron and McKay, 2001; van
Praag et al., 2002; Ming and Song, 2005; von Bohlen und Halbach,
2007; Taupin, 2007). Other potential markers include Tuj-1β, but
this labels only very immature DG neurons, i.e. before they have
action potentials, and also labels non-neuronal cells and not all
the neural cells (Kempermann et al., 2004; Doetsch and Hen,
2005; Lledo et al., 2006; von Bohlen und Halbach, 2007). Calretinin
and calbindin have been used as markers for immature and
mature cells respectively (Kempermann et al., 2004; Lledo et al.,
2006; von Bohlen und Halbach, 2007), but early trials with these
markers in our hands suggested that they do not label all
candidate cells.

3.2. Role of α7nnicotinic receptors in maturation of dentate
gyrus neurons in postnatal brain

The precise function of postnatal-born granule cells is widely
debated, but it is significant that these cells are preferentially
recruited over older granule cells into circuits supporting
spatial memory (Kee et al., 2007; Clelland et al., 2009). It is
likely that postnatal-born granule cells replace older degen-
erating neurons in the DG circuit (Zhao et al., 2008a) and have
specific properties that facilitate learning (Snyder et al., 2001;
Shors et al., 2001, 2002).

α7nnAChRs would have an important function in
postnatal-born DG granule cells because these receptors
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mediate three types of cytoplasmic calcium signals, direct
calcium influx through the receptor, indirect calcium influx
via the activation of voltage-gated calcium channels, and
calcium-induced calcium release from the endoplasmic reti-
culum via ryanodine receptors or inositol (1,4,5)-triphosphate
receptors (Shen and Yakel, 2009). These regulate cytoplasmic
calcium levels and transcriptional events involving CaMKII/
IV, ERK/MAPK and CREB (Greenberg et al., 1986; Nakayama
et al., 2001; Chang and Berg, 2001; Hu et al., 2002; Dajas-
Bailador et al., 2002), i.e. signalling cascades that are central
to long-term plasticity in the central nervous system (Sweatt,
2001). They are also of physiological relevance to addiction,
learning and memory (Bliss and Collingridge, 1993; Nestler,
2002; Malenka and Bear, 2004).

One hypothesis for the function of nAChRs is to potentiate
long-term potentiation (LTP) exclusively in the immature
granule cells, especially as LTP is induced more readily in
immature adult-born granule cells than in mature granule
cells (Wang et al., 2000; Schmidt-Hieber et al., 2004). Further-
more, enhancement of LTP by α7nnAChR stimulation has
been observed in CA1 (Fujii et al., 2000; Matsuyama et al.,
2000; Ji et al., 2001; Lagostena et al., 2008), ventral tegmental
area (Ge and Dani, 2005) and the DG (Welsby et al., 2006, 2007,
2009); in the latter case the LTP it may be mediated by either
interneurons or immature granule cells or both.

Integration of the adult-born granule cells is indicated by a
recent study using α7nnAChR knock-out mice injected with
BrdU: in these preparations the adult-born neurons develop
with truncated, less complex dendritic arbours and display
GABAergic postsynaptic currents with immature kinetics and
they have a prolonged period of GABAergic depolarization
characteristic of an immature state (Campbell et al., 2010).
The location and temporal expression pattern combined with
electrophysiological functionality, suggest that α7nnAChRs
may play a role in maturation and synaptic integration of
adult-born immature granule cells into the existing circuitry
of the dentate gyrus.

