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CALCULUS OF OPERATORS:

COVARIANT TRANSFORM AND RELATIVE CONVOLUTIONS

VLADIMIR V. KISIL

Abstract. The paper outlines a covariant theory of operators related to
groups and homogeneous spaces. A methodical use of groups and their rep-
resentations allows to obtain results of algebraic and analytical nature. The
consideration is systematically illustrated by a representative collection of ex-
amples.
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2 VLADIMIR V. KISIL

1. Introduction

Calculus of operators on groups and homogeneous spaces has a long history [13,
14,17,19,22–24,30–33,36,37,54,61] and is enjoying a recently revived interest [3,
16, 44, 55, 59, 66]. There are some missing connections between two periods and
the purpose of this presentation is to bridge the gap.

2. Calculus of Pseudodifferential Operators

The theory of pseudo-differential operators (PDO) is an important and pro-
found area of analysis with numerous applications [12, 21, 56, 60, 65]. In the sim-
plest one-dimensional case, a PDO A = a(x,D) is defined from its Weyl symbol
a(x, ξ)—a function on R2—by the identity [18, (2.3)]:

[Au](y) =

∫

R×R

a(1
2
(y + x), ξ) e2πi(y−x)ξ u(x) dx dξ. (2.1)

The alternative Kohn–Nirenberg correspondence between symbols and opera-
tors [18, § 2.2] is provided by a similar formula:

[AKNu](y) =

∫

R×R

a(y, ξ) e2πi(y−x)ξ u(x) dx dξ. (2.2)

There is a natural demand to generalise PDO for other settings. It is common
to have several competing approaches for this. We briefly outline two of them.

2.1. Pontryagin Duality and the Fourier Transform. Historically, the the-
ory of PDO grown out of the study of singular integral operators (SIO), which can
be viewed either as convolutions on the Euclidean group or Fourier multipliers.
In either case, this prompts a consideration of groups and representation theory.
For simplicity, we take G = (R,+)—the abelian group of reals with addition. Its
Pontryagin dual—the collection of all unimodular characters χξ(x) = e2πiξx—is

again the abelian group Ĝ isomorphic to (R,+) [29, § IV.2.1]. The Fourier trans-

form F maps a function f from the Schwartz space S(G) to f̂ ∈ S(Ĝ) by the
formula:

f̂(ξ) =

∫

G

f(x)χξ(x) dx =

∫

R

f(x) e−2πiξx dx. (2.3)

This map is unitary on L2(G). Pontryagin duality ensures that the second dual
ˆ̂
G

is canonically isomorphic to G and provides an expression for the inverse Fourier
transform:

f(x) =

∫

R

f̂(x) e2πiξx dx. (2.4)

Then, one can interpret the formula (2.2) as follows:

[Au](y) =

∫

Ĝ

χξ(y) a(y, ξ)

∫

G

u(x)χξ(x) dx dξ , (2.5)

where the symbol a(x, ξ) is a function on G×Ĝ. Since Pontryagin duality and the
respective Fourier transforms are readily available for a locally-compact abelian
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group, this viewpoint generates a related theory of PDO on commutative groups,
see [55, Part II].

The situation is different for non-commutative groups. The dual object Ĝ of
a non-abelian group G—the collection of all equivalence classes of irreducible
unitary representations—is not a group, in general. One can still define the
(operator valued!) Fourier transform by the formula

f̂(ξ) =

∫

G

f(g) ξ(g) dg, where f ∈ L1(G, dg), ξ ∈ Ĝ

and dg is a left-invariant (Haar) measure on G. The inverse Fourier transform is
not as simple as in the commutative case. For example, on a compact group it is:

[F−1F ](x) =
∑

[ξ]∈Ĝ

dim(ξ) Tr (ξ(x)F (ξ)) ,

where Tr denotes the trace of an operator. Thus, for a compact group an analog
of PDO with a symbol a(x, ξ) on G× Ĝ can be defined by, [55, (10.19)]:

Af(x) =
∑

[ξ]∈Ĝ

dim(ξ) Tr
(
ξ(x) a(x, ξ) f̂(ξ)

)
. (2.6)

Similar formulae were used in the context of the Heisenberg group [3] and other
nilpotent Lie groups [16]. Furthermore, the Pontryagin duality is employed in
generalization of Toeplitz operators [51] and Wiener–Hopf factorization [15], see
the cites papers for details and further references.

2.2. Covariant Transform. A different approach starts from the observation
that operators of spatial shifts f(t) 7→ f(t − x) and operators of multiplications
by exponents f(t) 7→ e2πiytf(t) (i.e. shifts in the frequency space) generate the
Schrödinger representation of the non-commutative Heisenberg group H [18, 22].
As C∞-manifold H can be identified with R3 and the group law is:

(s, x, y) ∗ (s′, x′, y′) = (s+ s′ + 1
2
(xy′ − x′y), x+ x′, y + y′). (2.7)

The Schrödinger representation H is

ρ(s, x, y)f(t) = eπi(2s+y(2t−x)) f(t− x). (2.8)

We can integrate this representation with the Fourier transform σ̂(x, y) of a func-
tion σ(q, p) on R2 [18, § 2.1]:

[ρ(σ̂)f ](t) =

∫

R2

σ̂(x, y) ρ(0, x, y)f(t) dx dy

=

∫

R2

σ̂(x, y) eπiy(2t−x) f(t− x) dx dy

=

∫

R2

σ(q, 1
2
(r + t)) e2πiq(r−t) f(r) dq dr. (2.9)

Up to different letters, this is exactly PDO (2.1) with the Weyl symbol σ.
It may not be obvious that an introduction of the non-commutative Heisenberg

group produces any advantage over commutative Pontryagin duality. Probably,
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it explains why this direction, rooted in Weyl’s original works and spectacularly
developed in [22, 23], was not widely adopted (see, however, remarkable excep-
tions [13, 14, 18, 19, 54]).

Benefits, which can be challenged within the classical PDOs, become more
explicit when we move to a general setup. A transition to a non-commutative
underlining group does not become an issue since non-commutativity is already
in the scheme. Thus, the construction of non-abelian PDOs is different in a com-
putational sense rather than conceptually. Moreover, historically PDOs appeared
as “SIOs varying from point to point” and these roots were preserved in [13,14].
We will recover them in examples with the Dynin group below.

Such a development is very straightforward for nilpotent Lie groups, as was
already hinted in [13, 14, 23]. Thus, the concept of relative convolutions [36] was
initially developed in the nilpotent setting. However, the approach is also usable
for non-compact non-commutative non-exponential (e.g. semisimple) Lie groups
as well. The present paper provides a brief illustration to this claim.

3. Groups and Representations

Our construction is based on groups and representation theory. It is connected
to the covariant transform [39–41, 45], which consolidates a large collection of
results linked to wavelets/coherent states [36, 37].

3.1. Main Examples. For the sake of brevity, we explicate our approach only
by the following four examples. However, they do not exhaust all possible appli-
cations.

3.1.1. The Heisenberg Group. For simplicity, we use only the smallest one-dim-
ensional Heisenberg group H consisting of points (s, x, y) ∈ R3 [18,23]. The group
law on H is given by (2.7). The Heisenberg group is a non-commutative nilpotent
Lie group with the centre

Z = {(s, 0, 0) ∈ H, s ∈ R}.

The Lie algebra h is realised by the following left-(right-)invariant vector fields:

Sl(r) = ±∂s, X l(r) = ±∂x −
1
2
y∂s, Y l(r) = ±∂y +

1
2
x∂s. (3.1)

They satisfy to the Heisenberg commutator relations [X, Y ] = S and [X,S] =
[Y, S] = 0.

3.1.2. Abstract Heisenberg–Weyl (AHW) Group. Let G be a locally compact

abelian group. Pontryagin duality tells that the collection Ĝ of all unitary char-
acters of G is a locally compact group as well. For example [29, § IV.2.1], R̂ = R,

Ẑ = T, T̂ = Z, where T is the group of unimodular complex numbers. The group

operations on both G and Ĝ are denoted by + and their units are written as 0.
We form a new group G̃ as the set T ×G× Ĝ with the group law [18, § 1.11;

49; 50]:
(z1, g1, χ1) ∗ (z2, g2, χ2) = (z1z2χ2(g1), g1 + g2, χ1 + χ2),

where zi ∈ T, gi ∈ G, χi ∈ Ĝ, i = 1, 2. In general, G̃ is a non-commutative locally
compact group. The unit is (1, 0, 0) and the inverse of (z, g, χ) is (z̄χ(g),−g,−χ).
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The centre of G̃ consists of elements (z, 0, 0), z ∈ T. The left- and right-invariant

measures coincide with the product of invariant measures of T, G and Ĝ.

