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Correlation Effects in the Trapping Problem:

General Approach and Rigorous Results

L. V. Bogachev, S. A. Molchanov, Yu. A. Makhnovskii,
and A. M. Berezhkovskii

Dedicated to Professor Sergio Albeverio on occasion of his sixtieth birthday.

Abstract. The problem of Brownian survival among randomly located traps
is considered with emphasis on the role of trap correlations. We proceed from
the general representation of the survival probability as the expected value
of the emptiness probability function applied to the Wiener sausage. Using
the definition of (pure) trap attraction vs. repulsion in terms of the empti-
ness probability function, we prove the physical conjecture about the trapping
slowdown or acceleration, according to the “sign” of correlations. Two specific
models are studied along this line, in which the emptiness probability can be
found explicitly; in particular, the long-time survival asymptotics is derived.
A remarkable correlation effect of the survival probability dependence on the
trap size in one dimension is also discussed.

1. Introduction

The problem of Brownian particle’s survival among randomly located killing
traps, usually referred to as the trapping problem, is well known in the general theory
of transport processes in disordered media (see, e.g., [16] and the bibliography
therein). Of primary interest is the time dependence of the survival probability
P (t). The case of noncorrelated trapping medium, where the traps are distributed
in space according to a Poisson law, has been studied rather extensively (see [17]
for a survey of analytic, approximation and simulation methods and results, and a
recent monograph [27] for a rigorous mathematical treatment). Although the exact
solution is available only in one dimension [2], two important general features of
the trapping kinetics have been revealed in the noncorrelated situation:

1. At small and intermediate times, the decay of the particle species basically
follows the conventional theory dated back to Smoluchowski [25]. In particular, an
exponential decrease of the survival probability Pnc(t) is predicted in dimensions
d ≥ 3. (Here and below, the subscript “nc” refers to the case of noncorrelated
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30 L.V.BOGACHEV ET AL.

traps.) The conventional approach is based on the mean-field approximation by
neglecting the many-body effects due to “competition” between the traps (for an
up-to-date account of this theory, see [4], [20]).

2. At long times (t → ∞) the mean-field approach breaks down, since the
behavior of the Pnc(t) is governed by the particle’s untypical survival in untypically
big “holes” in the Poisson cloud. This leads to a fractional-exponent form of the
survival tail [2], [22]. More precisely, Donsker and Varadhan [12] proved that

(1.1) lim
t→∞

t−d/(d+2) log Pnc(t) = −γdc2/(d+2),

where c is the intensity of the Poisson law (i.e., the trap concentration) and γd > 0
is an explicit dimension-dependent constant (see also [27, § 4.5B]).

The problem of allowing for trap correlations has attracted considerable inter-
est in the last 15 years (see [3], [6]–[9], [19], [23], [28], [29] and further references
therein). In particular, it was argued, mainly on physical grounds, that trap attrac-

tion (repulsion) induces the slowdown (respectively, acceleration) of the trapping as
compared to the case of noncorrelated traps1 [6]–[8], [23], [28]. This conjecture was
also supported by the calculation of the long-time survival tail in some models [1],
[9], [19], [26], [29], which is of mathematical interest in its own right. We would like
to point out a result proved by Sznitman [26] (see also an earlier paper by Kayser
and Hubbard [19]) stating that for Gibbsian trap distribution (with finite-range
interaction potential Φ), the asymptotical behavior of the survival probability P (t)
follows the law (1.1), but with concentration c replaced by the quantity βp, where
β is the inverse temperature and p is the pressure [24, § 3.4].2

In the present contribution, we pursue a systematic approach to this prob-
lem. Analysis of the qualitative influence of correlations is of our main concern,
complemented whenever possible by the calculation of the survival asymptotics.
We proceed from the general representation of the survival probability as the ex-
pectation of a certain Brownian functional, in which the trapping medium enters
through the emptiness probability function applied to the corresponding Wiener
sausage (Sect. 2). On the other hand, a “phenomenological” definition of pure
attraction vs. repulsion of traps can also be given in terms of the emptiness prob-
abilities (Sect. 3), which essentially amounts to distinguishing between positive vs.
negative correlations in the distribution of the trap point process.3 Using this link,
we are able to prove the aforementioned general conjecture about the qualitative
role of trap correlations.

We consider along this line two concrete models where the distribution of traps
is determined by a Poisson cluster point process (Sect. 4) or by a one-dimensional
renewal process (Sects. 5, 6). These models are exactly solvable in that the empti-
ness probability function can be found in a closed form, which paves the way for
studying the survival probability in some detail. It is worth pointing out that in
the Poisson cluster model, correlations prove to be of attractive type, regardless
of the intra-cluster interaction. The renewal model, specified by the choice of the
gamma distribution for distances between the adjacent traps, exhibits both types

1In such a comparison, it is implied that the trap concentration c is fixed.
2In the Gibbsian framework, the noncorrelated case corresponds to the ideal gas with null

interaction, Φ ≡ 0. The pressure pnc is easily identified as c/β.
3Of course, in general the qualitative character of the trap “interaction” may not be universal,

that is, purely attractive or repulsive.
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of correlations, depending on the distribution parameter. The long-time survival
asymptotics is derived for these models as well. We also discuss some novel cor-
relation effects arising in one dimension, in particular a remarkable dependence of
the trapping rate upon the trap size (Sect. 6).