3.3. α7 nAChRs as a therapeutic target for the treatment
of Alzheimer's disease

Continuing neurogenesis throughout life has been observed
not only in mice and rats but also in macaques (Gould et al.,
2001) and humans (Eriksson et al., 1998). Nicotine and
selective α7nnAChRs agonists have been shown to improve
cognitive performance in animal models and humans (Van
Kampen et al., 2004; Newhouse et al., 2004; Hajos et al., 2005)
and certain types of memory (Dani and Bertrand, 2007;
Kenney and Gould, 2008). The cholinergic innervation of the
hippocampal formation, including the DG, arises from the
medial septum (Kasa, 1986; Woolf, 1991), and as with other
parts of the central nervous system, the cholinergic innerva-
tion of the hippocampal formation is generally diffuse,
suggesting broad, modulatory roles for cholinergic signalling
at both muscarinic receptors and nAChRs (Frotscher and
Leranth, 1985; Kasa, 1986;Umbriaco et al., 1995; Descarries
et al., 1997). Axo-somatic connections from the largely cho-
linergic medial septum have nevertheless been found to exist
on adult-born DG granule cells soon after they have been
generated (Ide et al., 2008). Degeneration of the cholinergic
terminals in the hippocampal formation gives rise to the
early cognitive defects seen in Alzheimer's disease, but the
α7nnAChRs seem to be unaffected (Auld et al., 2002). Since our
studies suggest that α7nnAChRs are expressed at higher
intensities on immature granule cells in the postnatal DG,
one therapeutic avenue of action of specific α7nnAChRs
agonists could therefore be via these cells in the DG and
these could be a target for the treatment of Alzheimer's
disease. In fact, one study even shows that galantamine, an
acetylcholinesterase inhibitor used in the treatment of
Alzheimer's disease, promotes adult DG neurogenesis via
α7nnAChRs (Kita et al., 2014), making this a very promising
avenue for future research.
4. Experimental procedure

4.1. Ethical approval

Tissue preparation procedures were carried out in accordance
with the UK Animals (Scientific Procedures) Act 1986 and
associated guidelines, and with prior approval from the local
ethical committee of the University of Leeds. Every effort was
made to minimize animal suffering and to reduce the
number of animals used.

4.2. Tissue preparation

Studies were made on brains from 2 to 3-week-old male
Wistar rats and from 2 to 9 week-old heterozygous male and
female GAD67-GFP (Δneo) mice that had been bred at the
University of Leeds. In the transgenic mice, glutamate dec-
arboxylase 67 (GAD67), a specific marker for GABAergic
neurons, is co-expressed with green fluorescence protein
(GFP). The mice have been described further elsewhere
(Tamamaki et al., 2003; Henderson et al., 2010). It is unclear
exactly how long it takes newborn granule cells of the
postnatal DG to become fully integrated within the existing
circuitry, as this ranges 3 to 8 weeks after neurogenesis (Shors
et al., 2001, 2002; Snyder et al., 2001; van Praag et al., 2002;
Jessberger and Kempermann, 2003; Kempermann et al., 2004;
Schmidt-Hieber et al., 2004; Bruel-Jungerman et al., 2005;
Esposito et al., 2005; Ming and Song, 2005; Zhao et al., 2006;
Kee et al., 2007; Toni et al., 2007). One study claims that the
genetic composition of intrinsic factors within the precursor
cell population in mice may take until postnatal day 60 to
become fully established as an adult phenotype (Gilley et al.,
2011), which is reflected in the age range studied here.

4.3. Immunofluorescence

The objective of the immunofluorescence experiments was to
examine the distribution of α7nnAChR immunoreactivity in
DG of rat and transgenic mouse brains in relation to various
other relevant markers for developmental stages of the DG.
The general procedures and controls used for the immuno-
fluorescence were as described previously (Henderson et al.,
2010). Wistar rats (n¼17) and GAD67-GFP (Δneo mice) (n¼9)
were deeply anaesthetised with an intraperitoneal injection
of urethane (12 g kg�1) or Sagatal (sodium pentobarbitone,
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100 mg kg�1, Rhône Mérieux Ltd., Harlow, Essex, UK). After
loss of all pedal and corneal eye reflexes the animals were
perfused trans-cardially with 4% paraformaldehyde in 0.1 M
phosphate buffer (pH 7.4). The brains were removed and
placed in the same fixative for 1�2 h, and then in phosphate
buffer overnight at 4 1C. Sections were cut at 50 μm in the
coronal plane using a Leica VT1000S vibratome (Leica, Micro-
systems UK, Milton Keynes, UK) and washed in phosphate
buffered saline (PBS, pH 7.4), the solution used for all wash
procedures. Antigen retrieval for sections stained for the α7
nAChR subunit was carried out by incubation of the sections
in 50% ethanol for 30 min. The sections were incubated for
1 h in 2% bovine serum albumin (BSA) and then placed in
single or double antibody solutions in 2% BSA overnight at
room temperature or for up to 3 nights at 4 1C. The following
antibody solutions and dilutions were used: 1:500 goat
anti-doublecortin (Santa Cruz Biotechnology, Heidelberg,
Germany), 1:1000 mouse anti-NeuN (Chemicon, Millipore
UK, Watford, UK), and 1:1500 of a rabbit antibody raised
against residues 8-25 of the α7 nAChR subunit (Shelukhina
et al., 2006;Tsetlin et al., 2007). Following washes, the sections
were incubated for 2 h in appropriate combinations of 1:1000
donkey secondary antibody against mouse, rabbit or goat IgG,
conjugated to Alexa Fluor 594 or Alexa Fluor 555 for red
fluorescence, or to Alexa Fluor 488 for green fluorescence
(Invitrogen Life Technologies, Paisley, UK). The sections were
then washed and mounted on Polysines slides (Fisher Scien-
tific UK Ltd., Loughborough, UK) and embedded under cover-
slips in Vectorshield mounting medium either with or
without 40,6-diamidino-2-phenylindole to label nuclei (DAPI;
Vector Laboratories, Burlingame, CA, USA).
4.4. Alpha-bungarotoxin labelling

