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A New Direct Approach of Computing Multi-step

Ahead Predictions for Nonlinear Models
K.L. Lee and S.A. Billings

Abstract: A new direct approach of computing multi-step ahead predictions for

nonlinear time series is introduced. The covariance of the parameter estimates associated

with, and the mean squared k -step ahead prediction errors of the new direct approach
are smaller than those obmined using the conventional direct approach. Numerical

examples are included to illustrate the application of the new direct approach.

1. Introduction

Most prediction algorithms are based on a minimisation of the mean squared one-step ahead
prediction errors. When multi-step ahead predictions are required, the linear iterative approach
of computing muld-step ahead predictions is often employed, even though the identfied models
may be nonlinear and the obtained multi-step ahead predictions may not be optimal. However
obtaining accurate multi-step ahead predictions is very important in many problems. The task of
obtaining optimal one-step ahead predictions s often not trivial, but computing optimal multi-

step ahead predictions poses a more challenging problem.

For linear time series models with white noise innovations, the least squares multi-step ahead
model depends only on the parameters of the one-step ahead model and past observations.
Hence the optimal least squares multi-step ahead predictions can be computed easily using the
Box-Jenkins iterative approach if the parameters or good estimates of the parameters of the one-
step ahead model are available (Box et al 1994). Unfortunately, the linear model is the only
model where the multi-step ahead predictions are independent of the noise distribution (Guo et.
al. 1999). To compute the optimal multi-step ahead predictions for a nonlinear model requires a
knowledge of the noise probability distribution or an estimate of this and the use of iterated
numerical integration, assuming that the noise probability distribution is continuous (Pemberton
1987, Tong 1990). Iterated numerical integration becomes computationally very expensive for
many step ahead predictions and complex nonlinear models. Therefore sub-optimal approaches
of computing multi-step ahead predictions for nonlinear models have been developed (Gabr and
Rao 1981, Findley 1985, Al-Qassem and Lane 1987, Cloarec and Ringwood 1998, Parlos et al.

2000). The two most commonly used approaches are the iterative and the direct approaches.




Agya et al. (1999) and Zhang et al. (1998) argued that the direct approach could give a better
prediction than the iterative approach for nonlinear time series. However Weigend et al. (1992)
reported that the direct approach performs significantly worse than the iterative approach for the

sunspot data set. In this paper the direct approach will be investigated in detail.

It will be shown that the direct k -step ahead prediction errors are auto-correlated, even if the
optimal k -step ahead model is used to obrain the predictions. This can result in a large
covariance of the parameter estimates associated with the direct k -step ahead model. It will also
be shown that the prediction accuracy of the direct model is directly related to the covariance of
the parameter estimates. Therefore the prediction accuracy of the direct approach can be
improved by reducing the covariance of the parameter estimates associated with the direct k -
step ahead model. Hence 2 new direct approach will be introduced. The new direct approach can
produce parameter estimates with a smaller covariance, and hence a higher prediction accuracy

can be expected compared to the direct approach.

The paper is organized as follows. Section 2 briefly introduces basic concepts, algorithms, and
the optimal and sub-optimal approaches for computing multi-step ahead predictions for a
general Nonlinear AutoRegressive (NAR) model. Detailed analysis of the direct approach is
performed in Section 3. The new direct approach is introduced and discussed in Section 4.

Simulaton results are presented in Section 5 and finally conclusions are given in Section 6.

2. Preliminaries

2.1 Identificaton

It is well known that input-output descriptions that expand the current output in terms of past
inputs and outputs provide models that represent a broad class of nonlinear stochastic control
systems, and a unified representation called the Nonlinear AutoRegressive Moving Average
model with eXogenous inputs (NARMAX) has been derived under some mild assumptions
(Leontaritis and Billings 1985 a, b). This approach has been adopted for time series modelling
(Chen and Billings 1989a) and leads to the following general NARMA model

yt‘ = f(yi—l L yr—n\. o en’-] "‘"’el—n,, )+ e.! (1)
where y, is the output signal, e, is an unobserved and unpredictable zero mean noise sequence,
f(') Is some nonlinear function and n, and n, are the maximum output and noise lags

respectively. The NARMA model is about as far as one can go in terms of specifying a general
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finite dimensional nonlinear relationship (Chen and Billings 1989a). In some approximations, it

may be possible to reduce the NARMA model to a simplified form called the NAR model,
Vo= Vv, Jre, @)

The model in eqn (2) is obviously less general than the model in eqn (1) but the identification

schemes and system analysis of the NAR model are simpler.

The functional form f (') for a real world system is generally very complex and is usually

unknown. Any practical modelling must be based on a chosen model set of known functions. In
additon, an efficient identification procedure must be available to select a parsimonious model
structure because the dimension of a nonlinear model can easily become extremely large. In this
study, linear-in-the-parameters models are considered because rich linear identification
techniques can readily be applied to this class of models. A general linear-in-the-parameters

model takes the form
Y :Zfi(xz—1)6i +e, 3)
i=l

where 0, are the parameters, n,, is the number of terms in the model, ft.(XH) is a linear or

nonlinear model term which depends only on X,_, and x,_, is the vector

X, = (y,_l sees Yimny s €pmtomenr €4y, )T 4

where the superscript 7 denotes transpose. The polynomial model (Chen and Billings 1989a)
and the extended model set (Billings and Chen 1989) are examples of iinear—in—the-pararneters
models. For linear-in-the-parameters models, the parameters can be estimated easily using least

squares type algorithms. The following cost function

J=Z€:2:Z(y1_nm fi(x:—l)gi} ()

t=l1 t=1 i=]

where N is the length of the time series, is minimised to estimate the unknown parameters 8,.