2. Survival probability

Let us briefly recall the setting of the trapping problem (see [1] for more de-
tails). Consider a standard Brownian motion (Bt, t ≥ 0) on Rd (d ≥ 1) starting
from the origin, and let P0 and E0 stand for the corresponding Wiener measure and
expectation, respectively. The trapping medium is constituted by random configu-
ration of spherical traps of radius b centered at the points of a background random
point process Z = {Zi}. In other words, the trapping set is of the form ∪i{Zi +Vb},
where Vb is the closed ball of radius b centered at the origin (note that, generally
speaking, the traps may overlap). The traps are supposed to be perfectly absorbing,
which means that the particle is terminated at the first contact with a trap.

The law of the process Z denoted by IP is assumed to be independent of Bt,
and therefore the trapping process is governed by the product probability measure
IP ⊗ P0. We also suppose that Z is simple (i.e., without multiple points) and
stationary (i.e., IP is invariant under space shifts). For a Borel subset S ∈ B(Rd),
let NS stand for the number of points Zi ∈ S. We assume that the expectation
IE[NS ] is finite for all bounded S ∈ B(Rd). Thanks to stationarity, IE[NS ] is
proportional to the Lebesgue volume of S,

IE[NS ] = c|S|,
where the constant c is called the trap concentration.

In this work, we are concerned with the survival probability P (t) defined as

(2.1) P (t) := IP ⊗ P0{T > t} = IE[P0{T > t|Z}],
where T := min {t ≥ 0 : Bt ∈ ∪i(Zi + Vb)} is the particle’s lifetime. Note that
generally P (0) ≤ 1, since the origin where the particle is born may be covered by
a trap. Hence, somewhat more natural is the normalized survival probability

P̃ (t) := IP ⊗ P0{T > t|T > 0} =
P (t)

P (0)
.

The following basic representation of the function P (t) is obtained from its
definition (2.1) via interchanging the order of averages (see [1], [8], [9]):

(2.2) P (t) = E0[g(Sb(t))].

Here Sb(t) := ∪0≤s≤t{Bs + Vb} is the b-tubular neighborhood of a Brownian path

on time interval [0, t] (referred to as the Wiener sausage, due to M. Kac [18]), and

g(·) called the emptiness probability function4 is a set function defined as

(2.3) g(S) := IP{NS = 0}, S ∈ B(Rd).

In particular, P (0) = E0[g(Sb(0))] = g(Vb), and therefore

(2.4) P̃ (t) =
E0[g(Sb(t))]

g(Vb)
.

4In the general theory of point processes, where g(·) is also called the avoidance function, it
is proved that this function completely characterizes the process distribution (see [11, § 7.3]).
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In the case of noncorrelated traps where Z = {Zi} is a Poisson point process
(with intensity c), the emptiness probability is explicitly given by

(2.5) gnc(S) = e−c|S|, S ∈ B(Rd).

As a result, equation (2.2) takes the form

(2.6) Pnc(t) = E0[exp(−c|Sb(t)|)].
We would like to remark here that the Smoluchowski approximation amounts

to carrying the expectation sign in (2.6) through the exponent:

(2.7) Pnc(t) ≈ exp(−cE0|Sb(t)|),
which in fact yields a lower bound for Pnc(t) [4]. Evaluation of the expected volume
of the Wiener sausage and related topics have been addressed in many papers (see,
e.g., [5]). The corresponding expression is of particularly simple form for d = 1 and
d = 3:

(2.8) E0|Sb(t)| =











4√
2π

t1/2 + 2b, d = 1,

2πbt + 4
√

2πb2t1/2 +
4πb3

3
, d = 3.

In one dimension, the general formula (2.2) for the survival probability P (t)
reads as follows:

(2.9) P (t) =

∫ ∞

0

g(ℓ + 2b)f(ℓ; t) dℓ,

where g(ℓ) is the probability that an interval of length ℓ is free from points {Zi},5
and f(ℓ; t) is the probability density of the range of a Brownian motion on [0, t]:

(2.10) R(t) := max
0≤s≤t

Bs − min
0≤s≤t

Bs,

that is the “volume” of the one-dimensional Wiener sausage (with b = 0). It is well
known [5], [13] that the function f(ℓ; t) can be expressed in either of the two forms:

f(ℓ; t) =
8√
2πt

∞
∑

k=1

(−1)k−1k2 exp

(

−k2ℓ2

2t

)

(2.11)

=
8t

ℓ3

∞
∑

k=1

[

(2k − 1)2π2t

ℓ2
− 1

]

exp

(

− (2k − 1)2π2t

2ℓ2

)

.(2.12)

Accordingly, the normalized survival probability P̃ (t) is represented as

(2.13) P̃ (t) =

∫ ∞

0

g̃(ℓ) f(ℓ; t) dℓ,

where the function

(2.14) g̃(ℓ) :=
g(ℓ + 2b)

g(2b)

can be viewed as an effective emptiness probability (a detailed discussion of formulas
(2.13), (2.14) is deferred to Sect. 6).