For G = R, the group G̃ is the polarised Heisenberg group [18, § 1.2] in the
reduced form [18, § 1.3]. Thus, for a general G, we call G̃ the abstract Heisenberg–

Weyl (AHW) group. Another basic example of the AHW group is T̃ = T×T×Z,
with the group law:

(z1, w1, k1) ∗ (z2, w2, k2) = (z1z2w
k2
1 , w1w2, k1 + k2),

where zi, wi ∈ T and ki ∈ Z, i = 1, 2 and the operation on T written as multiplica-

tion of complex numbers. Of course, by the Pontryagin duality
˜̂
G is isomorphic to

G̃, in particular, T̃ is isomorphic to Z̃. Our consideration of G̃ shall be compared
with [66].

3.1.3. The Dynin Group. Extending the Heisenberg group, consider a Lie algebra
d spanned by the basis {Z, T, U, V, S,X, Y } defined by the following non-vanishing
commutators [13]:

[X, Y ] = S, [X,U ] = Z, [Y, V ] = Z, (3.2)

[S, T ] = Z, [X, T ] = −1
2
V, [Y, T ] = 1

2
U. (3.3)

Thus, the Lie algebra d is nilpotent step 3. It is generated by its elements X , Y
and T and their commutators. The multiplication on a group D, obtained from
d by exponentiation, is:

(z, t, u, v, s, x, y) ∗ (z′, t′, u′, v′, s′, x′, y′) (3.4)

=(z + z′ + 1
2
(st′ − s′t) + 1

2
(xu′ − x′u) + 1

2
(yv′ − y′v)

+ 1
24
(yx′t− xy′t+ y′xt′ − x′yt′),

t+ t′, u+ u′ + 1
4
(yt′ − y′t), v + v′ − 1

4
(xt′ − x′t),

s+ s′ + 1
2
(xy′ − x′y), x+ x′, y + y′).

A representation dR of d appears if we extend the representation of the Lie
algebra h by the left-invariant vector fields (3.1) with the representation of the
additional operators U , V , T , Z as operators of multiplication:

dRU = xI, dRV = yI, dRT = sI, dRZ = I. (3.5)

This representation is connected with the algebra generated by convolutions on
the Heisenberg group and operators of multiplications by functions, see Exam-
ple 5.1(iii) below. The group D was used in papers [13, 14], thus we call it the
Dynin group. It is a special (but, probably, the most important) example of
meta-Heisenberg group [19]. It is also a subgroup of the group studied in [54].

3.1.4. The group SU(1, 1). The group SU(1, 1) [48, § IX.1; 62, § 8.1] consists

of 2 × 2 matrices with complex entries of the form

(
α β
β̄ ᾱ

)
and unit determi-

nant: |α|2 − |β|2 = 1. The multiplication is given by matrix multiplication and
is not commutative. The maximal compact subgroup K of diagonal matrices
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(
eiφ 0
0 e−iφ

)
is isomorphic to the unit circle. Its presence indicates that the group

is not exponential, that is the exponent map from the Lie algebra to the group
is not a bijection. This is group is not compact.

The group SU(1, 1) acts by Möbius transformations of the unit disk (Exam-
ple 3.1(iv) below) and is very important in complex analysis, cf. [8]. Intimate
connections of other subgroups of SU(1, 1) with the hypercomplex numbers is
described in [41, 42, 47], we do not touch this interesting topic in this paper.

3.2. Induced Representations. The general scheme of induced representations
is as follows, see also [20, Ch. 6; 27, § 13.2; 28, § V.2; 35, § 3.1; 50; 62, Ch. 5].

Let G be a locally compact group and let H be its subgroup. Let X = H\G
be the corresponding right coset space and s : X → G be a continuous function
(section) [27, § 13.2] which is a right inverse to the natural projection p : G →
H\G. Then, any g ∈ G has a unique decomposition of the form g = h ∗ s(x)
where x = p(g) ∈ X and h ∈ H . We define the map r : G → H :

r(g) = g ∗ s(x)−1
, where x = p(g). (3.6)

Note, that X is a right homogeneous space with the G-action defined in terms of
p and s as follows:

g : x 7→ x · g = p(s(x) ∗ g), (3.7)

where ∗ is the multiplication on G.

Example 3.1. (i) For the Heisenberg group H we can consider the sub-
group Z = {(s, 0, 0) | s ∈ R}. The corresponding homogeneous space is
Z\H = {(0, x, y) | (x, y) ∈ R2n}. Using the maps p : (s′, x′, y′) 7→ (x′, y′)
and s : (x′, y′) 7→ (0, x′, y′) we calculate the action:

(s, x, y) : (x′, y′) 7→ (x+ x′, y + y′). (3.8)

There is also a subgroup

Hx = {(s, 0, y) ∈ H | s, y ∈ R} (3.9)

and the respective homogeneous space is parametrised by the real line.
Using the maps p : (s′, x′, y′) 7→ x′ and s : x′ 7→ (0, x′, 0) we find the
action of H on Hx\H:

(s, x, y) : x′ 7→ x+ x′. (3.10)

(ii) For an AHW group G̃, there are also two commutative subgroups: the
centre Z = {(z, 0, 0) | z ∈ T} and

HG = {(z, 0, χ) ∈ G̃ | z ∈ T, χ ∈ Ĝ}. (3.11)

The natural maps s and respective actions on the homogeneous spaces
are similar to the above particular case of H ∼ R̃.

(iii) For the Dynin group D, consider the commutative subgroup

M = {(z, t, u, v, 0, 0, 0) ∈ D | (z, t, u, v) ∈ R4}. (3.12)
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The homogeneous space M\D can be identified with H through the map
s(s, x, y) = (0, 0, 0, 0, s, x, y). The corresponding action is in the essence
the group law (2.7) of H:

(z, t, u, v, s, x, y) · (s′, x′, y′) = (s+ s′ +
1

2
(xy′ − x′y), x+ x′, y + y′). (3.13)

(iv) For the group SU(1, 1) and its subgroup K we identify K\SU(1, 1) with
the open unit disk D = {z ∈ C | |z| < 1}. Defining maps:

p :

(
α β
β̄ ᾱ

)
7→

β

α
and s : z 7→

1√
1− |z|2

(
1 z
z̄ 1

)
, where |z| < 1 (3.14)

we deduce the respective action:

z · g =
ᾱz + β

β̄z + α
, where g =

(
α β

β̄ ᾱ

)
.

This is a linear-fractional (Möbius) transformation of the unit disk [42,
Ch. 10].

For G and H , we respectively denote the right Haar measures dg and dh, the
corresponding modular functions are ∆G and ∆H . Then, there is a measure dx
on X = H\G defined up to a scalar factor by the identities [27, § 9.1(5′-6′)]:

dg =
∆G(h)

∆H(h)
dx dh, where g = hs(x). (3.15)

The measure dx transforms under G action (3.7) by, see [27, § 9.1(7′-8′)]:

d(x · g)

dx
=

∆H(h(x, g))

∆G(h(x, g))
, where s(x)g = h(x, g)s(x · g). (3.16)

In many cases, e.g. for all nilpotent Lie groups [28, § 3.3.2], unitary repre-
sentations are induced by characters—one dimensional linear representations—of
its subgroups. Thus we present here the induction from a character only. Let
χ : H → C be a unitary character of H . Consider the space of functions on G
with the property:

F (hg) = χ(h)F (g), (3.17)

the space is obviously invariant under right translations. The restriction of the
right regular representation: R(g) : f(g′) 7→ f(g′g) to this space is called an
induced representation in the sense of Mackey [27, § 13.2; 28, § V.2].

Consider the lifting Lχ : Cb(X) → Cb(G) of continuous bounded functions:

F (g) = [Lχf ](g) = χ(h)f(p(g)), f(x) ∈ Cb(X). (3.18)

The function F (g) has the property (3.17). The same expression (3.18) defines
a bijection from Lp(X) to certain space Lχ

p (G), which is invariant under right
translations. A right inverse map—the pulling—P : Lχ

p (G) → Lp(X) is defined
by:

f(x) = [PF ](x) = F (s(x)), F (g) ∈ Lχ
p (G). (3.19)

The norm on Lχ
p (G) is introduced in such a way that both the lifting and pulling

are isometries.
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Since Lχ
p (G) is invariant under the right shifts, lifting and pulling intetwine the

restriction R|Lχ
p (G) of the right regular representation R with the representation

ρχ(g) = P ◦ R(g) ◦ Lχ. It is the second form of the induced representation. Its
realisation ρχ in a space of complex-valued functions on X , cf. [27, § 13.2(7)–(9)]
is:

[ρχ(g)f ](x) = χ(r(s(x) ∗ g)) f(x · g), (3.20)

where g ∈ G, x ∈ X , h ∈ H and r : G → H , s : X → G are maps defined above;
∗ denotes multiplication on G and x · g denotes the action (3.7) of G on X from
the right.