Radial Basis Function models are ‘universal approximators’ and can also be configured to
PP g

be linear—in—the-parameter models by various methods. In this study the nonlinear function

) (-) in eqn (3) will be assumed to be a thin-plate-spline radial basis function so that

:;2"'[ fr (Xr—l )65 = 299(”"14 - cf“)gf (6)

where H'H denotes the Euclidean norm, @(v): v’ log(v), and ¢, are the centres of the radial

basis funcuon. The well-known and efficient forward regression orthogonal least squares




algorithm (Chen et al 1989, Chen et al 1991) will be employed to identify the models by selecting

n, important centres from all the data and esrjmat:ing the associated parameters.

2.2 Identification of NARMA Models

The system noise ¢, in eqn (1) is generally unobserved and will be replaced by the prediction

error or residual sequence &, , X,_, in eqn (4) will then be modified accordingly

T
xf—f :(yr—]?"" yr—n\,’gr—w'"’fr—n: ) (7)

Initially, the values of the residuals &, are not available and are set to zero. Then the forward
regression orthogonal least squares algorithm (Chen et al. 1989) 1s used to identify the model and

the minal residual sequence fl(ﬂ) is calculated. An iterative loop is then entered to update the

vector X(fi such that

!

. e T
x®) = (_v{_l - L ]},...,f,(fn;)) ®

and the forward regression orthogonal least squares algorithm is used to select and update the
model. This iterative procedure is terminated when the residuals £, converge, and has been
successfully employed to identfy NARMA models with polynomial functions (Chen et al. 1989).
Unfortunately, it was found in the current study that when a thin-plate-spline radial basis
funcdon (or the Gaussian function) was employed to approximate f (0) in eqn (1), in many cases
the residuals ¢, unlike the polynomial case, do not converge. This.may be related to m-

invertibility, see Chen and Billings (1989b). Therefore an alternative approach of identifying the
NARMA model was employed in this study, on the assumption that the nonlinear time series is
invertible. A NAR model with sufficiently long maximum output lag is identfied from the data

to give

Y0 = Frar Dt Vearos Vin )+ ©)

~

where f

har

(') is the identified NAR model and é; is the calculated residual sequence. The

unknown residuals in eqn (7) are then replaced by the calculated residuals fl to give

%ot =D Vi b, | (10

and hence a NARMA model can then be identified using

yr :iﬁ(xr—l)gi+er (]1)




This approach was first adopted by Durbin (1959) to idendfy linear ARMA model, and was
recently investigated by Broersen (2000). The advantage of this approach is that no iteration is
required to identify the moving average terms. This approach will be employed to identify

NARMA models in this study.

2.3 Model Validation
Once a model has been identified the model should be validated. Bilings and Zhu (1994)

developed statstical validation methods which check that the residuals, which are computed as
f, = "Zfi(xx—l)éf (12)
i=1

where é,. are the estimated parameters, are unpredictable. The model validity tests are defined as

N-t,

Y6,

=1

p-f‘f(?’-p):_",v—'—:é‘(f.ﬂ) (13

XS

t=1

N-t

& -V ENE, - E)
pfyfug'g’}("'p)= lel — == =kp§(rp) (14)
\/z[yrfr _yzé:r]zJE[‘frz _5"2]2
=] =1

where k 18 a constant, 0 denotes the Kronecker delta and overbar denotes time average. For

sufficiently long data sets the 95% confidence intervals are approximately +1.96/ JN.

2.4 Optimal and Sub-Optimal Multi-Step Ahead Prediction Methods
For ease of discussion trutially the time series will be assumed to be generated by a very simple

Nonlinear AutoRegressive (NAR) model of order 1 in this section.

vo=flya)+te, (15)

2.4.1 Optimal Multi-Step Ahead Predictions

The optimal least squares & -step ahead prediction Yitks0» given information up to and including

time ¢ is known to be

yr{ﬂ'n :E[ywk”yt’yr—l’y.w?,""] (16)
where Ela/ b] denotes the conditional expectation of a given b .

The optimal one-step ahead prediction can easily be obtained as




L]

Y =ELf(y,)+e.]
=f(v) (17)
where E,[o] denotes Efs/y,.y, ...
The optimal two-step ahead prediction would be
Y =E 3]
=E[F(f(n)+eum)+e..]
=[ £(£(5,)+ el ¢) 19
where F, (o) is the probability distribution of the noise ¢, , which must cither be known or

which has to be approximated before the integral can be solved, either analytically or in most
cases numerically. Pemberton (1987) derived a simple recurrence relationship for the optimal
mula-step ahead prediction functions for a general NAR model. Assuming that the noise has a
known distribution such as a zero mean normal distribution, Pemberton (1987) showed that the
solution can be computed using numerical integration techniques. Unfortunately this method
becomes computationally very expensive for many step ahead predictions and high order
models. Therefore sub-optimal methods are usually employed to compute multi-step ahead
predicdons for nonlinear models. The two most commonly used approaches of computing

multi-step ahead predictions, the iterative and the direct approaches, will be discussed below.