5Thanks to stationarity of the point process Z, this probability does not depend on the
position of the interval.
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For noncorrelated traps, one has g̃nc(ℓ) = gnc(ℓ) = e−cℓ (see equations (2.5),
(2.14)). Using representation (2.11), from (2.13) one then arrives, after some trans-
formations, to the known Balagurov–Vaks expression [2]

(2.15) P̃nc(t) =
4

π2

∫ ∞

0

exp

(

−π2c2t

2x2

)

x

sinh x
dx.

As would be expected, at short times (t → 0) the survival probability (2.15) is
reduced to the Smoluchowski-type form (cf. (2.7), (2.8))

(2.16) P̃nc(t) = 1 − 4c√
2π

t1/2 + O(t).

It should be noted that this result is not restricted by the explicit formula (2.15)
and can be derived directly from the basic equation (2.13). Indeed, substituting
g̃nc(ℓ) = 1 − cℓ + O(ℓ2) into (2.13) and using expression (2.12) for the probability
density f(ℓ; t) of the Brownian range R(t) (see (2.10)), we obtain

P̃nc(t) =

∫ ∞

0

f(ℓ; t) dℓ − c

∫ ∞

0

ℓf(ℓ; t) dℓ + O(1)

∫ ∞

0

ℓ2f(ℓ; t) dℓ

= 1 − c IE[R(t)] + O(t).

In view of (2.8) (with d = 1 and b = 0), this yields (2.16).

The long term asymptotics of P̃nc(t) (as t → ∞) can be derived via the Laplace
method from (2.15) or, alternatively, directly from (2.9) using (2.12) [2]:

(2.17) P̃nc(t) ∼ 8

(

2c2t

3π

)1/2

exp

(

−3

2

(

π2c2t
)1/3

)

.

As compared to the general Donsker–Varadhan result (1.1) (for d = 1), this is a
more precise formula since it identifies the pre-exponential factor.

3. Taking account of trap correlations

Representations (2.2) and (2.4) show that the emptiness probability function
g(·) is the sole characteristic of the trap distribution that enters the survival prob-
ability. In particular, the influence of trap correlations on the particle’s survival
is determined by the difference between the corresponding emptiness probability
functions, g(·) and gnc(·).

On the other hand, the emptiness probabilities furnish a convenient tool to
characterize the trap interaction (at least on a qualitative level). We give the
following basic definition (cf. [1]):

Definition 3.1. A random point process {Zi} is called (purely) attractive or
repulsive if for any disjoint (bounded) Borel sets S1, S2 ∈ B(Rd), the emptiness
probability function g(·) defined in (2.3) satisfies respectively

g(S1 ∪ S2) ≥ g(S1) · g(S2) (attraction)(3.1)

g(S1 ∪ S2) ≤ g(S1) · g(S2) (repulsion)(3.2)

and, moreover, these inequalities do not degenerate to identity. Furthermore, we
say that attraction or repulsion is strict if the equality sign in (3.1), (3.2) is only
possible with |Si| = 0, i = 1, 2, so that both sides amount to 1.

Remark. The requirement for S1, S2 to be disjoint can be relaxed to the con-
dition that |S1 ∩ S2| = 0.
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In fact, the above definition is just a suitable reformulation of the property for a
random point process to have positive or negative correlations. Indeed, introducing
the indicator random variables δS := I{NS ≥ 1}, so that IE[δS ] = 1 − g(S), it is
straightforward to check that the condition Cov(δS1

, δS2
) ≥ 0 (or ≤ 0) amounts to

inequality (3.1) (or (3.2), respectively).
Note that in the noncorrelated case, due to (2.5) we have identically

gnc(S1 ∪ S2) ≡ gnc(S1) · gnc(S2), S1 ∩ S2 = ∅,
and therefore the deviation from the equality is an evidence of some dependence.
To get more insight why the specific inequality sign in (3.1) and (3.2) is relevant to
a common notion of “attraction” and “repulsion”, let us introduce the conditional

emptiness probability g(S |x0), conditioned on the presence of a “probe” trap center
at point x0 ∈ S:

g(S |x0) := IP
{

δS\{x0} = 0|δ{x0} = 1
}

.

Obviously, in the Poisson case the two emptiness probabilities coincide, gnc(S |x0) ≡
gnc(S). Moreover, it is easy to check that each of the hypotheses (3.1), (3.2) implies
for all S and x0 ∈ S respectively

(3.3) g(S |x0) ≤ g(S) (attraction) or g(S |x0) ≥ g(S) (repulsion),

which is in agreement with an intuitive understanding of the qualitative types of
“interaction” [1], [9].