This receptor binding method was adapted from previous
studies (Jones and Wonnacott, 2004; Oddo et al., 2005;
Shelukhina et al., 2009). Wistar rats (P21, n¼4) were deeply
anaesthetised with an intraperitoneal injection of Sagatal
(sodium pentobarbitone, 100 mg kg�1, Rhône Mérieux Ltd.,
Harlow, Essex, UK). After loss of all pedal and corneal eye
reflexes the animals were perfused trans-cardially with ice-
cold 5% sucrose dissolved in Tris-buffered ACSF (TBA) that
had the following components in mM: Tris, 50; NaCl: 120, KCl:
5, CaCl2: 2.5: MgCl2: 1, and a pH of 7.4. Frozen, unfixed tissue
from was trimmed, and 20 mm horizontal sections of the
hippocampal formation and tongue were sectioned on a
cryostat (Leica). The sections were thaw-mounted on Poly-
sines slides and stored at �80 1C until required. All solutions
were made in 0.1% Triton in TBA, and reactions were carried
out in Coplin jars on a shaker. Selected sections were
removed from the freezer and brought to room temperature,
and fixed in isopropyl alcohol for 10 min. The sections were
incubated in 1% BSA in TBA for 30 min and were then
incubated overnight at 4 1C in either 50 nM α-bungarotoxin-
biotin (Invitrogen, Paisley, UK) in 1% BSA in TBA, 50 nM
α-bungarotoxin-biotin and 1 mM nicotine (or 10 mM α-cobra-
toxin) in 1% BSA in TBA, or in vehicle alone. The sections
were washed 5 times in TBA and then in 1/1000 streptavidin-
594 or 488 in 1% BSA in TBA for 1 h at room temperature.
4.5. Western blot analysis

This method was employed for examination of specificity of a
rabbit antibody raised against a synthetic fragment 8-25 of rat
α7 nAChR (Shelukhina et al., 2006). Recombinant extracellular
domain of α7 nAChR subunit (Korotina et al., 2003) was used
as a model antigen. For examination of the antibody immu-
noreactivity for the full-length α7 nAChR subunit a lysate and
α-cobratoxin-affinity purified fraction of GH4C1 cells over-
expressing human α7 nAChR (Tsetlin et al., 2007) were
prepared. It should be noted that the human and rat α7(8-
25) sequence (YKELVKNYNPLERPVAND) share 100% homol-
ogy. For this purpose, GH4C1 cells (8 mg of protein) were
resuspended in 10 ml of lysis buffer containing 20 mM
sodium phosphate, pH 8.0, 1 mM EDTA, protease inhibitor
cocktail, 1% Triton X-100 and shaken overnight at 4 1C. After
centrifugation at 10,000g for 30 min 0.5 ml of supernatant was
separated for SDS-PAGE and Western blot analysis (Fig. 1A1,
B1, lysate), the rest was shaken overnight at 4 1C with 30 ml of
α-cobratoxin coupled to CH Sepharose 4B (GE Healthcare,
Sweden). Preparation of the activated CH Sepharose 4B and
coupling procedure (5 mg toxin/ml medium) were performed
according to the manufacturer's instruction. To control non-
specific protein sorption the lysate was incubated with 30 ml
of uncoupled CH Sepharose 4B (Fig. 1A3). Both sepharoses
were recovered by centrifugation at 1000g for 5 min and
washed four times with 1 ml of the lysis buffer. Bound
proteins were eluted with 40 ml of SDS/sample buffer and
separated by 10% SDS-PAGE followed by transfer to an
Immobilon membrane (Millipore, MA, USA). The membrane
was blocked for 2 h with 5% dry milk in PBS and then
incubated overnight at 4 1C with antibodies to α7(8-25)
(30 mg/ml) in 0.5% dry milk and 0.1% Tween 20 in PBS. The
membrane was washed and probed with a donkey-anti-rabbit
IgG antibody coupled to peroxidase (Amersham Biosciences,
Sweden) at a dilution of 1:1500. After wash, peroxidase
activity was detected using SIGMAFAST™ 3,30-Diaminobenzi-
dine tablets (Sigma-Aldrich, USA). As negative controls pre-
incubation of the primary antibody with 10-fold molar excess
of α7(8-25) peptide for 3 h and substitution of normal rabbit
serum immunoglobulins for the α7(8-25) antibody were
performed.
4.6. Electrophysiology