2.4.2 Tterative Approach
In this approach the one-step ahead model is constructed by minimizing the mean squared one-
step ahead prediction errors and the identified model is then used to recursively forecast k -steps

ahead. At any intermediate step, the model will use some of the forecasts obtained at previous
nite

steps as inputs. For example the two-step ahead prediction, using the iterative approach, Y iar,

for the NAR(1) model would be

Vivan = f(j}:fllr )= f(f()’r )) (19)
where (0)”6 indicates that (-) is computed using the iterative approach. The prediction is
obtained as though the error €, in eqn (18) is set to the mean value of zero. The iterative

approach will usually be biased for nonlinear models because the expected value of a function is
usually not equal to the function of the expected value E [ f (0)]¢ ¥ (E [-D Brown and Mariano

(1989) show that the bias associated with the iterative approach will not go to zero for large




sample sizes, even if the nonlinear model f(') 1s known exactly. The advantages of the iterative

approach however, are that the method is very easy to implement and fast to use.

2.4.3 Direct Approach

In the direct approach a direct k -step ahead model is constructed to predict & -steps ahead

directly. Therefore the two-step ahead prediction using the direct approach 3%, for the

S+t

NAR(1) model would be

i = £ (v,) (20)
where (O)djr indicates that (e) is computed using the direct approach and £, (o) is the
identified two-step ahead model constructed by minimizing the direct two-step ahead mean
squared prediction errors. Unlike the iterative approach where a single one-step ahead model is
used repeatedly to compute many step ahead forecasts, in the direct approach a direct k -step
ahead model is identified for each prediction time step. Potential problems with the direct
approach are that the direct & -step ahead prediction function may be very complex and hence
difficult to identfy for large k. Also the k-step ahead prediction errors are usually auto-

correlated and this may cause problems in the estimation of the parameters which may become

biased.

3. Detailed Analysis of the Direct Approach

For multi-step ahead predictions for nonlinear time series, the direct approach can in most cases
yield a better prediction performance than the iterative approach for nonlinear models, see Stoica
and Nehorai (1989), Lin and Granger (1994), Zhang et al (1998) and Atiya et al (1999). Therefore
the direct approach of computing multi-step ahead predictions will be investigated further in this

section.

3.1 Identification of Multi-step Ahead Models using the Direct Approach
The direct k -step ahead model is of the form

n'ﬂ
_ di dir
yH—k *Zfi(x:)gi ! +e;;kir (21)
i=l
dir

where ¢}, is the direct k -step ahead prediction error sequence. The following cost function

i=1

N-=k ‘ ” N-k 1. ] 2
J = 2 (e.:l:;en )~ = [.vuk - Z f; (xr )9;’”’ J (22)

L1]




15 usually minimised to esdmate the unknown parameters in the direct k -step ahead model.
Least squares type algorithms such as the forward regression orthogonal least squares algorithm
(Chen et al. 1989) can readily be used to identify the direct k -step ahead model. After the model

has been identified, the direct & -step ahead residuals can be computed as
ekre = Yen = 2, Fi(m, )7 (23)
=1

“ _
where 8" are the estimated parameters.

3.2 Autocorrelation of the Direct k -step Ahead Prediction Errors
It will be shown in this section that the direct k -step ahead prediction errors are auto-correlated.

First linear time series will be considered and this is followed by the nonlinear case. Consider a

simple linear AR(n,) time series represented by

Alz)y, =e, (24)

where A(,z'l)=1——alz'l i B (25)

and z7' is the backward shift operator. Let the polynomials

Gule™)= 89 4 g0 1 v g0, 270 29

v, (z“)=1+wlz" totw, 2 27)
be uniquely defined by the identity

1=A" Y, )+ G, () | 28
where ¥, (Z_l) is the polynomial of order (k~1) obtained from the long division of 1 by
Alz"), and 2™G, (™) is the remainder. Substituting A(z™) from eqn (28) into eqa (24) with

! replaced by t + k yields

Y =0y (Z_i)}’; TV, (Z_l )eH-k (29)
It follows that the optimal k -step ahead prediction (Soderstrom and Stoica 1989) is

¥iten =Gz, (30
and the optimal k -step ahead prediction error sequence is

e =¥ (27 b 6y

which is auto-correlated until lag k. The same phenomena can be observed for the nonlinear
case. Consider a time series generated by a nonlinear AutoRegressive (NAR) model as described

in eqn (2). At time £ +1, eqn (2) becomes




y1+l = f{-\’l el -vx‘—n‘ -1 J+ eH] (32)
Similarly at time  + 2
y{+2 = f(.vﬁl anmey y!—-‘l\.vl ) + €r+2 = f(f(yr Ll y.‘-nl‘.H )+ €t+l yeey yr—nl‘d-l )+ €I+:’. (33)