The following theorem provides a rigorous basis for the physical conjecture
mentioned in Sect. 1.

Theorem 3.1. Suppose that the random point process {Zi} is purely attractive

or repulsive, in the sense of Definition 3.1, and let c be its concentration. Then the

emptiness probability g(S) for all (bounded) Borel sets S satisfies respectively

(3.4) g(S) ≥ gnc(S) (attraction) or g(S) ≤ gnc(S) (repulsion),

where gnc(S) = exp(−c|S|) is the emptiness probability of the Poisson point process

with intensity c. In the case of strict attraction and repulsion, the inequalities (3.4)
are strict provided |S| > 0.

Proof. We give an outline of the proof. By induction, inequalities (3.1), (3.2)
are readily extended to finite unions of disjoint sets. Therefore, via an appropriate
approximation of S we obtain accordingly g(S) ≷

∏

i g(∆Si). It remains to make

use of Korolyuk’s theorem (see [11, § 7.2]), which implies that for a “small” set ∆S

one can write g(∆S) = 1 − c|∆S| + o(|∆S|). ¤

Applying Theorem 3.1 to (2.2), we arrive at our main claim in this section.

Theorem 3.2 (Correlation Conjecture). Suppose that the trap ensemble {Zi}
is purely attractive or repulsive, according to Definition 3.1, and let c denote its

concentration. Then the survival probability P (t) for each t ≥ 0 satisfies

P (t) ≥ Pnc(t) (attraction) or P (t) ≤ Pnc(t) (repulsion),

where Pnc(t) corresponds to the Poisson trap ensemble with intensity c. The same

is valid for the normalized survival probabilities, that is, for all t ≥ 0

P̃ (t) ≥ P̃nc(t) (attraction) or P̃ (t) ≤ P̃nc(t) (repulsion).

In case attraction or repulsion be strict, so are the above inequalities for all t > 0.
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Proof. To prove the statement for the normalized probabilities, being less
evident, we use Definition 3.1 and Theorem 3.1 to write

g(Sb(t))

g(Vb)
≷ g(Sb(t)\Vb) ≷ exp(−c|Sb(t)\Vb|) =

exp(−c|Sb(t)|)
exp(−c|Vb|)

=
gnc(Sb(t))

gnc(Vb)
,

whence in view of (2.4) the result follows. ¤

Remark. Theorems 3.1, 3.2 can be extended to the nonstationary case where
the expected number of points is determined by a certain (non-constant) concen-
tration function c(x) via the formula IE[NS ] =

∫

S
c(x) dx.

4. Poisson cluster model

We now proceed to studying a few specific models. In this section, we analyze
the trapping problem in a locally inhomogeneous trapping environment, in which
correlations are displayed in the presence of trap clusters [1], [3], [9], [21]. More
precisely, suppose that each trap is attached to a certain group (cluster), to the effect

that the process {Zi} can be represented in the form {Xi + Y
(i)
j , j = 1, . . . , νi},

where Xi denotes the cluster “center” and a random aggregate of random vectors

Y(i) := {Y (i)
1 , . . . , Y

(i)
νi

} determines the positions of νi traps belonging to the cluster,
relative to its center.

Let us consider the simplest model of such kind, the Poisson cluster point

process [11, § 8.3], in which {Xi} is a Poisson point process (with intensity c0)
and the aggregates {Y(i)} are assumed to be independent both of each other and
of {Xi}, and identically distributed. The total trap concentration for such an
ensemble is c = c0ν̄, where ν̄ := IE[ν] is the expected number of traps in a cluster.
For ν ≡ 1, our model obviously reduces to the noncorrelated one, since the Poisson
process is invariant under independent identically distributed random shifts of its
points (see [11, § 8.2]).

Theorem 4.1 ([1, Proposition 3.10]; cf. [11, § 8.3]). For the Poisson cluster

process, the emptiness probability g(S) has the form

(4.1) g(S) = exp

(

−c0

∫

Rd

IP
(

⋃ν
j=1 {x + Yj ∈ S}

)

dx

)

,

where {Y1, . . . , Yν} =: Y represents the random structure of a generic cluster.

The survival probability P (t) can now be obtained by substituting expression
(4.1) into the general formula (2.2). However, via interchanging the order of the
integration and expectation in the exponent, one can rewrite the equation for P (t)
in a more suggestive way (cf. (2.6)).

Theorem 4.2 ([1, p. 173], [9]). The survival probability P (t) for the Poisson

cluster trapping model can be represented as

(4.2) P (t) = E0 [exp(−c0IE|S∗
b (Y; t)|)] ,

where S∗
b (Y; t) := ∪ν

j=1(Sb(t) − Yj), Sb(t) being the Wiener sausage.

