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Inter-mode reactive coupling induced by waveguide-resonator interaction
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We report on a joint theoretical and experimental study of an integrated photonic device consisting
of a single mode waveguide vertically coupled to a disk-shaped microresonator. Starting from the
general theory of open systems, we show how the presence of a neighboring waveguide induces
reactive inter-mode coupling in the resonator, analogous to an off-diagonal Lamb shift from atomic
physics. Observable consequences of this coupling manifest as peculiar Fano lineshapes in the
waveguide transmission spectra. The theoretical predictions are validated by full vectorial 3D finite
element numerical simulations and are confirmed by the experiments.

PACS numbers: 42.25.Hz, 42.60.Da, 42.82.Gw,31.30.jf

The study of the consequences of coupling a physical
system to an environment constitutes the central prob-
lem in the theory of open systems [1]. This coupling, on
one hand, allows the system to dissipate energy through
active decay channels. On the other hand, its reactive
component leads to a shift of energy levels and oscillation
frequencies of the system. Most celebrated examples of
this physics involve an atom coupled to the bath of elec-
tromagnetic modes [8], namely, the (dissipative) sponta-
neous emission of photons from an excited state [2–4] and
the (reactive) Lamb shift of transition frequencies [5–7].

Pioneering experimental studies in late 1970’s [9]
showed that destructive interference of different decay
paths, leading to the same final continuum, can suppress
absorption by a multilevel atom via the so-called Coher-
ent Population Trapping (CPT) [10] and Electromagnet-
ically Induced Transparency (EIT) [11, 12] mechanisms.
While originally these phenomena were discovered in the
atomic physics context, a continuous interest has been
devoted to analogous effects in solid-state systems [13],
photonic devices [14–20], and, very recently, optomechan-
ical systems [21]. Though in most experiments only the
dissipative features are affected by the interference, the
theory predicts that a similar phenomenon should also
occur on the reactive coupling side [1].

In photonics, the presence of a waveguide in the vicin-
ity of a resonator activates new radiative decay channels
for the resonator modes via emission of light into the
waveguide mode [22–24]. The corresponding reactive ef-
fect is a shift of the resonator mode frequencies, which
can be interpreted as the photonic analogue of the atomic
Lamb shift. In this Letter, we report on a joint theo-
retical and experimental study of a photonic device in
which pairs of modes of very similar frequencies are cou-
pled simultaneously to the same waveguide mode. Both
the dissipative and the reactive couplings of the cavity
modes to the waveguide turn out to be modulated by in-
terference phenomena between the two modes, which can
be summarized as environment-induced inter-mode cou-

FIG. 1. (Color online) (a) A sketch of the microphotonic de-
vice. (b) The intensity profile of the first and second radial
mode families (RMF) of the resonator (top and middle pan-
els) and of the waveguide mode (bottom panel). Blue curves
show the cuts of the intensity profile, and the labels indi-
cate the different materials. Panels (c-d): Results of ab initio

numerical calculations for (c) the radiative decay rate ratio
Γrad

22 /Γrad

11 and (d) the frequency shifts of the first (top) and
the second (bottom) radial family modes as a function of the
waveguide position. The open circles indicate the waveguide
position for the fabricated 40 µm-diameter resonator.

pling – a sort of off-diagonal Lamb shift ∆ij in the atomic
analogy. In the experiments, these coupling terms are re-
sponsible for peculiar Fano interference lineshapes in the
transmission spectra of single resonators.

The system under consideration consists of a thin
microdisk resonator vertically coupled to an integrated
single-mode waveguide located below the disk (Fig. 1(a)).
In contrast to the traditional lateral coupling geometry,
where typically only the most external first radial mode
family (RMF) experiences an appreciable coupling to the
waveguide, the vertical coupling geometry allows for an
independent lateral and vertical positioning of the waveg-
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uide, permitting thus to freely tune the coupling to the
different mode families, in particular to the more inter-
nal ones [25, 26]. Since these latter typically have lower
intrinsic quality factors, the vertical coupling geometry is
crucial to our experiments, as it allows for several RMFs
to be simultaneously close to critical coupling and, there-
fore, visible in transmission spectra.
This remarkable tunability is illustrated in Fig.1(c,d).