From the discussion in Section 2.4.1, the optimal two-step ahead prediction is
yf(:-p;‘,/{ :J-f(f(yl AERN .Vr—nl“ﬂ )+ €ees yz—nﬁ—} }:‘IFn (6) = onp{ (yf AXTHY yr—n}.+l ) (34)

where f,” (o) is some complex nonlinear function. The two-step ahead prediction error is

opt opt

— _ e opt
Crpan = Yita Yivan =83 (yr*"" yr—n3.+l’er+1)+e|+2 (35)

where g3 (o) is some complex nonlinear function. In general the optimal prediction at time
82 p g P p

t+k is

opt . opt
y:+kl: T

(y.' 3meey -"}r—n}.#-l ) (36)
where f,” (o) is some complex nonlinear function whose analytical form is usually not available.
The optimal & -step ahead prediction errors are

opt opt

ez+k.’r = gk (yr TINED yr—ny+1 2 €:+1 ""’er+k—l )+ e:+k (37)

Therefore similar to the linear case, the direct k -step ahead prediction errors will also be auto-

correlated untl lag k for nonlinear time series.

3.3 Covariance of the Parameter Estimates Associated with the k -step Ahead Model

Identified Using the Direct Approach

It has been shown that the direct & -step ahead prediction errors are auto-correlated. This may
influence the application of the direct approach. The optimal prediction function £, (e) in eqn

(36) can be parameterised to give

"m
— opt (¢ _— k
Vs _ysz.u'.' +elffl’cl! _'fo(xl)gi( : +€ff.£."r (38)
i=l

In matrix form eqn (38) can be written as

Y, PO+, (59
where Y, = [}’fm Yoz = Yw ]T , O= [Ql(k) gzk} arsi)]r ¢ b= [IDI B o Pn,,, Ja
EF =[f.‘(x|) f,'(xz) ff(xN—k )]T and =, =[e,‘:ﬂ:” Crasia e.:'p;,v—k ]T-

It 1s well known that minimising the sum of the squared errors yields the least squares estimates

6=(P"P)" Py, (40)




Substituting Y, from eqn (39) into eqn (40) gives
6=0+(P PPz, (41)

=, would consist of future noise terms such as (em ,...,er) and would not be correlated with

P, hence E lP TEkJ: 0. Therefore the parameter estimates associated with the direct k -step

ahead model would be unbiased even though the prediction errors are auto-correlated. The

covariance of the parameter estimates can be computed as

cov(®)=E[6-0)6-0) |=(p7P)" P Elz, =7 [P(p7 )" 42)
It is known from Section 3.2 that the direct & -step ahead prediction errors are auto-correlated
untl lag k , hence

EEZT|>EEET] k22 (43)
Due to the auto-correlation of the direct k -step ahead prediction errors, the covariance of the
parameter estimates associated with the direct k -step ahead model is greater than that for one-
step ahead model. A simple linear time series generated by an AR(1) model is used to further
tllustrate this point. Assuming that the time series is obtained as

Y. =ay,_ te, (44)

The optimal & -step ahead prediction is

opt

Yivkre =aky: (45)

and the prediction obtained using the direct approach is

y1+fu‘1 = (adir )(L) yr (46)

YidVisk
where (@™ s “ The variance of (@™ - can be obtained as, see Findley (1985
Y

. : ~ i T 1 =+ a2 1 —a 2* 2
i) = f o+ - far ) -t f ][ e hoet)pin ]y
=
From the above eqn (47), as k increases the variance of the parameter estimates associated with
the direct k -step ahead model increases. The variance of the parameter estimates associated with

the k -step ahead model obtained using the direct approach has been shown to be much higher
than that obtained using the iterative approach, see Findley (1985).

10




3.4 Prediction Accuracy of the Direct Approach
The effect of the covariance of the parameter estimates associated with the direct approach on

prediction accuracy will be discussed in this section. For a general NAR model, the optimal

mula-step ahead prediction can be obtained by y%,, =PO, see eqn (39) and that obtained

: . . i A di A di : !
using the direct approach is v/, = PO where ©" are the estimated parameters. A measure

of the prediction accuracy can be obtained by computing the mean squared k -step ahead

predicton errors
E[ymfc - yf—rur ]2 = Ebr+k - Pé(ﬁr ]2 = E{(yrh‘c - P®)+ (P@ - Pédjr)]z (48)

Because PO is the optimal prediction, hence (v —P@) contains new informaton (noise)

Stk

from time £+1 to 1+, and should not be correlated with (PO ~ P& ), which is obtained

based on information up to time # . Hence eqn (48) becomes
E[ka - y:f;“ ]— = E[yn-k — P@P - E[P@ _ P@djr ]"

= Ely,,, - PO] + PE[0 - &% fo - &% ] p7 (49)
The first term on the r.h.s of eqn (49) is the mean squared prediction errors that would have
been obtained if the optimal & -step ahead model was used to obtain the predictons. The second
term on the r.h.s of eqn (49) is associated with the covariance of the parameter estimates of the
direct approach. Therefore the accuracy of the prediction is directly related to the covariance of
the parameter estimates associated with the direct model. For the simple linear AR(1) time series
studied in Section 3.3, the prediction performance of the iterative approach is better than the
direct approach because the variance of the parameter estimate associated with the iterative
approach is smaller than that for the direct approach. The large covariance of the parameter
estimates associated with the direct approach occurs for nonlinear models as well. Kabaila (1981)
shows that for a general NAR model, the parameter estimates based on the one-step ahead
prediction error approach (iterative approach) provides a better estimate of the model
parameters than that obtained by minimizing the direct k -step ahead prediction errors (direct
approach). This problem motivated the search for a new direct approach with uncorrelated % -

step ahead prediction errors, such as e,,,,, =e,,,. The covariance of the parameter estimates

associated with this new approach would then be small and hence a better prediction accuracy

may be obtained.