Electrophysiological experiments were carried out to deter-
mine if DG granule cells had functional α7nnAChRs. Wistar
rats (n¼24) and GAD67-GFP mice (n¼55) were anaesthetised
by intraperitoneal injection of Sagatal (sodium pentobarbi-
tone, 100 mg kg�1, Rhône Mérieux Ltd., Harlow, UK). When all
pedal and corneal eye reflexes were abolished, the animals
were perfused intracardially with chilled (5 1C), oxygenated
artificial cerebrospinal fluid (aCSF) in which the sodium
chloride had been replaced by iso-osmotic sucrose. This aCSF
(305 mosmol l�1) contained (in mM): 225 sucrose, 3 KCl, 6
MgSO4, 0.5 CaCl2, 1.25 NaH2PO4, 24 NaHCO3 and 10 glucose.
Slices of brain of thickness 300 μm for mice and 350 μm for
rats were cut in the horizontal plane (i.e. to produce trans-
verse hippocampal slices) at 5 1C in the sucrose aCSF using a
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Leica VT1000S vibratome (Leica Microsystems UK, Milton
Keynes, UK).

Whole cell patch recordings were carried out as described
previously (Henderson and Jones, 2005; Henderson et al.,
2005). Slices were maintained for at least 1 h at room
temperature in a holding chamber, just beneath the surface
of aCSF bubbled with carbogen gas (95% O2–5% CO2). In the
recording bath, the slices were maintained at 34 1C and
submerged in oxygenated aCSF solution (flow rate 2.1 ml
min�1). This ACSF (305 mosmol l�1) contained (in mM): 126
NaCl, 3 KCl, 2 MgSO4, 2 CaCl2, 1.25 NaH2PO4, 24 NaHCO3 and
10 glucose. Whole-cell patch recordings were made with
micropipettes (resistances 4–6 MΩ) that contained (mM):
140 K gluconate; 5 KCl; 2 MgCl2; 10 HEPES; 0.1 EGTA; 0.025
CaCl2; 2 ATP-Na; 0.4 GTP-Na (pH 7.35, 280 mosmol l�1).
Biocytin (0.5 mg) was mixed into 1 ml of patch solution just
before use and filtered as used. Recordings were made using
an AxoClamp 2B amplifier (Axon Instruments Inc., Union
City, CA, USA) from somata visualized by infrared differential
interference contrast video-microscopy (Zeiss Axioscope
microscope, Hamamatsu CCD camera, Luigs and Neumann
Infrapatch set-up, Ratingen, Germany). Images were captured
by a frame grabber (Scion Corporation, Alrad Instruments
Ltd., Newbury UK) and processed with CorelDraw X. Granule
cells, located in the granule cell layer, were recorded from.
GFP-positive GABAergic interneurons were identified and
recorded as described previously (Henderson et al., 2005).
A giga-seal resistance was obtained before acquiring the
whole-cell recording mode. Recordings were analogue filtered
at 1–3 kHz and digitized at 5–10 kHz with an ITC-16 ADC
board (Digitimer Ltd., Welwyn Garden City, Hertfordshire, UK)
and Axograph software (Axon Instruments). Electrical inter-
ference from the mains supply was suppressed with the use
of a 50 Hz noise eliminator (Humbug; Digitimer Ltd.).