That is to say, S∗
b (Y; t) is a random region in Rd defined as the union of ν

identical copies of the Wiener sausage Sb(t) shifted at −Y1, . . . ,−Yν . We call such
an object the bunch of Wiener sausages, or simply the Wiener bunch. This concept
is useful in the trapping context [3], [21] and is of mathematical interest in itself.
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Let us now cite some known general results for the Poisson cluster model. We
assume henceforth that the cluster point process under consideration is proper, that
is, 1 < ν̄ < ∞.

Theorem 4.3 ([1, Proposition 4.1]). The Poisson cluster process is purely at-

tractive, regardless of the inner structure of the clusters.

In accordance with Theorem 3.2, this leads to the trapping slowdown.

Theorem 4.4 ([1, Propositions 5.2, 5.2′]). The survival probability (4.2) for

all t > 0 satisfies the inequality P (t) > Pnc(t). Moreover, the same inequality holds

for the normalized survival probabilities: P̃ (t) > P̃nc(t).

Note that the inequalities in this theorem are strict, although attraction itself
may not be strict (cf. Theorem 4.3) and therefore the last statement of Theorem
3.2 cannot be directly applied.

Physical discussion of the trapping slowdown predicted by Theorem 4.4 can be
found in [3], [21], where the “transparency” of individual clusters is shown to be
an important characteristic responsible for the manifestation of the effect at short
and intermediate times.

The behavior of the survival probability P (t) as t → ∞ is described by the
following theorem ([1, Proposition 5.3]; see also [3], [9]).

Theorem 4.5. The long-time asymptotics of the survival probability P (t) in

the Poisson cluster model is of the form

(4.3) lim
t→∞

t−d/(d+2) log P (t) = −γdc
2/(d+2)
0 ,

where γd is the same constant as in (1.1).

Thus, the form of the long-time survival tail in the Poisson cluster model re-
produces that in the noncorrelated case, but with parameter c replaced by c0.
Expressing this in a picturesque way: at long times the Brownian particle “feels”
the concentration of clusters, c0, rather than the total trap concentration, c. Note
also that the limit (4.3) does not depend on the inner structure of clusters.

The remainder of this section is devoted to a particular one-dimensional version
of the Poisson cluster model which illuminates the role of the clusters’ overlapping.
Assume that each cluster is a segment of length L containing n ≥ 2 pointwise traps
(b = 0). More specifically, let two traps be attached to the segment ends and the
remaining n− 2 traps be distributed over the segment completely at random, that
is, uniformly and independently of each other.

Adapting the general formula (4.1) to this particular case, we obtain

Theorem 4.6. The emptiness probability function in this model is of the form

g(ℓ) = exp

{

−ρ

[

1 +
ℓ

L
−

(

1 − ℓ

L

)n−1

+

]}

,

where u+ := max (u, 0) and ρ := c0L.

Let Λk be the random subset of the line R consisting of the points “covered” by
exactly k clusters (k = 0, 1, . . . ). Obviously, once the Brownian particle has been
born in the Λk, it will henceforth stay there until being trapped. Let us point out
that via cutting out those intervals on R which are not in Λk and gluing together
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the remaining segments, one can realize Λk as an effective k-layer trapping medium

in which the distribution of the new traps is induced by the cutting procedure (cf.
[10]). In the next theorem, we find the basic characteristics of Λk.

Theorem 4.7. The probability πk for a given point to occur in the k-layer

medium Λk follows the Poisson distribution with parameter ρ = c0L:

(4.4) πk =
ρk

k!
e−ρ, k = 0, 1, 2, . . .

The conditional emptiness probability gk(ℓ), conditioned on Λk, equals

(4.5) gk(ℓ) =

(

1 − ℓ

L

)k(n−1)

+

e−ρℓ/L, k = 0, 1, 2, . . . ,

where expression u0
+ is understood to be equal to 1. Finally, the inner concentration

of traps in Λk is given by

(4.6) ck = c0

(

1 +
k(n − 1)

ρ

)

, k = 0, 1, 2, . . .

Proof. In order for a given point to occur in Λk, its two-sided (L/2)-vicinity
must contain exactly k cluster centers, which has the probability (4.4).

Furthermore, it is easy to verify that the probability for an interval I of length
ℓ to lie in Λk is given by the expression

e−2c0ℓ · ck
0(L − ℓ)k

+

k!
e−c0(L−ℓ).

To ensure the emptiness of I, this has to be multiplied by (1 − ℓ/L)
k(n−2)
+ , that is

the probability that none of the k(n − 2) inner traps belonging to the k covering
clusters (“layers”) occurs in I. Conditioning on Λk, which amounts to dividing by
πk, then yields (4.5).

Equation (4.6) follows from the observation that due to each of the k layers, the
“ground” concentration c0 is increased by (n − 1)/L = c0(n − 1)/ρ traps per unit
length. To check (4.6) more formally, we find the probability distribution function of
a random spacing ∆ ⊂ Λk between two adjacent traps, which can be done similarly
to the above calculation, and then compute the concentration ck as the reciprocal
of the conditional expectation IE[∆ |∆ ⊂ Λk]. We omit the details. ¤

Note that for k = 0, one has g0(ℓ) ≡ e−c0ℓ, which is actually due to the fact
that the 0-layer medium Λ0 is noncorrelated (cf. Sect. 2 and also Sect. 6 below).
Using (4.5) and (4.6), one can also verify that for each k ≥ 1 and all ℓ > 0

gk(ℓ) < e−ckℓ.