For the case of an unimodular group G and an unimodular subgroup H ⊂ G
(which is automatic for a nilpotent G), the representation (3.20) is unitary in
L2(X). In the case of a non-unimodular (sub)group, we need an additional factor[
∆H (h(x,g))
∆G(h(x,g))

] 1
2

to make ρχ unitary, cf. (3.16) and [27, § 13.2(3)].

Example 3.2. (i) For the centre Z of H, the map r : H → Z is r(s, x, y) =
(s, 0, 0). The character χ~(s, 0, 0) = e2πi~s of Z together with the ac-
tion (3.8) produces the unitary Fock–Segal–Bargmann (FSB) represen-
tation [18, § 1.6; 43]:

[ρF~ (s, x, y)f ](x
′, y′) = eπi~(2s+x′y−xy′)f(x′ + x, y′ + y). (3.21)

We identify a point (x, y) of the homogeneous space Z\H with the com-
plex number z = x + iy. Then, the representation (3.21) can be stated
in the complex form:

[ρF~ (s(z))f ](z
′) = eπ~(zz̄

′−z̄z′)/2f(z + z′). (3.22)

For the subgroup Hx (3.9), the map r(s, x, y) = (s + 1
2
xy, 0, y). A

character χ~(s, 0, y) = e2πi~s and the action (3.10) produce the Shrödinger
representation [18, § 1.3; 43]:

[ρ~(s, x, y)f ](x
′) = eπi~(2s+2x′y+xy)f(x′ + x). (3.23)

Clearly, ρ1(−s,−x,−y) coincides with the representation (2.8). Further-
more, it is known that they are unitary equivalent to FSB representa-
tion (3.21).

(ii) For an AHW group G̃, we proceed in a similar fashion. The character

ν(z, 0, 0) = zk of the centre induce the representation on L(G× Ĝ):

[ρFk (z, g, χ)f ](g
′, χ′) = (zχ(g′))k f(g + g′, χ+ χ′). (3.24)

For the subgroup HG (3.11), the map r(z, g, χ) = (z, 0, χ) and the char-
acter ν(z, 0, χ) = zk induces the representation on L(G):

[ρk(z, g, χ)f ](g
′) = (zχ(g′))k f(g + g′). (3.25)

The classification of irreducible representations of AHW group was pro-
vided in [49] in a way which generalised the Stone–von Neumann theorem
for Hn, see also [50].
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(iii) For the subgroup M (3.12) of D, the map

r(z, t, u, v, s, x, y) = (z + 1
2
st+ 1

2
xu+ 1

2
yv, t, u+ 1

4
yt, v − 1

4
xt, 0, 0, 0).

The character χ(z, t, u, v, 0, 0, 0) = e2πihz ofM induces the representation:

[ρh(z, t, u, v, s, x, y)f ](s
′, x′, y′) (3.26)

=eπih(2z+2s′t+st+ 1
4
(x′y−xy′)t+(2x′+x)u+(2y′+y)v)

× f(s+ s′ + 1
2
(x′y − xy′), x+ x′, y + y′).

In particular, the action of the subgroup M reduces to multiplication:

[ρh(z, t, u, v, 0, 0, 0)f ](s
′, x′, y′) = e2hπi(z+ts′+ux′+vy′)f(s′, x′, y′). (3.27)

On the other hand, the operator ρh(0, 0, 0, 0, s, x, y) is the shift (3.13) by
(s, x, y) onH. The corresponding infinitesimal actions are (3.1) and (3.5).
This representation was used in [13], see also [19, § 3].

(iv) For G = SU(1, 1) and H = K we calculate r

(
α β
β̄ ᾱ

)
=

( α
|α|

0

0 ᾱ
|α|

)
. Let

a character χ of K be χ

(
eiφ 0
0 e−iφ

)
= e−2iφ, then the induced represen-

tation acts on L2(D) as follows:

[ρ(g)f ](z) =

∣∣β̄z + α
∣∣2

(β̄z + α)2
f

(
ᾱz + β

β̄z + α

)
=

βz̄ + ᾱ

β̄z + α
f

(
ᾱz + β

β̄z + α

)
. (3.28)

Since we are not in the unimodular setting now, we calculate the invari-

ant measure on the unit disk to be (1− |z|2)
−2

dz ∧ dz̄. The represen-
tation (3.28) is unitary and belongs to the discrete series [48, § IX.3].
In contrast to equivalent representations used in complex analysis, our
expression (3.28) has clearer composition formula, cf. [8, (**)]. However,
(3.28) does not preserves usual analyticity. We can use either conformal-
invariant modification of the Cauchy–Riemann equations [41, § 5.3], or
introduce an additional peeling map, which intertwines our representa-
tion with the more common one, acting in the space of analytic functions.

4. Covariant Transform

Representation theory is behind many important calculations in analysis, this
is illustrated in the present section. The group-theoretical foundations of coherent
states/wavelets are well-known and widely appreciated [1, 34, 37, 38, 41, 44, 53].

4.1. Induced Covariant Transform. The following definition is a general tem-
plate, which admits various specialisations adjusted to particular cases.

Definition 4.1. [39] Let ρ be a representation of G in a vector space V . For a
vector space U and an operator F : V → U , the covariant transform is the map:

[WF v](g) = F (ρ(g)v), v ∈ V, g ∈ G, (4.1)

to U -valued functions on G. In this context we call F a fiducial operator .
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An important particular case of the above definition is provided by a linear
functional F ∈ V ∗, the covariant transform produces matrix coefficients of the
representation [25, Ex. I.1.2.12]. In the case of a Hilbert space V , such a functional
is provided by a pairing with a vector f ∈ V , which is known as mother wavelet
or vacuum state [1,53]. Then, the covariant transform becomes the wavelet trans-
form:

ṽ(g) = [Wfv](g) := 〈ρ(g)v, f〉 = 〈v, ρ∗(g)f〉 = 〈v, fg〉 , (4.2)

where fg = ρ∗(g)f are called wavelets. The imageWfv is a scalar-valued function.
The scalar case is very important, however, it does not cover all interesting situ-
ations, see [44] and Example 4.7. We also may require a functional F associated
to a singular mother wavelet, i.e. a distribution, cf. [37, § 2.3].

If the representation ρ and the operator F are bounded, then the image of WF

consists of bounded functions on G. Weak continuity of ρ suffices for continuity
of WF v. An important property of WF is as follows.

Lemma 4.2. The covariant transforms intertwines the left Λ(g) : f(g′) 7→ f(g−1g′)
and right R(g) regular representations of G with the following actions of ρ:

R(g)WF = WFρ(g) and Λ(g)WF = WF◦ρ(g−1) for all g ∈ G. (4.3)

There is the following simple but useful consequence of the above Lemma.

Corollary 4.3. [41, Cor. 5.8] Let ρ be a linear representation of a group G on
a space V , which has an adjoint representation ρ∗ on the dual space V ∗. Let a
mother wavelet f ∈ V ∗ satisfy the equation

∫

G

a(g) ρ∗(g)f dg = 0,

for a fixed distribution a(g) and a (not necessarily invariant) measure dg. Then,
any wavelet transform ṽ = 〈v, ρ∗(g)f〉 obeys the following right-invariant condi-
tion:

Dṽ = 0, where D =

∫

G

ā(g) Λ(g) dg, (4.4)

with Λ being the left regular representation of G.

As we will see below, the above distribution a is often a linear combination of
derivatives of the Dirac’s delta functions, therefore the operator D turns to be a
differential operator. Further examples can be found in [45, Ex. 5.9–11].

Often we need only a part of covariant transform. For a Lie group G and its
subgroup H , we fix a continuous section s : H\G → G, which is a right inverse
to the projection p : G → H\G.

Definition 4.4. [41, § 5.1] Let F : V → U intertwine the restriction of ρ to H
with a character χ of H : F (ρ(h)v) = χ(h)F (v) for all h ∈ H , v ∈ V . Then, the
induced covariant transform is:

[WF v](x) = F (ρ(s(x))v), v ∈ V, x ∈ H\G. (4.5)
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Under our assumptions, the induced covariant transform intertwines ρ with the
representation induced from H by the character χ. To use the condition (4.4) for
the induced covariant transform, we need first apply the lifting Lχ (3.18) to WF v
and then the operator D. A collection of such conditions (4.4) can characterise
the image WfV among all functions on X , see Examples 4.5(i) and 4.5(iv) below.