11




4. A New Direct Approach for Multi-Step Ahead Predictions

Consider a general NAR(}?}.) time series described in eqn (2). To construct the k -step ahead

model using the conventional direct approach, a general NAR (n 5 ) model 1s employed to give

— pdir dir
yr+k —Jk (yr’“" yr—r|y+l)+el+k” (SO)

where (o) is the direct k -step ahead model. Even if the optimal direct k -step ahead model
is identified as in eqn (36), the obtained k -step ahead prediction errors are auto-correlated, see
eqn (37). This is because at ime 7 + &, eqn (2) becomes

Yire = [ (y; e Yiop 419 €papanenr €ipy )+ €k (51)
where f, () is some complex nonlinear function and ¢,,, is the noise at time 7 + k . Hence the

correct model structure to be employed to identfy the direct k -step ahead model should be a
NARMA (7, , k ~1) model

dir—noise dir—noise dir—noise dir—noise

y!+k = k (yr 224D yt*n_vﬂ ¥ er+l 1rea e:+k-l )+ er+£: (52)

dir-noise

— . ' _
where f77""*(e) is some complex nonlinear function and e/,

is the one-step ahead

dir—noise

prediction error at time f+ k. Strictly speaking f} (0) is just a one-step ahead model
because information up to time ¢ +k —1 is used to predict the output at time ¢ + k. However

the model £, " (-) will be employed to make & -step ahead predictions and hence will still be

dir—noise
t+k

called the direct k -step ahead model and also e 1s accordingly named as the k -step ahead

prediction error. Comparing eqns (51) & (52), it can be seen that the prediction error sequence

dir-noise

Breei can be made to be an uncorrelated sequence if the identified k -step ahead model
f7 (o) in eqn (52) is a good approximation to the actual k -step ahead prediction function
i (') in eqn (51). This new approach of identifying the direct k -step ahead model will be called

the direct-future-noise approach. The new direct k -step ahead model in eqn (52) can

alternatively be expressed in the form

r!H'I
_ dir—noise dir—noise dir-noise
Yisg = Z 5 (Xr+k—l )95 + € (53)
i=|
— dir—noise dir—noise T . .
where X,.,_, = (y! s Yion 412 €141 gonny B ) . The following cost function

N-k N-k n,

J = (ef(iz(_nnﬂ“‘ )2 = 2 y!+k - 2 f‘f (xl'i'k—l Pfdfr_n”ise J (54)

=l =1 i=l




can be minimised to estimate the unknown parameters in the new direct & -step ahead model.
Least square type algorithms such as the well-known forward regression orthogonal least

algorithm (Chen et al. 1989) can be used to identify the new direct & -step ahead model.

4.1 Prediction Using the Direct-Future-Noise Approach for Nonlinear models

The new k -step ahead direct-future-noise model in eqn (52) contains future noise terms because

dir—noise dir=noise

noise terms such as (em oy €y ) are unknown at time /. Hence the k—step ahead

predictions cannot be computed exactly, except for the linear model case where future noise
terms can be set to the mean value of zero. Here a simple approximation will be employed for
the nonlinear case. For ease of explanation and clarity, a polynomial nonlinear function is used
initially to describe the approximation method. Assuming that the three-step ahead direct-future-

noise polynomial model in eqn (52) is identified as

fj'dfr—naise (.) - 05)/, +05 y, e"(i:—noi.\'e & 02(8 dir—noise )2 (55)

t+2

Therefore the three-step ahead predictions can be approximated by
yﬂg—ﬁio:‘:e — E{ [05}', 3 O.Sylerri:';l--naise + 02(6 dir—noise )2J

142

=0.5y, +0.5y,E, e |+ 0.2E, [(e i ) |

r+1 1+2
1 Nl 1 N i =2 5
=0.5y, +O.5y{m" §§;+1J+O.Z[m “. Ei‘;zj
= _l__lv"f:_fo.sy +0.5y,¢,, +0.2£2, ) | (56)
Nonin =2 1= I o .

A

where &, =y, - f, (yj ——_— ), i=1,..,N,. are the realised one-step ahead residuals in the

training data set with data length N, and fl (0) is the identified one-step ahead model. This

dir—noise

means that e}, to the power of [ at time ¢ is approximated by the average of L,C. This

approximation is extended to the RBF case. Assuming that the identified & -step ahead model
for the RBF case is

n
B fii}

fkdir-nnise (.) = Z ¢(”X{+k,] _ ci "ﬁidir—m:i.‘-e (57)

i=l

dir—noise dir—noise

r Adir-noise - .
where X, , —(yr sees Yiom 412 €ray piBs ) and @, is the estimated parameters.