That is to say, the emptiness probability inside Λk appears to be smaller than that
in a Poisson medium with the same concentration ck. In view of Theorem 3.1, this
is an evidence of the inner trap repulsion in each Λk, k ≥ 1. On the other hand,
the clusterized medium on the whole exhibits trap attraction (cf. Theorem 4.3).
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5. One-dimensional renewal model

In the remaining two sections we assume that Z = {Zi} is a stationary renewal

process on the line6 R, so that random spacings {∆i} between adjacent points are
independent and identically distributed. In this section we consider the case of
pointwise traps (b = 0). Let ϕ(x), x > 0, be a common probability density of ∆i’s.
Due to the classical renewal theorem (see, e.g., [14, § XI.1]), the concentration c is
equal to the reciprocal mean spacing, 1/IE[∆]:

(5.1) c =

(
∫ ∞

0

xϕ(x) dx

)−1

.

Furthermore, the emptiness probability function g(ℓ) is explicitly given by the ex-
pression (see [14, § XI.4])

(5.2) g(ℓ) = c

∫ ∞

0

xϕ(x + ℓ) dx.

Let us now take ϕ(x) in the form of the gamma density, first proposed in the
trapping context in [6]:

(5.3) ϕα(x) =
αc

Γ(α)
(αcx)α−1e−αcx, x > 0,

where α > 0 and Γ(α) =
∫ ∞

0
xα−1e−x dx is the gamma function. (The parameter

c here plays the role of the concentration, since ϕα(x) satisfies the relation (5.1).)
Equation (5.2) then takes the form

(5.4) gα(ℓ) =
e−αcℓ

Γ(α + 1)

∫ ∞

0

x(x + αcℓ)α−1e−x dx.

Note that for α = 1 the process Z reduces to a Poisson one. For α 6= 1, the
behavior of the density ϕα(x) at zero suggests that α < 1 and α > 1 correspond to
trap attraction and repulsion, respectively. This is made precise by the following
theorem which can be proved by a direct analysis of equation (5.4).

Theorem 5.1. The gamma ensemble governed by the density (5.3) is strictly

attractive or repulsive, in the sense of Definition 3.1, according as α < 1 or α > 1.
Therefore, by Theorem 3.1 one has gα(ℓ) ≷ g1(ℓ) ≡ gnc(ℓ) whenever α ≶ 1. More-

over, gα(ℓ) is strictly decreasing as a function of α.

This amounts to saying that the deviation of the emptiness probability gα(ℓ)
from its noncorrelated counterpart g1(ℓ) ≡ gnc(ℓ) becomes bigger as |1 − α| grows,
while the sign of 1−α determines the “direction” of correlations. Note that in the
limit α ↑ ∞, corresponding to the infinitely strong repulsion, from (5.3) we have
ϕα(·) → δ1/c(·), which means the formation of a regular lattice of traps on the line R

with period c−1. Hence, the limiting emptiness probability g∞(ℓ) = (1−cℓ)1{cℓ≤1}

provides the minimal possible value of gα(ℓ), and thus the lattice appears to be the
most unfriendly environment for the surviving particle.

The next result following from Theorem 5.1 specifies the general Theorem 3.2.

6Such a process can be directly constructed on the whole line R (see [11, § 12.3]), without
referring to the limit regime arising for the renewal process on a half-line as the starting point is
moved to −∞.
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Theorem 5.2. For each t > 0 the survival probability Pα(t) is a strictly de-

creasing function of α. In particular, for all t > 0 one has Pα(t) ≷ Pnc(t) whenever

α ≶ 1. Moreover, the same is valid for the normalized survival probability P̃α(t).

The long-time survival asymptotics can be found from equations (2.13), (5.4)
using representation (2.12) (cf. (2.17)):

Theorem 5.3. As t → ∞,

(5.5) P̃α(t) ∼ 8

√

2

3

π−3/2

Γ(α + 1)

(

π2α2c2t
)(2α+1)/6

exp

(

−3

2

(

π2α2c2 t
)1/3

)

.

Remark. Comparing (5.5) with the result for Gibbsian traps mentioned in
Sect. 1 suggests that the quantity αc here is related to the “pressure” as αc = βp,
which can be viewed as the equation of state. In fact, the gamma ensemble can be
embedded into a Gibbsian framework by picking the nearest-neighbor interaction
potential Φ(x) = (1 − α) log (cx) (see [15]). Note that for α < 1 (attractive case)
this potential appears to be non-stable in the sense of Ruelle [24, § 3.2]. However,
the ‘nearest-neighbor’ constraint prevents the system from the collapse.