In many cases, e.g. for square integrable representations and an admissible
mother wavelet v ∈ V , the image space of the covariant transform is a reproducing
kernel Hilbert space [1, Thm. 8.1.3]. That means that for any function v ∈ WfV
we have the integral reproducing formula:

v(y) =

∫

X

v(x) k̄y(x) dx, (4.6)

where the reproducing kernel ky provides the twisted convolution with the nor-
malised covariant transformWf (ρ(s(y)

−1)f) for the mother wavelet f , see Cor. 5.8.
For a function v 6∈ WfV , the right-hand side of (4.6) defines its projection to the
space WfV .

Example 4.5. (i) For G = H, H = Z and the representation ρ~ (3.23)
on L2(R), we have ρ~(s, 0, 0) = e2πi~s. Thus any function f ∈ L2(R) is
suitable for the induced wavelet transform. Explicitly:

[Wfv](x, y) = 〈ρ~(x, y)v, f〉 =

∫

R

eπi~(2yx
′+xy) v(x′ + x) f̄(x′)dx′

=

∫

R

e2πi~yx
′′

v(x′′ + 1
2
x) f̄(x′′ − 1

2
x) dx′′. (4.7)

The last expression is known as Fourier–Wigner transform [12, § 9.2;
18, § 1.4].
For the representation (3.22) and the functional produced by pairing

with the Gaussian φ(z) = e−π~|z|2/2 the covariant transform Wφ is:

[Wφf ](z) =

∫

C

eπ~(zz̄
′−z̄z′)/2f(z + z′) e−π~|z′|2/2 dz′ ∧ dz̄′

=

∫

C

f(z′′) eπ~zz̄
′′

e−π~(|z′′|2+|z|2)/2 dz′′ ∧ dz̄′′, (4.8)

where z′′ = z + z′. This is Fock–Segal–Bargmann (FSB) transform,

it presents the FSB reproducing kernel k(z, z′′) = eπ~zz̄
′′

e−π~(|z′′|2+|z|2)/2.
Note, that the second exponent is usually attributed to the weight [4; 9;
18, § 1.6].
The image F2(C) of (4.8) is an irreducible invariant subspace of L2(C)

with the corresponding orthogonal projection:

PF : L2(C) → F2(C), (4.9)

provided by (4.8). The space F2(C) is characterised by the differential
equation (∂z̄ − z)f = 0, which follows from Cor. 4.3 with the distribution
a(s, x, y) = δ′x(s, x, y)− iδ′y(s, x, y).
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(ii) For an AHW group G̃, H being its centre and the representation (3.25),
any function l on G produces a pairing appropriate for the induced co-
variant transform, cf. (4.7):

[Wlv](g, χ) =

∫

G

χk(g′) f(g + g′) l̄(g′) dg′, (4.10)

where we integrate over the Haar measure on G.
(iii) For G = D, H = M , the representation ρh (3.26) is induced by a char-

acter of the centre C. Thus, any functional can be used for the induced
covariant transform to C\D:

[Wfw](t, u, v, s, x, y) =

∫

H

eπih(2s
′t+st+ 1

4
(x′y−xy′)t+(2x′+x)u+(2y′+y)v)

× w(s+ s′ + 1
2
(x′y − xy′), x+ x′, y + y′) f̄(s′, x′, y′) ds′ dx′, dy′

=

∫

H

w(s′ + 1
2
s+ 1

4
(x′′y − xy′′), x′′ + 1

2
x, y′′ + 1

2
y)

× f̄(s′′ − 1
2
s− 1

4
(x′′y − xy′′), x′′ − 1

2
x, y′′ − 1

2
y)

× e2πih(s
′′t+x′′u+y′′v) ds′′ dx′′ dy′′.

A similarity with the Fourier–Wigner transform (4.7) is explicit.
(iv) For G = SU(1, 1), H = K and the induced representation ρ (3.28), a

pairing with the function l0(z) = 1− |z|2, has the property

〈ρ(h)v, l0〉 = e2iφ 〈v, l0〉 , h =

(
eiφ 0
0 e−iφ

)
∈ K.

Thus, l0 can be used for the induced covariant transform:

[W0v](w) =

∫

D

wz̄ + 1

w̄z + 1
v

(
z + w

w̄z + 1

)
(1− |z|2)

dz ∧ dz̄

(1− |z|2)
2

=(1− |w|2)

∫

D

v(ζ)

(1− ζ̄w)2
dζ ∧ dζ̄

1− |ζ |2
, where ζ =

z + w

w̄z + 1
. (4.11)

Up to the factor 1−|w|2

1−|ζ|2
discussed in Example 3.2(iv), this is known as the

Bergman integral [8]. The image space B2(D) of W0 is SU(1, 1)-invariant
subspace of L2(D), which is called Bergman space. The orthogonal pro-
jection:

P : L2(D) → B2(D), (4.12)

presented by the Bergman integral (4.11) is called the Bergman pro-
jection. On B2(D) the integral (4.11) acts as a reproducing formula,
cf. (4.6).
The Bergman space is in the kernel of the differential operator z

1−|z|2
−

∂z̄. For an expression of this operator in terms of SU(1, 1) and Cor. 4.3
see [35, Ex. 3.7(a); 48, § IX.5].
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4.2. Berezin Covariant Symbol. An important observation [37] is that, for a
representation ρ of G in a vector space V , we have a representation

ρ̂(g1, g2) : A 7→ ρ(g2)
−1Aρ(g1), (g1, g2) ∈ G×G (4.13)

of G×G on the space B(V ) of bounded linear operators on V .

Definition 4.6. [41, § 4.3; 44] For a fixed operator F : B(V ) → U the covariant

symbol Ã(g1, g2) is the covariant transform defined by the representation ρ̂ and
the operator F :

Ã(g1, g2) = F (ρ̂(g1, g2)A) = F (ρ(g2)
−1Aρ(g1)), where (g1, g2) ∈ G×G.

(4.14)
We also use the notation Ã(g) for Ã(g, g).

Since the covariant symbol is a special case of the covariant transform, the
respective variants for the scalar case and induced form are applicable as well.
The combination of both has the special name. For fixed f ∈ V and l ∈ V ∗, the
Berezin covariant symbol Ã(x1, x2) is the induced covariant transform defined by
the representation ρ̂ and the functional F (A) = l(Af):

Ã(x1, x2) = F (ρ̂(s(x1), s(x2))A) = l(ρ(ρ(s(x2)
−1)As(x1))f), (4.15)

where x1, x2 ∈ H\G. Again, we denote Ã(x) = Ã(x, x).
As before, this definition is most useful if f and l are eigenvectors for all

transformations ρ(h), h ∈ H . An important particular case of the construction
is a unitary representation in a Hilbert space V and the functional l ∈ V ∗ be a
pairing with f ∈ V [5, § 1.2]:

Ã(x, y) =
〈
ρ(s(y))−1Aρ(s(x))f, f

〉
= 〈Aρ(s(x))f, ρ(s(y))f〉 = 〈Afx, fy〉 , (4.16)

where fx = ρ(s(x))f , fy = ρ(s(y))f .

Example 4.7. There is a large variety of possibilities (even for a fixed group G)
provided by a selection of various subgroups H , representations ρ and fiducial
functionals F . We will illustrate this for the Heisenberg group. Note that, our
list is based on the most popular options and is far from being exhausting. For
other groups, the number of possibilities is not smaller.

(i) For the Heisenberg group, to make a structure of the listed options we
introduce a subdivision.
(a) For G = H and the representation (3.23), take f(y) = l(y) =

δ(y)—the Dirac delta function. For the subgroup Hx (3.9) and
the homogeneous space R = Hx\H representation (3.23) acts on
[ρ(s(0,−x, 0)δ](x′) = δx(x

′) = δ(x′ − x). Consider a smoothing op-
erator A : S ′ → S , where S is the Schwartz space of smooth rapidly
decreasing functions on the real line and S ′ is its dual—the space of
tempered distributions. Then the Berezin covariant symbol is:

Ã(x1, x2) = 〈Aδx1
, δx2

〉 , (4.17)

which will be related to the Schwartz kernel below.
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The reader may notice that our usage of the Heisenberg group looks
excessive in this case: shifts on the real line are completely sufficient.
Thus, we are moving to the next case.