An ab initio finite element numerical simulation of
the 3D vectorial Maxwell equations, including the de-
tailed geometrical shape and material composition of the
resonator-waveguide system, is used to obtain the fre-
quencies and damping rates of the different eigenmodes
of the electromagnetic wave equation [27]. At this stage,
we have focussed on a pair of spectrally distinct modes, in
order to minimize the contribution from mode-coupling
terms. The ratio of the decay rates (Fig.1(c)) is pro-
portional to the relative intensity of the waveguide cou-
pling to the lowest two RMFs of the resonator: as ex-
pected, its value is the largest when the lateral position
of the waveguide matches the main lobe of the the second
RMF (Fig.1(b) middle panel). The photonic analogue of
the atomic Lamb shift for (independent) cavity modes
is illustrated in Fig.1(d): the shifts ∆11 and ∆22 of the
two modes from their bare frequencies are plotted as a
function of the waveguide position. While in the atomic
case the calculation of the Lamb shift, originating from
photon emission/reabsorption processes, requires sophis-
ticated techniques and a careful handling of UV diver-
gences [8], in the photonic case one typically has a red-
shift of all modes when a generic dielectric material is
approached to a resonator [22].
Theoretical model – The transmission of a waveguide,

T (ω), coupled to the resonator can be described by gen-
eralizing the input-output theory of optical cavities [28]
to the multi-mode case. In the present two-mode case,
the equation of motion for the field amplitudes αj=1,2

can be written as

i
dαj

dt
=

[

ωo
j +∆jj − i

γnr
j + Γrad

jj

2

]

αj+

+

(

∆12 − i
Γrad
12

2

)

α3−j + ḡjEinc(t) (1)

In the absence of the waveguide, the two modes oscil-
late independently from each other at a bare frequency
ωo
j and have an intrinsic, non-radiative decay rate γnr

j .
The incident field, which propagates along the waveg-
uide and drives the resonator, is described in the last
term in Eq. (1). The coupling amplitude of the driven
waveguide mode to the j = 1, 2 resonator mode is quan-
tified by the ḡj coefficients. In the following, we focus on
a monochromatic excitation with Einc(t) = Einc e

−iωinct.
The effect of the waveguide on the cavity mode oscil-

lation is included in the motion equation Eq. (1) via the
Hermitian Γrad and ∆ matrices, for which formal appli-

FIG. 2. (Color online) Analytically calculated transmission
spectra in different regimes and for different detunings δ =
ω2−ω1. (a) Both modes are undercoupled, Γrad

11,22/γ
nr

1,2 = 0.25

and ∆12 = 0. (b) Both modes are overcoupled, Γrad

11,22/γ
nr

1,2 =
4 and ∆12 = 0. (c) Narrow (broad) mode is undercou-
pled (overcoupled), Γrad

11 /γnr

1 = 0.125 (Γrad

22 /γnr

2 = 2) and
∆12/γ

nr

2 = 0.6. The ratio γnr

1 /γnr

2 = 0.1 (a-b) and 0.16 (c).

cation of the theory of open systems within the Markov
approximation [1] provides the general expression

∆jl + i
Γrad
jl

2
=

∫

dK

2π

∑

β

g∗β,j(K) gβ,l(K)

ωinc − Ωβ(K)− i0+
, (2)

in terms of the coupling amplitude gβ,j(K) of the jth
resonator mode to that of the waveguide of longitudi-
nal wavevector K, mode index β, and frequency Ωβ(K).
For single-mode waveguides, Γrad is determined by the
single propagating mode for which Ωβ(K) = ωinc and
gβ,j(K) = ḡj . This imposes that the Γrad

12 coefficient,
typically responsible for EIT-like interference effects in
the atomic context, is related to the radiative linewidths
Γrad
jj by Γrad

12 =
√

Γrad
11 Γrad

22 .
Even though a quantitative estimation of ∆ using

Eq. (2) is in most cases impractical as it involves a sum
over all (both guided and non-guided) waveguide modes,
this equation provides an intuitive picture of the underly-
ing process: the diagonal and off-diagonal terms originate
from the virtual emission of a photon from a resonator
mode and its immediate recapture by the same or another
mode, respectively. From a qualitative point of view,
while the diagonal terms are typically ∆jj < 0, we are
unable to invoke any general argument to determine the
non-diagonal ∆12. A similar inter-mode coupling term
was mentioned in [17] starting from a coupled-mode ap-
proach. Here we will show how a real ∆12 > 0 is needed
to reproduce the experimental data and we will point out
some unexpected features due to this term.
In our model, the waveguide transmission reads