6. Role of the trap size in one dimension

In this section, we analyze the dependence of the trapping rate upon the trap
size b in one dimension. Contrary to the common opinion that the (normalized)
survival probability is independent of b, we show that such a dependence does arise
provided the traps are correlated (for the physical discussion, see [10]).

Recalling (2.13), we have7

(6.1) P̃ (t; b) =

∫ ∞

0

g̃(ℓ; b)f(ℓ; t) dℓ,

where f(ℓ; t) is specified in (2.11)–(2.12) and (cf. (5.2))

(6.2) g̃(ℓ; b) =
g(ℓ + 2b)

g(2b)

is a new emptiness probability function determined according to (5.2) by the con-
ditional probability density

(6.3) ϕ̃(ℓ; b) =
ϕ(ℓ + 2b)

∫ ∞

0
ϕ(x + 2b) dx

.

Such a conditioning can also be realized as passing from the original ensemble
of spacings {∆i} between the adjacent trap centers {Zi} to an effective ensemble

of void intervals {∆̃i} which do not intersect with any trap [Zi − b, Zi + b].8 It

is not difficult to check that the random variables {∆̃i} are again independent

and identically distributed, so that the ensemble {Z̃i} of effective pointwise traps

generated by {∆̃i} is a renewal process as well.
As mentioned in Sect. 2, in the noncorrelated case one has g̃nc(ℓ; b) ≡ g̃nc(ℓ; 0)

(= e−cℓ), so that actually the survival probability does not depend on b:

P̃nc(t; b) ≡ P̃nc(t; 0).

7We introduce b in the notation in order to emphasize the presence of this parameter.
8In terminology of Sect. 4, the void intervals {∆̃i} constitute the 0-layer medium Λ0.
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Formulas (6.1) and (6.2) indicate that in general such a dependence does take place.
Moreover, physical arguments suggest [10] that the effective trap concentration

(6.4) c̃(b) =

(
∫ ∞

0

xϕ̃(x; b) dx

)−1

is likely to be smaller (attraction) or greater (repulsion) than the original concen-
tration c ≡ c̃(0). Accordingly, one can expect that nonzero trap radius b either
promotes or inhibits the Brownian survival, depending on the qualitative type of
trap interaction. For short times, t → 0, this is justified by the Smoluchowski-type
formula

P̃ (t; b) = 1 − 4c̃(b)√
2π

t1/2 + o
(

t1/2
)

,

which can be derived from (6.1) in much the same way as (2.16); in so doing, one
only needs to apply Korolyuk’s theorem (mentioned in the proof of Theorem 3.1)
to write g̃(ℓ; b) = 1 − c̃(b)ℓ + o(ℓ) for ℓ → 0.

The following general theorem makes these considerations precise.

Theorem 6.1. Suppose that the renewal (one-dimensional) point process {Zi}
is purely attractive or repulsive, according to Definition 3.1. Then for all t ≥ 0

P̃ (t; b) ≥ P̃ (t; 0) (attraction) or P̃ (t; b) ≤ P̃ (t; 0) (repulsion).

Moreover, the deviation of the effective concentration is as predicted :

c̃(b) ≤ c (attraction) or c̃(b) ≥ c (repulsion).

Proof. To be definite, consider the case of attraction. Using (6.2) and apply-
ing condition (3.1) of Definition 3.1, we can write

g̃(ℓ; b) =
g(ℓ + 2b)

g(2b)
≥ g(ℓ) = g̃(ℓ; 0),

whence the first assertion of the theorem immediately follows due to (6.1). In view
of (6.4) and (6.3), in order to prove the second assertion we have to check that

(6.5)

∫ ∞

0

ϕ(x + 2b) dx ≤ c

∫ ∞

0

xϕ(x + 2b) dx.

According to (5.2), the right-hand side of (6.5) coincides with g(2b), whereas the
left-hand side is equal to

IP{∆ > 2b} = IP{N(0,2b] = 0 |δ{0} = 1} = g(2b|0).

Thus, inequality (6.5) amounts to g(2b|0) ≤ g(2b). But from (3.3) it follows that
the last inequality is true, and we are done. ¤

For the gamma model introduced above, the b-dependence can be studied in
more detail. Substituting (5.4) into (6.2), we find the emptiness probability

(6.6) g̃α(ℓ; b) =

∫ ∞

0
x(x + αcℓ + 2αcb)α−1e−x dx
∫ ∞

0
x(x + 2αcb)α−1e−x dx

e−αcℓ,

whereas the trap concentration is given by (see (6.4), (6.3))

(6.7) c̃α(b) = c

(

1 − 2bc

[

1 − (2αbc)α−1 e−2αbc

Γ(α, 2αbc)

])−1

,

where Γ(α, z) =
∫ ∞

z
xα−1e−xdx is the incomplete gamma function.
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The following two results are proved similarly to Theorems 5.1, 5.2 using the
explicit expressions (6.6), (6.7).