(b) Again consider G = H this time with the subgroup Hx (3.9) and the
analogous subgroup Hy = {(s, 0, x) ∈ H}. Accordingly, for the rep-
resentation (3.23) we take f(x) ≡ 1 and l(x) = δ(x) both being tem-
pered distributions from S ′. Then, [ρ~(0, 0, y)f ](x

′) = eπi~2x
′yf(x′)

and [ρ~(0,−x, 0)δ](x′) = δ(x′ − x). Since, the Fourier transform of
ρ~(0, 0, y)f is the delta function δy, for the PDO AKN (2.2) with a
smooth symbol a, the Berezin symbol

ÃKN(y, x) = a(x, y),

is its Kohn–Nirenberg symbol a.
(c) For G = H, H = Z, the representation (3.22) and the both l and

f be the Gaussian φ(z) = e−π~|z|/2, the transformation (4.16) is the
Wick (or Berezin) symbol of an operator A [4; 9; 18, § 2.7; 23]. The
simplest calculation of the covariant symbol can be performed for
the Toeplitz operator Ta = PFaPF , with a ∈ L∞(C) and PF (4.9).
For the Gaussian φ and φz = ρF~ (s(z))φ we found:

T̃a(w, z) = 〈Taφw, φz〉 = 〈PFaφw, φz〉 = 〈aφw, P
∗
Fφz〉 = 〈aφw, φz〉

=

∫

C

a(z′) e−π~(w̄z′+|w|2/2+|z′|2/2)e−π~(zz̄′+|z|2/2+|z′|2/2) dz′ ∧ dz̄′

= e−π~(|w|2/2+|z|2/2)

∫

C

a(z′) e−π~(w̄z′+zz̄′+|z′|2) dz′ ∧ dz̄′. (4.18)

Clearly, T̃a(z, z) is not much different from the FSB transform (4.8)
of a.
It is worth to notice, that the unitary equivalent model on the real
line appears if both f and l are the Gaussians e−πx2/2 on the real
line. The respective contravariant symbol translates to the language
of quantum mechanics as the transition amplitude of a quantum
mechanical observable (in the Schrödinger model) between states
with minimal uncertainty.
Another class of operators with a useful Berezin calculus are compo-
sition operators [8], i.e. an operator Cφ : f 7→ f ◦ φ for a fixed map
φ : X → X of the domain to itself.

(d) There is another approach for G = H and the representation (3.23).
We take an (operator-valued) fiducial operator F : B(L2(R)) →
Bs(L2(R)), where Bs(L2(R)) is the space of bounded shift-invariant
operators on L2(R). F is defined by:

F : A 7→ A0, such that lim
δ→0

|||MδAMδ −A0||| = 0, (4.19)

where Mδ is an operator of multiplication by the indicator function
of δ-neighbourhood of the origin and ||| · ||| denotes the essential
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norm (modulo compact operators). The limit exists for operators of
local type [57].
In particular, for the operator Mf of multiplication by a function
f(x) we have FMf = f(0)I. Therefore, for the representation
ρ~ (3.23), we obtain the eigenfunction property Fρ~(s, 0, y) = e2πi~sI
for all (s, 0, y) ∈ Hx (3.9). Thus, we can use the induced form of the
covariant symbol (4.14) only for values ρ~(0, x, 0), where x ∈ R =
Hx\H (3.23)—they are shifts on the real line. Thus the localisation
map (4.19) defines the covariant transform

Ax = F (ρ~(0, x, 0)Aρ~(0,−x, 0)),

which is the local representative of the operator A at a point x [44,
57].
Another important example of operators of local type are SIOs—
convolutions on R with singular kernels—moreover, F (S) = S for
any SIO S with a homogeneous kernel. This recovers Simonenko’s
localisation technique for the calculus of operators generated by SIOs
and operators of multiplications [44, 57, 58].

(ii) For an AHW group G̃, we can essentially repeat all approaches for H

described above. For example, we provide an analogue of 4.7(i)(b). For
G̃ generated by a commutative group G consider subgroups HG (3.11)
and the similar subgroup HĜ = {(z, g, 0)}, the respective homogeneous

spaces are G = HG\G and Ĝ = HĜ\G. Take f(g) ≡ 1 on G and l(g) =
δ(g). For the representation (3.25), we have [ρ1(1, 0, χ)f ](x

′) = χ(x′) and
[ρ1(1,−x, 1)δ](x′) = δx(x

′) = δ(x′ − x). Then, the Berezin symbol of the
operator A (2.5) is:

Ã(x, χ) = 〈Aχ, δx〉 = a(x, χ),

i.e. the symbol a entering the integral (3.25). Other variations of 4.7(i)(a)–
(i)(d) can be obtained in similar ways.

(iii) For G = D, H = M and the representation (3.26), we can use the
localisation approach from 4.7(i)(d). For a localisation functional F at
the origin of H similar to (4.19), we calculate F (ρh(z, t, u, v, 0, 0, 0)) =
e2πihzI for the representation (3.26) and (z, t, u, v, 0, 0, 0) in the subgroup
M (3.12). Thus, it is sufficient to perform the covariant transform (4.14)
for [ρh(0, 0, 0, 0, s, x, y), which are shifts on H. In this way we recovered
the calculus of SIO on the Heisenberg group initiated in [13, 14], see
also [30, 31, 33]. This can be extended to more general nilpotent Lie
groups. To this end we need to consider a suitable group of dilations,
which acts by automorphisms of the nilpotent group [17, § 1.A]. Such a
covariant calculus was recently considered in [44]. This can be compared
with the standard wavelet technique extended from the ax+ b group to
the semidirect product of the Heisenberg group and the one-dimensional
group of its automorphisms acting by dilations [26].

(iv) For G = SU(1, 1), H = K and the representation (3.28) we can fol-
low the suit of 4.7(i)(c) by setting f(z) = l(z) = 1 − |z|2. The Berezin
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symbol (4.16) is well-known [6] and very important in the theory of op-
erators [8; 52, § B.4.1.8; 64, § A.3]. Similarly to the Heisenberg group,
the simplest calculation of the covariant symbol appear for the Toeplitz
operator Ta = PaP , where a(z) ∈ L∞(D) and P is the Bergman projec-
tion (4.12). Using expressions from Examples 3.1(iv) and 3.2(iv), for the

l0(ζ) = 1− |z|2 we calculate:

lw(ζ) = [ρ(s(z))l0](ζ) =
(1− |w|2)(1− |ζ |2)

(1 + w̄ζ)2
.

Then:

T̃a(w, z) = 〈Talw, lz〉 = 〈Palw, lz〉 = 〈alw, P
∗lz〉 = 〈alw, lz〉

=

∫

D

a(ζ)
(1− |w|2)(1− |ζ |2)

(1 + w̄ζ)2

(
(1− |z|2)(1− |ζ |2)

(1 + z̄ζ)2

)
dζ ∧ dζ̄

(1− |ζ |2)
2

= (1− |w|2)(1− |z|2)

∫

D

a(ζ)

(1 + w̄ζ)2(1 + zζ̄)2
dζ ∧ dζ̄. (4.20)

Another opportunity to investigate operators on the Bergman space is
the localisation technique similar to 4.7(i)(d). The localisation can be
combined with the Berezin calculus [64].

4.3. Calculus of Covariant Symbols. If a functional F and a representation ρ
are both linear, then the resulting covariant transform WF (4.1) is a linear map.
If WF is injective, e.g. due to irreducibility of ρ, then WF transports a norm ‖·‖
existing on V to a norm ‖·‖F on the image space WFV by the simple rule [45]:

‖u‖F := ‖v‖ , where the unique v ∈ V is defined by u = WF v. (4.21)

By the very definition, WF is an isometry (V, ‖·‖) → (WFV, ‖·‖F ). Moreover, if
the representation ρ acts on (V, ‖·‖) by isometries then ‖·‖F is right invariant due
to Lem. 4.2.

In most cases, the transported norm can be naturally expressed in the original
terms for G. For example, for a square integrable modulo a subgroup H repre-
sentation ρ and an admissible mother wavelet f ∈ V the transported by (4.2)
norm coincides with the L2-norm on X = H\G. Explicitly, for v1,2 ∈ V and
ṽ1,2(x) = 〈v1,2, ρ(s(x))f〉V [1, Ch. 8]:

〈v1, v2〉V = 〈ṽ1, ṽ2〉W , where 〈ṽ1, ṽ2〉W =

∫

X

ṽ1(x) ṽ2(x) dx. (4.22)

Another example of a transported norm is the norm on the Hardy space in the
half-plane [45].

The particular case of the above transportation is provided by the Berezin
transform. For an operator A on a normed space V , the norm of A has the
standard definition: ‖A‖ = sup‖v‖≤1 ‖Av‖. For an isometric representation ρ of

G on V and ‖f‖ ≤ 1 and ‖l‖ ≤ 1, the associated Berezin transform Ã(x, y) (4.16)
is a function onX×X bounded by ‖A‖. The opposite statement—boundedness of
Ã(x, y) implies boundedness of A—is a variation of the reproducing kernel thesis
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(RKT) [52, § B.4.1.8]. Another related topic is a connection of compactness of
A and vanishing of A(x, y) “near to the boundary” [8, 9]. We return to RKT in
Subsection 5.3.