T (ωinc) = |Etr/Einc|
2 = |1 − i ρ

∑

j=1,2 ḡ
∗

j ᾱj/Einc|
2, in

terms of the stationary solution ᾱj of the motion equa-
tions Eq. (1) and the density of states ρ = |dK/dΩ| in the
waveguide. When the waveguide is effectively coupled to
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one resonator mode only, a typical resonant transmis-
sion dip is recovered: under-, critical-, and over-coupling
regimes are found depending on whether Γrad

11 is lower,
equal or larger than γnr

1 [22–24].

The novel and much richer phenomenology that occurs
in the two-mode case is illustrated in Fig. 2. Interesting
features manifest clearly when both j = 1, 2 resonator
modes are close to criticality γnr

j ≈ Γrad
jj . In the left

column of Fig. 2, we show a case where both modes are
slightly under-coupled Γrad

jj . γnr
j and the off-diagonal

reactive coupling vanishes ∆12 = 0. Each mode then
manifests as a transmission dip in the spectrum centered
at a frequency ωj = ωo

j +∆jj that includes the diagonal
shift ∆jj . Note that the the first RMF is much narrower
than the other since γnr

1 ≪ γnr
2 . Comparing the different

rows of the figure, we notice that scanning the relative
detuning of the two modes δ = ω2−ω1 results in a simple,
interference-free superposition of the two dips. Even in
this simplest case, a correct inclusion of Γrad

12 is, however,
essential to avoid the appearance of nonphysical features
in the calculations, such as T (ω) > 1.

The central column shows the case of slightly over-
coupled modes Γrad

jj & γnr
j , still with ∆12 = 0. Now,

marked interference features start to appear due to the
off-diagonal dissipative coupling Γrad

12 and the doublets of
peaks acquire a complicated structure. In particular, the
narrow dip, normally visible at ω1 (1st and 7th rows),
is replaced by a complex Fano-like lineshape [8, 29] (3rd
and 5th) for moderate detunings, and even reverses its
sign into a transmitting EIT feature in the resonant δ = 0
case (4th row). Experimental observations of this physics
were recently reported in [15–17].

Finally, the dramatic effect of the off-diagonal reactive
coupling ∆12 6= 0 is shown in Fig. 2(c). As most visi-
ble general feature, the spectrum is no longer symmetric
under a change in the sign of δ, and the spectral feature
due to the narrow mode is clearly visible than one would
expect given its deep under-coupling condition. With re-
spect to the ∆12 = 0 case shown in Fig. 2(b), the narrow
Fano feature has a reversed sign for moderate detunings
(3rd and 5th rows). Furthermore, it is suppressed in a fi-
nite detuning range (6th row). An analytical explanation
of this unexpected effect is given in [27] in terms of the
destructive interference of the direct excitation of mode 1
from the waveguide and its two-step excitation via mode
2 by the off-diagonal terms of ∆ and Γ. The two paths
almost cancel out around δ ≃ ∆12

√

Γrad
22 /Γrad

11 .

Numerical simulations – The analytical predictions
for the transmission have been validated through ab ini-

tio finite element numerical simulations [27]. The slightly
diverse free spectral range of the different RMFs allowed
us to scan the relative detuning of the interfering modes
by looking at pairs of quasi-resonant modes with differ-
ent azimuthal quantum numbers. Examples of spectra
are shown in the left panels of Fig. 3. The qualitative
agreement with the predictions of Eq. (2) in the ∆12 > 0

FIG. 3. (Color online) (Left) Numerically calculated spectra
for different detunings between the two radial family modes.
The azimuthal mode order of the two resonances is reported in
each graph. (Right) planar cuts of the intensity profile within
the resonator and within the waveguide at the frequencies
indicated as A, B, C in the left panel.

regime is remarkable: the Fano-like feature is clearly visi-
ble with the correct sign for generic detunings (1st to 4th
rows) and disappears completely in a well-defined range
of δ’s (lowest row). The three (A,B,C) panels on the right
column of Fig. 3 show horizontal cuts of the field intensi-
ties in the resonator and the waveguide at three different
incident frequencies across the Fano-like feature. While
the excitation at the A (C) point is concentrated in the
second (first) mode, interference between the two modes
is responsible for the snaky shape of the intra-cavity in-
tensity distribution at the intermediate point B. As ex-
pected, the number of spatial oscillations is determined
by the difference in azimuthal quantum numbers of the
two resonator modes.