Theorem 6.2 (cf. Theorem 5.1). The emptiness probability gα(ℓ; b) is strictly

decreasing in α. For a fixed α 6= 1, both g̃α(ℓ; b) and 1/c̃α(b) monotonically increase

or decrease as functions of b, depending on whether α < 1 or α > 1, respectively.

Theorem 6.3 (cf. Theorem 5.2). For a fixed α 6= 1, the probability P̃α(t; b)
is a strictly increasing or decreasing function of b, whenever α < 1 or α > 1,
respectively.

Combined with Theorem 5.2, this means that the effect of the trapping slow-
down (α < 1) or acceleration (α > 1) is enhanced as the trap size b grows. This
result may prove useful in experimental detecting of trap correlations in real one-
dimensional systems.

References

[1] S. Albeverio and L. V. Bogachev, Brownian survival in a clusterized trapping medium, Rev.
Math. Phys. 10 (1998), 147–189.

[2] B. Ya. Balagurov and V. G. Vaks, Random walks of a particle on lattices with traps, Zh.
Eksper. Teoret. Fiz. 65 (1973), 1939–1945 (Russian). English translation: Soviet Phys. JETP
38 (1974), 968–970.

[3] A. M. Berezhkovskii, Yu. A. Makhnovskii, L. V. Bogachev, and S. A. Molchanov, Brownian-

particle trapping by clusters of traps, Phys. Rev. E 47 (1993), 4564–4567.
[4] A. M. Berezhkovskii, Yu. A. Makhnovskii, and R. A. Suris, Kinetics of diffusion-controlled

reactions, Chem. Phys. 137 (1989), 41–49.
[5] , Wiener sausage volume moments, J. Statist. Phys. 57 (1989), 333–346.
[6] A. M. Berezhkovskii, Yu. A. Makhnovskii, R. A. Suris, L. V. Bogachev, and S. A. Molchanov,

Trap correlation influence on Brownian particle death. One-dimensional case, Phys. Lett. A
161 (1991), 114–117.

[7] , Diffusion-limited reactions with correlated traps, Chem. Phys. Lett. 193 (1992),
211–214.

[8] , Trap correlation influence on diffusion-limited process rate, Phys. Rev. A 45 (1992),
6119–6122.

[9] L. V. Bogachev and Yu. A. Makhnovskii, Brownian motion with absorption in a cluster-

ized random medium, Dokl. Akad. Nauk 340 (1995), 300–302 (Russian). English translation:
Russian Acad. Sci. Dokl. Math. 51 (1995), 51–53.

[10] L. V. Bogachev, Yu. A. Makhnovskii, and A. M. Berezhkovskii, Trapping rate dependence on

the trap size in one dimension, Phys. Rev. E 52 (1995), 6900–6903.
[11] D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes, Springer,

New York, 1988.
[12] M. D. Donsker and S. R. S. Varadhan, Asymptotics for the Wiener sausage, Comm. Pure

Appl. Math. 28 (1975), 525–565.
[13] W. Feller, The asymptotic distribution of the range of sums of independent random variables,

Ann. Math. Statist. 22 (1951), 427–432.
[14] , An introduction to probability theory and its applications, Vol. 2, 2nd ed., Wiley,

New York, 1971.
[15] F. Gürsey, Classical statistical mechanics of a rectilinear assembly, Proc. Cambridge Philos.

Soc. 46 (1950), 182–194.
[16] S. Havlin and D. Ben-Avraham, Diffusion in disordered media, Adv. in Phys. 36 (1987),

695–798.
[17] F. den Hollander and G. H. Weiss, Aspects of trapping in transport processes, Contemporary

Problems in Statistical Physics, G. H. Weiss, ed., SIAM, Philadelphia, PA, 1994, pp. 147–203.
[18] M. Kac, Probabilistic methods in some problems of scattering theory, Rocky Mountain J.

Math. 4 (1974), 511–537.
[19] R. F. Kayser and J. B. Hubbard, Reaction diffusion in a medium containing a random

distribution of nonoverlapping traps, J. Chem. Phys. 80 (1984), 1127–1130.



42 L.V.BOGACHEV ET AL.

[20] E. Kotomin and V. Kuzovkov, Modern aspects of diffusion-controlled reactions, Elsevier,
Amsterdam, 1996.

[21] Yu. A. Makhnovskii, L. V. Bogachev, and A. M. Berezhkovskii, The effect of trap grouping

on the decay kinetics of Brownian particles, Chem. Phys. Rep. 14 (1995), 710–728.
[22] A. A. Ovchinnikov and Ya. B. Zeldovich, Role of density fluctuations in bimolecular reaction

kinetics, Chem. Phys. 28 (1978), 215–218.
[23] P. M. Richards, Diffusion to nonoverlapping or spatially correlated traps, Phys. Rev. B 35

(1987), 248–256.
[24] D. Ruelle, Statistical mechanics: Rigorous results, Benjamin, Reading, Mass., 1969.
[25] M. von Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kol-
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