The isometric property (4.22) allows us to follow [5, § 1.2] and deduce compo-
sition rule for Berezin covariant symbols [37, Prop. 3.2]:

ÃB(x, y) = 〈ABfx, fy〉V = 〈Bfx, A
∗fy〉V

=

∫

X

B̃fx(z) Ã∗fy(z) dz =

∫

X

〈Bfx, fz〉 〈fz, A
∗fy〉 dz

=

∫

X

〈Bfx, fz〉 〈Afz, fy〉 dz =

∫

X

B̃(x, z) Ã(z, y) dz. (4.23)

One can note, that covariant symbols behaves (up to the order of A and B in the
last integral) like integral kernels and this is not a simple coincidence, see below.
Our formula is more straightforward than the original [5, § 1.2] since we do not
need a normalization.

Example 4.8. (i) For the Heisenberg group in the setup of 4.7(i)(a), the
fiducial functional of pairing with f = δ produces the identity operator
in ṽ(x) = 〈v, fx〉 (4.2). Since we have the isometry (4.22) in the triv-
ial way, the composition rule (4.23) follows. Keeping in mind that the
Berezin covariant transform (4.17) is the Schwartz kernel with reversed
arguments, we obtained the well-known integral formula for the compo-
sition of Schwartz kernels.
In the setup of 4.7(i)(c), the covariant transform turns to be a re-

producing formula (4.8) on the FSB space, thus, is an isometry. The
specialisation of the composition rule (4.23) for the Toeplitz operators in
the FSB space can be found in many works starting from [4].

(ii) For an AHW group G̃, we can essentially repeat all approaches (Schwartz
kernel, PDO-type, Toeplitz operators and localisation techniques) which
are in use for the Heisenberg group with respective norms and composi-
tions formulae.

(iii) For the Dynin group D and the representation (3.26), we recall the lo-
calisation context from 4.7(i)(d) and 4.7(iii). Let P0,δ be the projection
provided by multiplication with the characteristic function of δ-neigh-
bourhood of 0 ∈ H. Then, the representation (3.26) produces similar
projections Pg,δ for an arbitrary g ∈ H. For an operator A on L2(H)

we can build a Berezin covariant symbol Ãδ(g1, g2) = Pg2,δAPg1,δ. If

A is an operator of local type [57], then Ãδ(g1, g2) is a compact for all

δ < |g1 − g2|. Thus, modulo compact operators the symbol Ã(g1, g2) =
limδ→0 Ãδ(g1, g2) vanishes outside of the diagonal. Therefore, the co-

variant symbol becomes a field of local representatives Ã(g) = Ã(g, g),

g ∈ H [14, 30]. The isometry (4.21) becomes |||A||| = supg

∥∥∥Ã(g)
∥∥∥. The

composition rule (4.23) reduces to point-wise multiplication of local rep-

resentatives: ÃB(g) = Ã(g)B̃(g).
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(iv) For G = SU(1, 1), H = K and the representation (3.28) we also have
the reproducing formula (4.11) on the Bergman space. The respective
composition formula for Toeplitz operators is well-known [6, § 4.2; 8;
64, § A.3].

5. Relative Convolutions

5.1. Integrated Representations and Contravariant Symbols. Let G be
a locally compact group, a left-invariant (Haar) measure on G is denoted by dg.
Let ρ be a representation of the group G in a vector space V . The representation
can be extended to a function k on G though integration

ρ(k) =

∫

G

k(g) ρ(g) dg. (5.1)

In the simplest case k has scalar values, however, the same formula is meaningful
for functions with values in operators on the representation space V .

The integral (5.1) can be defined in a weak sense for various combinations
of functions and representations. One of the natural setups is a bounded (e.g.
unitary) representation ρ and a summable function k. In this case we obtain a
homomorphism of the convolution algebra L1(G, dg) to an algebra of bounded
operators on V :

ρ(k1)ρ(k2) = ρ(k1 ∗ k2), where [k1 ∗ k2](g) =

∫

G

k1(g1) k2(g
−1
1 g) dg1.

For a representation ρ induced from a subgroup H , all operators ρ(h), h ∈ H
act in (3.20) locally. That becomes especially trivial if ρ(h) are scalars. Thus,
for induced representations, we are mainly interested in the “complement” H\G
in the expression (5.1). For a continuous section s : H\G → G, we rewrite (5.1)
to become an operator of a relative convolution [36]:

ρ(k) =

∫

X

k(x) ρ(s(x)) dx, (5.2)

with a kernel k defined on X = H\G with a (quasi-)invariant measure dx (3.15).
Again, the most natural domain of this definition is a bounded representation ρ
and a summable k from L1(X, dx). Furthermore, in many cases we need to (and
can) extend meaning of (5.2) for suitable functions and distributions, e.g. the
Dirac delta function and its derivatives.

Example 5.1. (i) We already mentioned that relative convolutions gener-
ated by the Schrödinger representation (2.8) of the Heisenberg group are
PDO (2.9). In this case G = H and H = {(s, 0, 0) | s ∈ R}—the centre
of G = H. It is the original inspiration for this approach [18, 23, 36].
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(ii) For the AHW group G̃ and its representation (3.25) with k = 1, take a

function σ(g, χ) on X = T\G̃ = G× Ĝ and calculate, cf. [18, (2.32)]:

[ρ(a)f ](g′) =

∫

G

∫

Ĝ

σ(g, χ)χ(g′) f(g + g′) dg dχ

=

∫

G

σ̂2(g, g
′) f(g + g′) dg

=

∫

G

∫

Ĝ

σ̂(ξ, g′) ξ̄(g) f(g + g′) dg dξ

=

∫

G

∫

Ĝ

σ̂(ξ, g′) ξ̄(g′′ − g′) f(g′′) dg′′ dξ

=

∫

Ĝ

ξ(g′)σ̂(ξ, g′)

∫

G

f(g′′) ξ̄(g′′) dg′′ dξ, (5.3)

here g′′ = g+g′, σ̂2 is a function on G×G, which is the Fourier transform
of σ in second variable. The last expression (5.3) coincides with Kohn–
Nirenberg type PDO (2.5) for a(g, ξ) = σ̂(ξ, g), cf. [55, Part II].

(iii) For the Dynin group D, the unitary representation ρ (3.26) on L2(H)
is obtained from its infinitesimal action (3.1) and (3.5). The integrated
representation (5.1) was considered in [13] as a generalisation of the Weyl
quantization from H to the group D.
If function k has the structure k(z, t, u, v, s, x, y) = δ(z, t, u, v)k1(s, x, y),

where δ is the Dirac delta function, then ρ(k) is a convolution on the
Heisenberg group with the kernel k1. On the other hand, if

k(z, t, u, v, s, x, y) = δ(z)k2(t, u, v)δ(s, x, y),

then ρ(k) is an operator of multiplication by k̂2(s, x, y)—the (Euclidean)
Fourier transform (t, u, v) → (s, x, y) of k2. Thus, the integrated repre-
sentation (5.1) in this case belongs to the algebra of operators generated
by convolutions on the Heisenberg group and multiplications by func-
tions, which were investigated, for example, in [13, 14, 30, 44]. For a
suitable choice of symbols, this operators coincide with (2.6) used in [3].
Furthermore, we can observe that in both cases kernels depend on the

coordinate z through the delta function. Thus, instead of the integrated
representation (5.1) we can use the relative convolutions (5.2) for G = D

and H being its centre, cf. the case of the Heisenberg group above.
(iv) For G = SU(1, 1) and H = K, a substitution of (3.14) into representa-

tion (3.28) produces the relative convolutions:

[ρ(k)v](z) =

∫

D

k(w)
wz̄ + 1

w̄z + 1
v

(
z + w

w̄z + 1

)
dw ∧ dw̄

(1− |w|2)
2

=

∫

D

1− zζ̄

1− z̄ζ
k

(
z − ζ

z̄ζ − 1

)
v(ζ)

dζ ∧ dζ̄

(1− |ζ |2)
2 , where w =

z − ζ

z̄ζ − 1
. (5.4)
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Interestingly, the last integral can be interpreted as ṽ(z) =
〈
v, ρ(s−1(z))k̄

〉
,

which is the induced wavelet transform on K\SU(1, 1) [41, § 5.5] with
the mother wavelet k̄.

The indicated connection of relative convolutions with the induced wavelet
transform is not an exception. It occurs in many other cases when the represen-
tation space V consists of functions defined on the homogeneous space X = H\G,
e.g. the FSB space of analytic functions on Cn = Z\Hn. In general, the covariant
transform, the Berezin symbol, integrated representations and the contravariant
symbol (considered below) are closely connected and, sometimes, even confused.

5.2. Twisted Convolutions. It is desirable to have an efficient symbolic cal-
culus of relative convolutions. For exponential Lie groups, a calculus in terms
of the respective Lie algebras was initiated in [36]. However, the exponential
property is rather restrictive, for example, SU(1, 1) does not posses it. Here we
provide another algebraic condition, which is sufficient for relative convolutions
to be closed under multiplication.