Experimental observations – We have validated our
findings experimentally by looking at pairs of quasi-
resonant modes originating from different radial fami-
lies in microdisk resonators coupled vertically to dielec-
tric waveguides. The experimental transmission spec-
trum through the waveguide for a microdisk of radius
R = 40µm is shown in the upper panel of Fig. 4 [27].
The spatial position of the waveguide is indicated by
open dots in Fig.1(c-d). The transmission spectrum con-
sists of a sequence of doublets originating from the first
(narrow features) and second (broader features) RMFs,
which have slightly diverse free spectral range. This last
permits to sweep one RMF across the other as the az-
imuthal order of the underlying modes is increased, and
the doublets structure is correspondingly changed. In the
bottom panels Fig. 4(b-g), zoomed views of the differ-
ent doublets are shown: to facilitate comparison, in each
of these panels the central frequency is located at the
broader second family resonance (i.e. at ω2 = ωo

2 +∆22

in the analytical model). These spectra are in excellent
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FIG. 4. (Color online) (a) Transmission spectra of a 40 µm diameter microresonator as a function of the absolute incident
frequency. (b-g) Blow-ups of the regions marked as gray in (a). In each panel, the relative frequency is measured from the
broader second family resonance. Red lines show fits to the spectra using the analytical model.

FIG. 5. (Color online) (a) Colormap merging 21 experimen-
tal transmission spectra (indicated as S1–S21) for a 50µm
resonator. On each row, the relative frequency is measured
from the narrow mode frequency. (b) Analytic prediction for
T (ω) using a three-mode extension of the model with op-
timized global parameters. (c) Selected examples of spectra.
(d) System parameters obtained by independently fitting each
experimental spectrum with the analytical model.

qualitative agreement with the predictions of the numeri-
cal simulations shown in Fig. 3: the Fano-like feature has
the correct sign and is visible for generic detunings excep-
tion made for a small range of values where it completely
disappears [panel (g)]. Moreover, the experimental data
are successfully fitted by the analytical model (red curves
in Fig. 4(b-g)).

The generality of our observations has been confirmed
by repeating the experiment on a larger R = 50 µm res-
onator in which the Fano interference takes place between
the first and the third RMFs. The measured transmis-
sion spectra are shown in Fig. 5(a,c) for different values
of the relative detuning of the quasi-resonant pairs of
modes. The crossing of the two families again leads to
Fano interference profiles, and the narrow feature disap-

pears in a specific range of detunings (spectrum S9). Fur-
thermore, the experimental results successfully compared
to the prediction of the analytical model, generalized to
three modes (Fig. 5(b)).

Finally, Fig. 5(d-e) summarizes the fits parameters for
both 40 µm and 50 µm resonators. Despite the total in-
dependence of the fit procedures performed on each spec-
trum, a smooth dependence of all fit parameters on the
azimuthal mode number is observed. As expected, the
scan of the azimuthal quantum number varies the mode
detuning without affecting the other system parameters.
From the top graph we notice that in both cases the first
family modes are undercoupled to the waveguide, while
the second and third family modes are very close to crit-
ical coupling. As stated in the theoretical section, this
combination of couplings is crucial for a neat observation
of the Fano feature. Finally, Fig. 5(e) shows that the
fitted value of the off-diagonal reactive coupling ∆12 is
always around 15 GHz.

To summarize, in this work we have reported a joint
theoretical and experimental study of a microdisk res-
onator vertically coupled to a single-mode waveguide.
The importance of the inter-mode reactive coupling due
to the neighboring waveguide is revealed and character-
ized from the peculiar Fano lineshapes manifesting in
transmission spectra. In addition to its intrinsic interest
for photonics, our study provides a simple model where
to study a fundamental feature of the theory of open
systems, namely the possibility of environment-mediated
couplings – the off-diagonal photonic Lamb shift – be-
tween different modes of a system.
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