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ABSTRACT

A modified reinforcement learning architecture is
presented here as an extension of the seminal
implementation of Barto, Sutton and Anderson and is
applied to a well-known control task. The motivation is
to improve the performance of the original system by
distributing state information across state-space. By
fuzzifving the fixed state-space boundaries of the
original system and modifying the learning algorithm.
both the learning-rate and control performance have
been improved. A further benefit of this sysiem is that a
set of fuzzy rules for the control task is generated
automatically.

Key Words: Reinforcement Learning. Neurocontrol.
Fuzzy Control.

1. INTRODUCTION

This paper presents an extension of the seminal
implementation of reinforcement learning (RL) of
Barto. Sutton and Anderson [1]. By fuzzifving the RL
system, improvements in learning rate and control
action can be achieved. Furthermore. a set of fuzzy
rules is generated which specify the resulting controller.
The fuzzy RL system has been given the name
“FUZBOX" to distinguish it from the original BSA
system (Marriott. [2]).

Following Michie and Chambers [3] and Barto et al [1]
the cart-pole system (inverted pendulum) is used to
exemplify some aspects of neurocontrol and is a highly
non-linear system involving the characterisation of
complex state-space trajectories. A computer simulation
of the cart-pole system (including friction effects) is
used (Barto et al [1]). Information from the simulation
is minimal; only the state vector and a coarse failure
signal are supplied. If either the pole or the cart exceeds
pre-set boundaries then a failure signal is sent to the
neurocontroller and a new trial is begun from the initial
conditions.

2. REINFORCEMENT LEARNING

Reinforcement learning (RL) (Barto et al [1], Sutton [4],
Sutton et al [5]) arose out of earlier work on classical

conditioning (Sutton and Barto [6]. Barto and Sutton

[7]). In its simplest form, RL consists of using a single
scalar variable to indicate the performance of an
artificial neural system. This signal is generated by a
“critic” which rewards favourable system responses and
punishes undesirable ones. Earlier work, known as
“BOXES™ (Michie and Chambers [3]). was entirely
failure driven. The system considered here is the
seminal implementation of Barto. Sutton and Anderson
(BSA) (Barto et al [1]) which consists of an associative
search element (ASE) and an adaptive critic element
(ACE). see Figure 1.

The BSA implementation of an RL-based controller
uses a fixed state-space partitioning of 162 distinct
regions or boxes. A decoder assigns a unique output
line to each state-space region. During processing, a
state vector enters the decoder which activates the
appropriate input line to the ASE and subsequently
issues a control action. Depending upon the outcome
and a prediction of future reinforcement, the
information representing a region traversed in state-
space is updated.

(et b

! NEUROCONTROLLER |

L | Reinforcement

I I

1 ]

i WCE ¢ T

| |

| v :

I I

i | | cant-

™ Decoder »ASE 14| Pole

! ! System

I I

I I

fmmmmmmmmmmm s ! Failure

—

State vector check

Figure 1. The ASE / ACE reinforcement learning system of
Barto et al [1] See text for details

The choice of state-space regions was “..based on
specific knowledge of the contro! task™ (Barto, Sutton
and Anderson, [1]). Replication experiments show that
the original svstem is sensitive to changes in
partitioning (Marriott. [2]).




3. AFUZZY STATE-SPACE DECODER

The decoder is a neurocontroller subsystem which lends
itself to useful modification by allowing the properties of
the controller to be altered whilst retaining the
functionality of the ASE/ACE sub-units.  Various
methods of state-space partitioning become possible
(Marriott and Harrmison, [8], [9], [10]), including
fuzzification as explored in this paper. Thus, the non-
overlapping partitioning of state space is a sufficient but
not necessary condition for using the ASE/ACE system.

The Cerebellar Model Articulation Controller (CMAC)
of Albus [11], [12] has been used as a state-space
decoder for the ASE / ACE system (Lin and Kim. [13]).
This allows some generalisation within the
neurocontroller which improves learning. However,
fuzzification of the existing BOXES decoder in the BSA
implementation appears to be a more natural extension
of the original work and readily lends itself to adaptive
fuzzy rule-base generation.