In the notations of Section 3.2, for any x1, x2 ∈ X = H\G there is the unique
x ∈ X defined by the identity

s(x1) s(x2) = hs(x), that is x = p(s(x1) s(x2)) = x1 · s(x2), (5.5)

where the last expression uses notation (3.7).
The relation (5.5) defines a binary operation (x1, x2) 7→ x, which turns X into

a semigroup. It is not a group unless H is a normal subgroup of G. One can
develop a separate theory for semigroups from homogeneous spaces, for example,
in [63] they are called gyrogroups. However, we prefer to proceed in terms of the
original group G and its subgroup H .

For given x2, x ∈ X , there is the only x1 = x · (s(x2))
−1 ∈ X satisfying the first

identity in (5.5). We will use the abbreviation x1 = xx−1
2 for it.

Furthermore, using the transformation rule (3.16) of the measure dx on X we
calculate:

dx1 dx2 =
∆H(h(x, x2))

∆G(h(x, x2))
dx2 dx, where h(x, x2) = s(x)s−1(x2)s

−1(x · s−1(x2)).

Here, for simplicity, we write s−1(y) instead of the more correct expression (s(y))−1.
Let two relative convolutions be defined by scalar-valued summable kernels k1,

k2 ∈ L1(X). Then, starting with the Fubini theorem we calculate:

ρ(k1)ρ(k2) =

∫

X

k1(x1) ρ(s(x1)) dx1

∫

X

k2(x2) ρ(s(x2)) dx2

=

∫

X

∫

X

k1(x1) k2(x2) ρ(s(x1)s(x2)) dx1 dx2

=

∫

X

∫

X

k1(x1) k2(x2) ρ(s(x1)s(x2)) dx1 dx2

=

∫

X

∫

X

k1(xx
−1
2 ) k2(x2) ρ(h

−1(x, x2)s(x))
∆H(h(x, x2))

∆G(h(x, x2))
dx2 dx
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=

∫

X

∫

X

k1(xx
−1
2 ) k2(x2) ρ(h

−1(x, x2))
∆H(h(x, x2))

∆G(h(x, x2))
dx2 ρ(s(x)) dx

=

∫

X

∫

X

k1(xx
−1
2 ) k2(x2) ρ(h

−1(x, x2))
∆H(h(x, x2))

∆G(h(x, x2))
dx2 ρ(s(x)) dx

=

∫

X

k(x) ρ(s(x)) dx, (5.6)

where

k(x) =

∫

X

k1(xx
−1
2 ) k2(x2) ρ(h

−1(x, x2))
∆H(h(x, x2))

∆G(h(x, x2))
dx2. (5.7)

Note that, if the representation ρ is induced by a character χ of the subgroup H ,
then ρ(h−1(x, x2)) = χ(h−1(x, x2)). Thus, the above integral is scalar valued.

Definition 5.2. For two summable functions k1 and k2 on X = H\G, their
twisted convolution k = k1♮k2 is a function k, such that the relative convolution
ρ(k) (5.2) equal to the composition ρ(k1)ρ(k2) of relative convolutions with the
kernels k1 and k2, i.e.:

ρ(k1♮k2) = ρ(k1)ρ(k2).

Then, the result of calculations (5.6) can be encapsulated in the statement:

Proposition 5.3. The twisted convolutions k = k1♮k2 of two functions k1 and k2
on H\G is presented by (5.7).

Remark 5.4. Integrated representations (5.1) and relative convolutions (5.2) map
functions to operators. It is a fashion now to call any such map a “quantiza-
tion”. An opposite procedure, e.g. the covariant transform, maps an operator
to a function—a symbol of the operator. This can be called “dequantization”,
respectively. Thus our Defn. 5.2 can be stated in quasi-quantum language as
follows: quantize kernels to operators, compose operators, dequantize the com-
position to the kernel. In this setup the twisted convolution is also known as a
star product . We refer to [2] for further discussion, references and a more explicit
formula in the case of square integrable representations. We also note, that a
search of a compatible star product for an arbitrary Poisson manifold is the topic
of deformation quantization.

Example 5.5. (i) The Heisenberg groupH and its centre Z are unimodular,
thus ∆H ≡ 1 and ∆Z ≡ 1. Using maps p and s from Example 3.1(i) for
R2 = Z\H, we calculate:

(x, y)(x2, y2)
−1 =(x− x2, y − y2),

h((x, y), (x2, y2)) =(1
2
(x2y − yx2), 0, 0).

Thus, for a representations (3.21) and (3.23) induced by a character
χ~(s, 0, 0) = e2πi~s, the respective twisted convolution is:

(k1♮k2)(x, y) =

∫

R2

k1(x− x2, y − y2) k2(x2, y2) e
−πi~(x2y−yx2) dx2 dy2.
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This operation is the key for the whole calculus of PDO as explained
in [18, § 2.3; 23, § 2]. It is also known as the Groenewold–Moyal star
product [2, § 6.1].

(ii) For an AHW group G̃, we calculate h((g, χ), (g2, χ2)) = χ2(g2−g). From
unimodularity of G̃, the twisted convolution is:

(k1♮k2)(g, χ) =

∫

G

∫

Ĝ

k1(g − g2, χ− χ2) k2(g2, χ2)χ2(g2 − g) dg2 dχ2.

This again looks like a convolution on the Cartesian product G× Ĝ with
a “twist”. A composition with the Fourier transform on G× Ĝ maps our
twisted convolution to the star product from [66, § 3].

(iii) According to Kirillov’s theory, any unitary irreducible representation of a
nilpotent group Lie group is induced by a character of the group’s centre
C [27, § 15]. Thus, the relative convolution for C\D is not much different
from the whole integrated representation.
On the other hand, since the subgroup M (3.12) is normal then the

twisted convolution for M\D = H reduces to the group convolution on
the Heisenberg group. Some interesting options are located between the
extremes C and M . For example, since the Lie algebra of D is generated
by X , Y , T , it is worth to consider twisted convolution associated to the
subgroup

M ′ = {(z, 0, u, v, 0, 0, 0) ∈ D | (z, u, v) ∈ R3}.

(iv) The group G = SU(1, 1) is not unimodular, however ∆G(k) ≡ 1 for all
k in the maximal compact subgroup K [48, § III.1]. The subgroup K is
unimodular since it is commutative. Furthermore, using maps (3.14) we
calculate:

z · s−1(w) =
z − w

1− zw̄
, h(z, w) =

|1− z̄w|

1− z̄w
.

Thus, for the representation (3.28) induced fromK, the respective twisted
convolution is:

(k1♮k2)(z) =

∫

D

k1

(
z − w

1− zw̄

)
k2(w)

1− z̄w

1− zw̄

dw ∧ dw̄

(1− |w|2)
2 .

This corresponds to the composition of the Berezin contravariant symbols
(see below) and nicely complements the well-known calculus of Berezin’s
covariant (Wick) symbols considered in Example 4.8(iv) and [6, § 4.2; 8;
64, § A.3].

5.3. Contravariant Symbol and Toeplitz Operators. There is a notion im-
mediately derived from the integrated representations: the contravariant (aka
inverse covariant) transform [39–41,45]. For an integrated representation ρ (5.1)
(or (5.2)) and a fixed vector w ∈ V the associated contravariant transform of a
function k on G (or X = H\G) is

Mρ
w(k) = ρ(ǩ)w, where ǩ(g) = k(g−1). (5.8)
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The contravariant transform M
ρ
w intertwines the right regular representation R

on L2(G) and ρ:

Mρ
w R(g) = ρ(g)Mρ

w. (5.9)

Combining with (4.3), we see that the composition M
ρ
w ◦W

ρ
v of the covariant and

contravariant transform intertwines ρ with itself. We can use the Schur’s lemma
[1, Lem. 4.3.1; 27, Thm. 8.2.1] to deduce that:

Proposition 5.6. For an irreducible ρ, the composition M
ρ
w ◦W

ρ
v is a multiple

θ(w, v)I of the identity operator. Moreover, the factor θ(w, v) is a sesquilinear
form of vectors w, v ∈ V .

The following interesting consequence is known in slightly different form for
the case of the Heisenberg group [18, (1.47)].

Corollary 5.7. Assume that the integrated representation ρ is faithful on the
image space Wv2V . Then the twisted convolution of wavelet transforms is:

Wv1u1♮Wv2u2 = θ(u2, v1)Wv2u1 (5.10)

Proof. We note another form ρ(Wvu)w = θ(w, v)u of the identity M
ρ
w ◦ W

ρ
v =

θ(w, v)I. Then:

Mv2(Wv1u1♮Wv2u2) = ρ(Wv1u1♮Wv2u2)v2

= ρ(Wv1u1)ρ(Wv2u2)v2

= ρ(Wv1u1)θ(v2, v2)u2

= θ(v2, v2)ρ(Wv1u1)u2

= θ(v2, v2)θ(u2, v1)u1.