The k -step ahead predictions can be obtained as

o 1 Nopun=k [ 1, o
e D DL i) 59

train J=0 i=1

13




- T . ’ . . . .
where X, ;. =¥ s Vicu ’é:h! ,...,g‘}%) - Stmulation studies will be performed in Section 5 to

[ Ehad

compare the prediction performance of the direct-future-noise approach using this

approximation with the iterative and the direct approaches for nonlinear time series.

4.3 Procedures for the Three Different Multi-step Ahead Prediction Methods

In this section, the procedure associated with each of the three different mult-step ahead
prediction methods will be summarised based on an RBF modelling framework. These ate the
iterative approach discussed in Section 2.4.2, the direct approach discussed in Section 3 and the

new direct-future-noise approach introduced in Section 4.

4.3.1 The Iterative Approach

1) Set the prediction step k =1 and the vector X, = (yr il )T ;

i)  Set the initial number of centres n, =5.

i) Use the forward regression orthogonal least squares algorithm (Chen et al. 1989) to identfy
the one-step ahead model in eqn (6) by selecting n,, significant centres from all the traming
data and estimating the associated parameters.

iv) Calculate the mean squared one-step ahead prediction errors over the validation data set.

v) Increase n, by one and repeat steps (iii) to (v). Go to step (vi) when 1, =60.

vi) Record the number of centres with the minimum mean squared one-step ahead prediction
errors calculated over the validation data set.

vit) Re-identify the one-step ahead model from the training data set with the recorded number
of centres in step (vi).

viif) Compute the mean squared one-step ahead prediction errors over the testing data set using

the identified model in step (vii).
ix) Increase the prediction step k by one and update x, = (j‘;f‘fm Yo " Vieiga )T :
x) Compute the 2-step ahead prediction using the identified one-step ahead model in step (vii)

but with updated x .- Calculate the mean squared 2-step ahead prediction errors over the

testing data set.

xi) Repeat steps (ix) to (x) until the required number of prediction steps has been obtained.

4.3.2 The Direct Approach

Steps (i) to (viil) are the same as the iterative approach in Section 4.3.1.
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(ix) Increase the prediction step & by one. Use the same arguments as in one-step ahead model
x; :(y[ yrﬂrl‘,ﬂ )T'

(x) Repeat steps (ii) to (vii) to identify the direct k -step ahead model described in eqn (21).

(i) Compute the mean squared k -step ahead prediction errors over the testing data set.

(xii) Repeat step (ix) to (xi) until the required number of prediction steps has been obtained.

4.3.3 The Direct-Future-Noise Approach

Steps (1) to (vili) are the same as the iterative approach in Section 4.3.1.

(x) Compute the residuals £ of the training data set using the identified one-step ahead model
in step (vi).

(x) Increase the predicion step & by one and update the vector

T
xr+k—l - (yr i _vz—n‘.+1 ’ §:+l LA §H—i‘—] ) :

(xi) Repeat steps (ii) to (vii) to identify the direct k -step ahead model described in eqn (53).
(xii) Compute the mean squared k -step ahead prediction errors over the testing data set, using
the approximation method described in Section 4.1.

(xiit)Repeat step (ix) to (xi) until the required number of prediction steps has been obtained.

5. Simulation Studies

5.1 Experiments on AR(1) Model

In this experiment, the parameter estimation and the prediction accuracy, of the iterative, the
direct, and the new direct-future-noise approaches, are studied based on a simple AR(1) time
series described in eqn (44). Two different values of a in eqn (44) were considered in the
experiment, @ =0.5 and a=0.9, and for each value of a a data set of 600 data points was

enerated. The first 300 data points were used as the training data set and the next 300 points
g P g P
. A satip Gk A dir—noise k) . .
were used as the testing data set. The parameters @ (a o )( ) and (a o '”'“) associated with
the iterative, the direct and the direct-future-noise approaches were estimated from the trainin
PP g

data set and the k -step ahead predictions were computed on the testing data set. For prediction

using the direct-future-noise approach, the future noise terms were simply set to zero. This is

reasonable for the linear case since E, [em ]= 0, k>0.

The mean squared k -step ahead prediction errors of the iterated, the direct and the direct-

future-noise approaches were computed on the testing data set. In addition the values of
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)

A~ fte 3 ~ire \K i ~ dlir : A dir (‘l') ; A dir—noiye Y ~ dir—noise “) B
Aa" :(a"—(a”)), AG" =(a‘—(a") ) and AG" "™ :(a“(ad' o ) ) for the

iterated, the direct and the direct-future-noise approaches were computed. Three hundred
replications of these simulatons were performed and the results are reported 1n Table 1. The
results in Table 1 clearly show that the variance of the parameter estimate associated with the
direct approach is higher than that for the iterative approach and the direct-future-noise
approach. This resulted in higher mean squared prediction errors for the direct approach

compared to both the iterative approach and the direct-future-noise approach.

5.2 Multi-step Ahead Residuals for the New Direct-Future-Noise Approach

This experiment is to show that the k-step ahead residuals of the new direct-future-noise
approach can be an unpredictable sequence if the k -step ahead model in eqn (52) is a good
approximation to the complex k -step ahead prediction function in eqn (51). This was verified by

simulation using the following equation
¥ = (0.8 -0.5 exp(— ¥ ))y,_l - (0.3 +0.9 exp(— v ))yh2 +0.1sin(y,_, ) +e, (59)
where e, was a zero mean unpredictable sequence with variance 0.04 . This equation was used

to generate 500 data points of y,,1=1..500. A thin-plate-spline radial basis function was

employed to construct the one-step ahead model with n,=2, so that. X, Z(y,,y,_l )T.