In addition to distributing state-information across the
state-space decoder. both the ASE and ACE have been
modified to combine rules from the rule-base rather than
to select a single rule (state-space location) as did the
original  system. The FUZBOX  architecture
demonstrates that distribution of both the ASE and ACE
modules is indeed possible. and that learning—in the
case of FUZBOX—is accelerated compared with the
original BSA system. Furthermore it produces a set of
fuzzy rules which are open to semantic interpretation.

4. THE FUZBOX IMPLEMENTATION

Fuzzy systems are a natural choice for developing a
prototypical distributed svstem owing to their graded
membership functions. Furthermore, the use of a rule-
base is a natural extension of the BOXES concept where
the boxes form a crude rule-base in the original non-
distributed formulations (Michie and Chambers, [3]:
Barto, Sutton And Anderson, [1]). Like the BSA.
system, the FUZBOX system is also based upon treating
state boxes as rules and using fuzzy membership to
distribute learned information. Bang-bang control is
retained using a special case of the Sugeno method
(Sugeno and Nishida, [14]) where linguistic variables
are not used at the output. The Sugeno method is used
to retain compatibility with the original BSA system and
its bipolar output.

The maximum possible number of rules for this
particular configuration of FUZBOX is 625 which is
determined by the use of four state variables and five
linguistic variables for each of the state intervals. Each
of the 625 possible rule antecedents is assigned a single
output value only.
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The relevance of a rule for a given input is measured by
the rule antecedent strength (RAS) (Marriott, [2])
which combines the membership values of each state
variable belonging to the fuzzy set associated with each
linguistic variable. Rules are added incrementally if the
hash code of the rule with the highest possible RAS
indicates a non-existent rule. This is to ensure that
previously encountered state-space regions are
represented in the rule-base by at least the most relevant
rule. A RAS threshold is chosen such that all existing
and new rules which exceed this threshold will be used
to compute the current output. Thus, rules with
negligible effect will not be included.

The modified actor / critic elements of FUZBOX,
labelled distributed ASE (DASE) and distributed ACE
(DACE) respectively, operate in the same way as the
original BSA implementation when a single rule is
chosen using winner-takes-all competition based upon
the RAS (equivalent to choosing a single “box™ as
beforc). Both the DASE and DACE dynamics are
similar to those of the original ASE and ACE systems
but with a normalised scalar parameter (RAS) used to
weight the individual rule contributions. Each rule is
assigned an RAS which determines the effect of a given
rule when the rules are combined to give an overall
control output.
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Figure 2. The FUZBOX neurocontroller. FUZ denotes the
fuzzification process detailed in the text and DIS denotes the
combination of rule information (distribution) to give the
weighted average output. This is then used to generate the
actual control output.

3, THE BSA AND FUZBOX
IMPLEMENTATIONS: SOME RESULTS

Replication studies were carried out as detailed in Barto,
Sutton and Anderson. [1]. The simulation conditions
and parameters were similar to those of the BSA




implementation except that runs were not terminated
when the trial of a particular run first reached the
ceiling of 500,000 time steps because learning was still
occurring in some cases and the system had to reach the
ceiling value a large number of times consecutively to
indicate convergence. Rules are added incrementally if
the rule does not exist which would have the highest
possible RAS, that is. a fuzzy region of state-space is
entered which is not covered by the existing fuzzy rule-
base and is highly representative of the current state.

The results indicate that the number of trials required to
converge to a solution of the control problem is
generally lower for FUZBOX in comparison with the
BSA system given the same cart-pole and noise
conditions. This is confirmed by the average
convergence time of 45.9 trials for FUZBOX (over 10
runs) compared with 83.8 trials for the original BSA
system. The results for twenty runs give an average
convergence of 61.2 trials. Twenty runs of the original
BSA system give an average convergence time of
126.45 trials.

These results for FUZBOX indicate that distribution of
information across several boxes decreases the learning
time required to acquire a successful control strategy for
the given initial conditions. Figure 3 illustrates the
performance of FUZBOX for the first 10 runs. All of
these runs converged within 100 trials. The solid curve
shows the average pole-balancing time over the 10 runs
for each trial. A single point is plotied to indicate the
average of each bin of 5 consecutive trial (ensemble)
averages. The dotted curves show 1 standard deviation
either side of the mean. The circles at the top of the
graph indicate at which trial the members of the 10 run
set converged.