Since the representation ρ is faithful on the image space Wv2V , the obtained
result implies (5.10). �

The following particular case of (5.10) is of special interest:

Corollary 5.8. Under the assumptions of the previous Corollary, the image space
WfV is reproducing kernel space with the following realisation of a reproducing
formula:

ṽ = f̃ ♮ṽ, for f̃ = Wff and any w̃ ∈ WfV. (5.11)

The contravariant transform is a source of the Berezin’s contravariant symbol
as follows. For a pair v ∈ V , f ∈ V ∗, consider a rank-one operator Ev,f : V → V
define by the expression Ev,fu = 〈u, f〉 v. Then, the representation ρ̂ (4.13) acts
as follows:

ρ̂(g1, g2)Ev,f = Ev′,f ′ , where v′ = ρ(g2)
−1v and f ′ = ρ∗(g1)f, (5.12)

with the last identity natural meaning 〈u, f ′〉 = 〈u, ρ∗(g1)f〉 = 〈ρ(g1)u, f〉. Then,
the contravariant transform for the vector w = Ev,f ∈ B(V ) becomes:

Mv,f(a) =

∫

X

∫

X

a(x1, x2) ρ̂(s(x1), s(x2))Ev,f dx1 dx2. (5.13)
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Using (5.12), we can directly write the action of operator (5.13) on u ∈ V :

Mv,f (a)u =

∫

X

∫

X

a(x1, x2) 〈ρ(s(x1))u, f〉 ρ̂(s(x2)
−1)v dx1 dx2. (5.14)

Here we call a the contravariant symbol of the operator Mv,f(a).
The contravariant symbol in the sense of Berezin [4–6] appears if V is a Hilbert

space with an irreducible square integrable representation ρ. The covariant trans-
formWv for an admissible mother wavelet v ∈ V identifies V with its imageWvV .
There is the respective reproducing kernel ky (4.6) on WvV . If the representation
ρ̂ is restricted to the diagonal ρ̂(g) = ρ̂(g, g) of G × G, then the contravariant
transform similar to (5.14) is [5, § 1.1]:

[Mv,v(a)u](y) =

∫

X

a(x) 〈ρ(s(x))u, v〉 ρ̂(s(x)−1)v(y) dx

=

∫

X

a(x) u(x) ky(x) dx. (5.15)

The last expression is the Toeplitz operator Ta = PaP for the projection P on Wv

defined by the integral in the right-hand side of the reproducing formula (4.6).
The explicit formulae connectioning co- and contravariant symbols are known

for a long time [5, (1.12); 6, (3.13)]. Within our approach they are consequences of
Prop. 5.6, since covariant and contravariant symbols are special cases of covariant
and contravariant transforms.

The original Berezin’s papers [4–6] (as well as subsequent developments in the
context of abstract reproducing kernel spaces) do not assume any group struc-
ture. It is possible to obtain important estimations for norm and compactness
in this abstract setting. However, the fundamental examples—the Bergman and
FSB spaces—considered in those papers are generated by groups, as we have
seen above. In particular, the group structure becomes very relevant in the study
composition operators generated by an automorphism of the domain [8]. Further-
more, the formula for twisted convolution (5.7) is also based on the underlined
group structure and is not possible on a generic reproducing kernel space.

Example 5.9. (i) For Toeplitz operators (4.18) on the Heisenberg group,
the contravariant calculus was already investigated in [4] and is still
an important tool [8, 9]. The connections between PDO (2.1) and the
Toeplitz operators (4.18) was fruitfully exploited in [23, § 4.2] with the
following observation: “The Toeplitz operators are to the Bargmann–
Fock model as the pseudodifferential operators are to the Schrödinger
model”. We used such a technique to obtain Calderón–Vaillancourt–
type estimations for relative convolutions on exponential nilpotent Lie
groups [46].

(ii) For the AHW group G̃, the connection between PDO-type operators (5.3)

[55] and Toeplitz-type operators on L2(G × Ĝ) shall closely follow the
Heisenberg group suit. Yet, no work in this direction is known to me.

(iii) For the Dynin group, I am not aware of any study of contravariant cal-
culus and Toeplitz-type operators. However, it is natural to expect, that



RELATIVE CONVOLUTIONS AND COVARIANT TRANSFORM 25

their relation to the PDO-like calculus from Example 5.1(iii) and [3,
13, 14, 16] shall be similar to the Heisenberg group. However, due to a
higher level of non-commutativity it may be not as straightforward as for
an AHW group.

(iv) For SU(1, 1) and Toeplitz operators (4.20), the Berezin contravariant
symbols was studied in [6], with numerous fruitful developments, cf. [8,
10, 11, 64].

6. Discussion

The moral of the present overview is that there is no a single formula perfectly
serving all situations. However, covariant and contravariant transforms provide
a general framework which has a rich and flexible inventory. The presented list
of different examples prompts further detailed investigation of this approach in
various directions.
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Appendix A. Covariant Transform: A Road Map

This paper’s presentation was illustrated by numerous detailed examples. Here
we provide a brief outline of notions and main formulae used in our constructions.

• Induced representations.
– G is a locally compact group with a right invariant measure dg and
the modular function ∆G.

– H ⊂ G is a subgroup with a right invariant measure dh and the
modular function ∆H .

– X = H\G is the homogeneous space of right cosets: g1 ∼ g2 if
g1 = hg2 for h ∈ H .

– p : G → H\G is the natural projection of an element to its coset.
– s : H\G → H is a section—a right inverse of p: p(sx) = x for
all x ∈ H\G. The map s is not unique and we often can chose it
continuous.

– r : G → H is defined from the identity: g = r(g)s(p(g)), g ∈ G.
– X = H\G is a right G-space with the action: g : x 7→ x · g =
p(s(x) ∗ g), g ∈ G, x ∈ X .

– A representation of G induced by a character χ of the subgroup H
is [ρχ(g)f ](x) = χ(r(s(x) ∗ g)) f(x · g).

– An equivalent form of the induced representation is by the right shift
R(g) : F (g′) 7→ F (g′g) on a space of functions with the property
F (hg) = χ(h)F (g), for h ∈ H and g ∈ G.

– Two models of induced representations are connected by the lifting
[Lχf ](g) = χ(h)f(p(g)) and pulling [PF ](x) = F (s(x)).

• Covariant transform.
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– For a representation ρ of G in V and an operator F : V → U ,
the covariant transform is [WF v](g) = F (ρ(g)v), where v ∈ V and
g ∈ G.

– The induced covariant transform is [WF v](x) = F (ρ(s(x))v) for v ∈
V , x ∈ H\G.

– If a mother wavelet f satisfies to the identity
∫
G
a(g) ρ∗(g)f dg = 0

for some distribution a(g) on G, then any wavelet transforms ṽ =
〈v, ρ∗(g)f〉 satisfies the identity Dṽ = 0, where D =

∫
G
ā(g) Λ(g) dg

for the left regular representation Λ. This conditions can characterise
the image WfV among all functions on G or X .

– Often, the image of (induced) covariant transform has the repro-
ducing property f(y) =

∫
X
f(x) k̄y(x) dx, where ky is the covariant

transform of the shifted mother wavelet ρ(s(y)−1)v.
– For a representation ρ of G in a vector space V there is a represen-
tation ρ̂(g1, g2) : A 7→ ρ(g2)

−1Aρ(g1) of G×G on the space B(V ) of
bounded linear operators on V .

– The covariant symbol Ã(g1, g2) = F (ρ̂(g1, g2)A) = F (ρ(g2)
−1Aρ(g1))

is the covariant transform defined by the representation ρ̂ and the
operator F : B(V ) → U .

• Contravariant transform.
– For a representation ρ of G and a summable function k on G, the
integrated representation is ρ(k) =

∫
G
k(g) ρ(g) dg.

– The relative convolution is an integrated representation over a ho-
mogeneous space ρ(k) =

∫
X
k(x) ρ(s(x)) dx.

– The composition of two ρ(k1)ρ(k2) relative convolutions produces
the twisted convolution ρ(k1♮k2) = ρ(k1)ρ(k2).

– For an integrated representation or relative convolution ρ and a fixed
vector w ∈ V the contravariant transform of a function k isM

ρ
w(k) =

ρ(ǩ)w, where ǩ(g) = k(g−1).
– The twisted convolution of two wavelet transforms isWv1u1♮Wv2u2 =
θ(u2, v1)Wv2u1.
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