Different models were identified by varying the number of important centres 1, to be selected
by the forward regression orthogonal least squares algorithm (Chen et al 1989). It was found that
when n, =17, the one-step ahead residuals pass the correlation conditons stated in eqns (13) &
(14). The correlation plots of the one-step ahead residuals are shown in Figure 1. To construct
the 2-step ahead direct-future-noise model, the arguments in the radial basis function network

were updated as X,,, = (y, s B g )T where &, were the realized residuals calculated using the

one-step ahead model identified eatlier with n,, =17. Again different 2-step ahead models were
identified using the forward regression orthogonal least squares algorithm (Chen et al. 1989) with

different numbers of terms n, . When n, =20, it was found that the two-step ahead residuals

EM T yere unpredictable by the correlation plots in Figure 2. This procedure was repeated for

3,4 & 5-steps ahead direct-future-noise models. The required numbers of n, used to construct

the
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respective k -step ahead model were 24,30 & 40, such that the 3 4 & 5-steps ahead residuals were

unpredictable according to the model validity tests. The correlation plots for the 5-step ahead

residuals are shown in Figure 3. The experiment was repeated but this odme the conventional

direct approach discussed in Section 3 was used to construct the mult-step ahead model. It was

found that the multi-step ahead residuals obtained using the direct approach could not satisfy the

correlation tests regardless of the number of centres chosen in the radial basis function

networks. This example shows that the multi-step ahead residuals of the direct-future-noise

approach can be an unpredictable sequence if the structure of the & -step ahead model, in this

case the number of centres of radial basis function network, is chosen properly.
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Figure 1 Correlation plots of the 1-step ahead residual sequence &, , (a) P (T p) and (b) O,y (1‘ 4 ),

for the nonlinear example in eqn (59).
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Figure 2 Correlation plots of the 2-step ahead residual sequence

Plyele) (T i ), for the nonlinear example in eqn (59).
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Figure 3 Correlation plots of the 5-step ahead residual sequence ffg‘"ui’", (a) p‘ff(r p) and (b)

Plyéles) (Tp )’ for the nonlinear example in eqn (59).

5.3  Simulation Studies on Prediction Accuracy for the Three Different Prediction
Methods Applied to Nonlinear Time Series
The procedures outlined in the preceding Section 4.3 for the three prediction methods will be
illustrated by means of three nonlinear examples. The first example is a simple polynomial
functon of the form

¥ =03y, -05y,, -01y_ v, +e, (60)
where e, was an unpredictable zero mean sequence with variance 1. The second example is a

rational model of the form

y!: — 'J—' +er (61)

where e, was an unpredictable zero mean sequence but with variance 0.04 . The third example
was generated from eqn (59). For each example, a data set of 1500 data points was generated.
The first 500 data points were used as the tramning data set, the next 500 data points were used as

the validation data set and the last 500 data points were used as the testing data set. The
maximum number of output lags n, chosen for the three examples were set to the correct
values of 2,3 and 2 respectively so that the results reflect a fair comparison of the prediction

effects only. The procedures outlined in Section 4.3 were used to compute the mean squared & -

step ahead prediction errors of the iterative, the direct and the direct-future-noise approaches.

Fifty replications of the above simulation were performed. The results obtained for the three
cases are presented in Table 2,3 and 4. Only ten step ahead predictions wete computed for

examples one and two. This is because the mean squared prediction errors at the 10" step were
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almost equal to the variance of the time series and hence using the mean of the time series as the
prediction would give almost the same predictive accuracy. Much higher prediction time steps
were computed for example three because the mean squared prediction error at the 20™ step was
still much less than the variance of the time series. It can clearly be seen from the three tables
that the direct-furure-noise approach gives the best performance for almost all the prediction
time steps considered. The high prediction accuracy of the direct-future-noise approach could be
due to the smaller variance in the estimated parameters associated with this approach. Also note
that unlike the linear case presented in Table 1, the iterative approach performs worse than the
direct approach and the direct-future-noise approach in all the three examples. This indicates
clearly that the iterative approach will in most cases yield unsatisfactory results for multi-step
ahead predictions for nonlinear models. However it is stll not conclusive to state that the direct
or direct-future-noise approach will always perform better than the iterative approach for multi-
step ahead predictions for nonlinear models. Factors such as the effect of setting the future noise
terms to zero and the complexity of the k -step ahead prediction functions will affect the
prediction accuracy of the iterative and the direct approach respectively. These factors are clearly

case dependent.

Table 2. The multi-step ahead mean squared prediction errors of the different approaches for the first
example described in eqn (60) where mse; represents the mean squared prediction errors on testing data

set of replication 7. The values in brackets represent the percentage improvement in prediction accuracy

over the iterative approach.