To correlate pharmacological responses with neuron cell type,
the passive and regenerative membrane properties of each
neuron were characterized in current clamp mode before the
pharmacological studies were carried out, and analysed offline,
as described previously (Henderson et al., 2005). In brief, mem-
brane potential was measured on break-in, input resistance was
calculated from the measurement of the average size of the
voltage response to 20 pA hyperpolarising current pulses. Firing
properties were determined by application of 1000ms depolaris-
ing steps of 10–200 pA. For cells that fired a train of action
potentials, the first three action potentials from the first train
were measured. For cells that only fired single action potentials,
the first three single action potentials were measured. nAChR
responses were then characterised in voltage clamp mode at a
holding potential of �60mV, during which patch seal integrity
was monitored by application of 5mV, 50ms hyperpolarizing
voltage pulses every 60 s. ACh (3mM in HEPES buffered aCSF)
was puffed onto the cells from a pipette identical to those used
for whole cell recording, with the use of a PicoPump (World
Precision Instruments, Stevenage, Hertfordshire, UK), as
described previously (Henderson et al., 2005). The composition
of the HEPES buffered aCSF vehicle (also used as a negative
control) was as follows (mM): 146 NaCl; 10 HEPES; 2.5 KCl; 2 CaCl2;
2 MgCl2; 5 glucose (pH 7.3; 310mosmol l�1). All other drugs were
applied via bath perfusion. ACh puff was done at every 180 s to
prevent desensitization, first without atropine and then in the
presence of 5 mM atropine. The puff pipette tip was placed at a
distance of 20–50 μm from the neuron from which the recording
was made, and the ACh was applied for 5–15ms at a time and at
a pressure of 20–25 psi.

To visualise biocytin-filled cells, the slice was removed
from the recording chamber after recording and fixed over-
night in 4% paraformaldehyde in 0.1 M phosphate buffer,
washed several times in 0.1% phosphate buffer and left
overnight in phosphate buffer at 4 1C. Slices were embedded
in 10% gelatin (Porcine type A) in 0.1 M phosphate buffer at
40 1C for 30 min. After setting of the gelatin, sections were cut
at 75 mm using the Leica VT1000S vibratome, washed in PBS
and then incubated in 1:1000 streptavidin Texas Red (Invitro-
gen) for 2 h. Some slices were processed for biocytin by using
a standard diaminobenzidine histochemical method as
described previously (Henderson et al., 2004).

All standard reagents used for the electrophysiology experi-
ments were obtained from VWR International (Lutterworth,
Leicestershire, UK), Fisher Scientific Ltd. (Loughborough, Leices-
tershire, UK) or Sigma (Poole, Dorset, UK). The following drugs
were obtained from Tocris Cookson Ltd. (Bristol, UK): D-(� )-2-
amino-5-phosphonopentanoic acid (D-AP5), 2,3,-dioxo-6-nitro-
1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulphonamide (NBQX),
N-(5-chloro-2,4-dimethoxyphenyl)-N0-(5-methyl-3-isoxazo lyl)-
urea (PNU 120596) and bicuculline. Atropine, methyllycaconitine
and dihydro-ß-erythrodine (DHßE) were obtained from Sigma
(Poole, Dorset, UK). Stock solutions, at 103 of the working conc-
entration, were made up in water, except for NBQX which was
dissolved in dimethylsulphoxide and stored in individual
aliquots at �45 1C. Working solutions were prepared freshly on
the day of the experiment.

4.7. Image acquisition and analysis

Sections with fluorescent markers were viewed, and images
were taken at random through the rostro-caudal axis of the DG
using a Zeiss LSM 510 Meta confocal microscope (Zeiss, Welwyn
Garden City, UK) equipped with helium/neon, argon and diode
405 nm lasers. The signals emanating from the red (Alexa Fluor
594/555), green (Alexa Fluor 488) and blue ( Alexa Fluor 405)
fluorescent labels were acquired via the 543 nm, 488 nm and
405 nm excitation bands of the lasers, respectively. For each field
of view, three to seven confocal images were captured as a stack
starting from the surface of the section, with the images taken at
intervals of 3–4 mm for cell size measurements. Counts and
measurements of cells were made using the Zeiss LSM Image
Browser. Intensity measurements where appropriate were
carried out using ImageJ freeware (1.43 N, Wayne Rasband,
National Institutes of Health, USA).

4.8. Statistical analyses

All statistical tests were performed using SigmaStat software
(SPSS Inc., California, USA). Results are expressed as mean7-
standard error of mean except where stated otherwise. The
strength of the association between the variables was
assessed using the Pearson product moment correlation test.
Statistical significance for comparison between two groups
was determined with Student's t test or the Mann�Whitney
rank sum test. Statistical comparisons for more than two
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groups were made using one way analysis of variance.
Measures were considered statistically significant if Po0.05.
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