Note the difference between the low and high numbers
of trials required prior to convergence (29 and 70 trials
respectively). This difference is a consequence of the
stochastic nature of reinforcement learning where
weight perturbations allow exploration of the state-
space. In some cases. the reinforcement learning system
will find a solution quickly if the explored region of
state-space is representative of the current operating
region. In other cases. the exploratory trajectories are
forced away from the operating region and the
reinforcement learning system has to learn to recover
from these perturbations.

120001 ... 10 trial average.

10000

BOOO

6000

Trial duration (secs).

o _._ 10 trial std. devn.

o Convergence pt.

o=
L L A . L L " "
] 10 20 30 40 50 €0 70 80 80 100
Trial number.

Figure 3 FUZBOX simulation results showing the first 10
runs, Note that there are two coincident convergences at 31
and 54 trials respectively.

Figure 4 illustrates the increase in number of rules
(boxes) as a function of trial number. The curve appears
to approach an average asymptotic value of
approximately 200  rules. This means that
approximately 425 rules remain unused for this
particular set of cart-pole initial conditions’.
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Figure 4 The average number of rules for ten runs using the
FUZBOX neurocontroller. Note that about 200 rules are
generated on average compared with the possible 625.

Dynamic allocation of rules prevents the allocation and
use of redundant memory, thus, reducing computational
overheads. It is likely that more rules will be required
for more demanding initial conditions and will be
allocated accordingly. Another advantage of dynamic
allocation of rules is that it facilitates pruning of
redundant rules. Rules may be removed from the rule-
base and thereby from the storage requirements of the
svstem. Rule redundancy and removal is discussed
further in Section 7.

" The set of initial conditions was used for each run but
the random number seed for the perturbation noise was
varied.




6. CONTROL

Johnson and Smartt [15] note that the pole angle
oscillates considerably in the original BSA
implementation and just manages to stay within the
failure limits. This is commensurate with observations
made during the replication studies featured in this
work.

It was observed that once FUZBOX had acquired an
effective contro] strategy, it was able to maintain control
well within the error boundaries. Although FUZBOX is
still using bang-bang control. the combination of
information across fuzzy regions of state-space allows a
more informed choice of output. An example of
FUZBOX control is presented here to illustrate the
quality of control and to emphasise that the assessment
of reinforcement learning must take into account more
than just the learning-rate (Sammut and Crib [16])

A single run of FUZBOX was carried out using the
conditions given for the 20 run set except that the pole
angle was initialised to 11 degrees from the vertical for
training and testing. Figure 5 shows a phase plane plot
for this run. Figure 6 shows the cart-position for the
first 8.5 seconds and illustrates clearly the use of
predominantly right directed forces to rectify the pole.
This control policy pushes the cart to around 1.2m away
from the origin after which corrective action attempts to
push the cart back to the origin without losing control of
the pole.
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Figure 5. Phase plane plot for the 11 degree initial condition
FUZBOX run. Note how the angle is brought into the stable
region in the centre of the phase plane.

Figure 7 is commensurate with this and shows the
transition between positive cart velocity and negative
cart velocity as control emphasis switches from the pole
to the cart. In other words. for the pole initial condition
of 11 degrees, control forces have to be predominately
right-directed giving the cart a positive velocity (and
displacement). To compensate for this. the cart velocity
is made negative with rapid switching to maintain the

pole balance (Fig 7). The cart then moves towards the
origin.
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Figure 6 Cart displacement plot for the 11 degree initial

condition FUZBOX run. Note the significant move away from

the origin as the pole angle is corrected. The large
displacement is then corrected.
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Figure 7 Cart velocity plot for the 11 degree initial condition
FUZBOX run.

The pole angle evolution is shown in Figure 8 where
there is an initial rapid compensation forcing the pole
towards zero followed by oscillation between zero
degrees and -2 degrees for about six seconds.