Prediction 316 2 (mse, )of iterative 515 201 (mse ; )cf direct EIE 2 (mse of direct-future-
Step

approach approach noise approach
k=1 1.0527 1.0527 (0.0%) 1.0527 (0.0%)
k=2 1.3441 1.3427 (0.1%) 1.3354 (0.6%)
k=3 1.6560 1.6298 (1.6%) 1.6308 (1.5%)
k=4 1.8433 1.8221 (1.2%) 1.8145 (1.6%)
k=5 1.9961 1.9545 (2.1%) 1.9468 (2.5%)
k=6 2.0978 2.0540 (2.1%) 2.0390 (2.8%)
k=17 2.1728 2.1185 (2.5%) 2.1033 (3.2%)
k=8 22223 2.1721 (2.3%) 2.1496 (3.3%)
k=9 2.2681 2.1974 (3.1%) 2.1785 (4.0%)
k=10 2.3060 2.2229 (3.6%) 2.1983 (4.7%)




Table 3. The mult-step ahead mean squared prediction errors of the different approaches for the second

example described in eqn (61) where mse; represents the mean squared prediction errors on testing data

set of replication 1. The values in brackets represent the percentage improvement in prediction accurac
P P g P y

over the iterative approach.

Prediction ~5—16 2 (m se, )g"z’z‘emﬁz’w % i (msef. )qf direct —5_16 2 (msei ) of direct-future-
Step
approach approach noise approach
k=1 0.0419 0.0419 (0.0%) 0.0419 (0.0%)
k=2 0.0746 0.0749 (-0.4%) 0.0743 (0.4%)
k=3 0.0905 0.0908 (-0.3%)7 0.0896 (1.0%)
k=4 0.1038 0.1011 (2.6%) 0.0999 (3.6%)
k=5 Q1178 0.1116 (5.0%) 0.1100 (6.4%)
k=6 0.1303 0.1207 (7.4%) 0.1199 (8.0%)
k=17 0.1429 0.1286 (10.0%) 0.1274 (10.8%)
k=28 0.1549 0.1346 (13.1%) 0.1333 (13.9%)
k=9 0.1659 0.1399 (15.7%) 0.1386 (16.4%)
k=10 0.1754 0.1462 (16.6%) 0.1428 (18.6%)

Table 4. The multi-step ahead mean squared prediction errors of the different approaches for the third
example described in eqn (59) where mse; represents the mean squared prediction errors on testing data

set of replication i. The values in brackets represent the percentage improvement in prediction accuracy

over the iterative approach.

1 50 50 1 50
Prediction y E (mse i ) of iterative 2 2 (msei ) of direct — 2 (mse ; ) of direct-

503 5043 505

Step
approach approach Jfuture-noise approach

k=1 0.0425 0.0425 (0.0%) 0.0425 (0.0%)
k=2 0.0804 0.0827 (-2.9%) 0.0809 (-0.6%)
k=3 0.0901 0.0903 (-0.2%) 0.0889 (1.3%)
k=4 0.1316 0.1297 (1.4%) 0.1274 (3.2%)
k=5 0.1533 0.1514 (1.2%) 0.1477 (3.7%)
k=6 0.1735 0.1677 (3.3%) 0.1636 (5.7%)
k=17 0.2162 0.2031 (6.1%) 0.1989 (8.0%)




k=8 0.2326 0.2180 (6.3%) 0.2116 (9.0%)
k=9 0.2607 0.2395 (8.1%) 0.2344 (10.1%)
k=10 0.2959 0.2670 (9.8%) 0.2603 (12.0%)
k=11 0.3141 0.2797 (10.9%) 0.2731 (13.1%)
k=12 0.3515 0.3053 (13.1%) 0.2986 (15.0%)
k=13 0.3779 0.3252 (13.9%) 0.3192 (15.5%)
k =14 0.4007 0.3395 (15.3%) 0.3308 (17.4%)
k=15 0.4375 0.3627 (17.1%) 0.3556 (18.7%)
k=16 0.4580 0.3736 (18.4%) 0.3687 (19.5%)
k=17 0.4852 0.3912 (19.4%) 0.3821 (21.2%)
k=18 0.5146 0.4108 (20.2%) 0.4019 (21.9%)
k=19 0.5357 0.4181 (21.9%) 0.4120 (23.1%)
k=20 0.5642 0.4371 (22.5%) 0.4249 (24.7%)

6. Conclusions

The direct approach of computing multi-step ahead predictions for nonlinear autoregressive
models has been analysed in detail. It has been shown that the direct & -step ahead prediction
errors of the direct approach are auto-correlated, even if the optimal direct k -step ahead model
is used to compute the predictions. This auto-correlation has been shown to contribute to a
higher covariance of the parameter estimates associated with the direct approach. It was also
shown that the prediction accuracy of the direct approach is directly related to the covariance of
the parameter estimates, hence higher mean squared prediction errors were obtained for this
case. A new direct-future-noise approach has been proposed and a nonlinear example was
employed to show that the direct k -step ahead prediction errors of this new approach could be
an unpredictable sequence. Linear and nonlinear time series examples were then considered to
compare the prediction performance of the iterative, the direct and the direct-future-noise
approaches. The iterative approach produces the best prediction performance for linear time
serles but the direct-future-noise approach gives the best results for all the nonlinear time series
examples studied. In both linear and nonlinear time series cases the new direct-future-noise

approach performed slightly better than the direct approach.
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