The pole velocity is shown in Figure 9. There is an
initial negative pole velocity as expected followed by
rapid oscillation of velocity around zero. The oscillatory
behaviour around zero is predominantly positive as the
neurocontroller compensates for the cart displacement.
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Figure & Pole angle plot for the 11 degree FUZBOX run.

" i .._._.U!u!“- Uﬂlrl ””Nh "“'“milll
I

l
|
-30-‘; 5
|
i

30

201

°

Pole Velocity (degrees/s)

1
@
=3
[P R A T T

£ 2 3 4 5 1) 7 8
Time (secs)

Figure 9. Pole angular velocity plot for the 11 degree initial condition
FUZBOX run.

7. A TYPICAL RULE-BASE

A typical FUZBOX simulation was carried out using
parameters identical to those used in the original BSA
implementation. Following the simulation. the 14 most
important rules—in terms of relative rule strength
(RRS)—were selected out of a total of 152 generated by
FUZBOX. These 14 rules accounted for 89.6 % of the
total rule strength of unity. Figure 10 shows the
cumulative rule strength with respect to the rule rank.
Eleven new rules were generated for this run of five
trials. The maximum RRS value of the newly generated
rules was 0.02 or 2%. The total relative rule strength
attributable to the 11 new rules was 5.3% which means
that the total rule strength had increased from 89.6% to
94.7% indicating that a little information had been
added to the a priori rule-base taken from the first run.
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Figure 10. A plot showing the absolute and cumulative
relative rule strength values for a ranked set of rules
comprising a successful FUZBOX rule-base.

One of the features of self-organising autonomous
systems is their adaptiveness to changing conditions
during operation. To illustrate the adaptiveness of
FUZBOX. the rules used in the previous simulation
were negated. that is. positive outputs were made
negative and vice versa. This a priori rule base was
exactly opposite to a known successful rule base which
meant that FUZBOX would not be able to balance the
pole immediately.

FUZBOX required a total of 98 trials before converging
to a consistent balancing time of 10000 seconds. A total
of 194 rules were generated, although. only a small
fraction of this total number might be required for
balancing. This simulation demonstrates clearly that
the self-organising nature of FUZBOX allows on-line
recovery from changes in operating conditions: indeed,
even changes as drastic as complete reversal of
successful rules.

The rule base consisted of 14 rules selected from a total
of 152. Pruning, in this case. was done by hand. It is
conceivable that this may be carried out automatically.
A simple method would be to remove the “weakest”
nodes periodically if the relative rule strength drops
below a given threshold.  However, problems of
preventing “rule decay” in regions of state-space no
longer used. but which were once important, need to be
addressed.

8. CONCLUSIONS AND FURTHER WORK

The simulations suggest that it is possible to retain
Barto. Sutton and Anderson’s ASE/ACE subsystems
and their proven success whilst improving the
performance of the overall system bv extending their
capabilities by fuzzifying and combining state-
information. The fuzzification leads naturally to a self-
organising rule-base and points to the possibility of




autonomous  controllers  capable of generating
transparent linguistic rules.

The current drawbacks to the system are;

¢ the proliferation of uninformative rules caused by
stochastic search of state-space during the early
stages of establishment of the control mapping:

e the need for parameters which have to be set by the
user;

e the lack of general rules which combine information
from the specific rules involving all linguistic
variables.

Possible solutions and indicators of further work
include:

e the use of “relevance” pruning to remove rules
created by state-space trajectories very rarely
followed afier control has been established—if
operating conditions do change. new rules can be
created dynamically and will not be pruned if
significant;

e the use of self-tuning parameters to adapt the rule
fuzzification during learning. This is possibly the
most difficull solution and will require “meta”
control at a hierarchical level above that of the ACE
element to ensure intelligent tuning based upon
overall performance:

e The use of rule “lumping” technigues to produce
more general rules.

There is clearly much room for improvement in the
current system but nevertheless it does provide an
alternative approach 1o adaptive control. The
achievement of increased neurocontroller autonomy
(reduced operator intervention) is an ongoing process
which will benefit from the combination of established
neural network architectures in novel ways.

The authors would like to acknowledge the support of
this work by the Engineering and Physical Sciences
Research Council of the UK.
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