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a b s t r a c t

The decellularisation of xenogenic and allogeneic biological grafts offers a promising solution to
replacement of the anterior cruciate ligament (ACL). The purpose of this investigation was to determine
the biomechanical effects of additional fat reduction and bioburden reduction steps in the decellularisa-
tion of porcine super flexor tendon (pSFT). Study 1 investigated the use of acetone or chloroform–

methanol as a fat reduction agent. The most effective of these was then carried forward into Study 2,
which investigated the use of antibiotics or peracetic acid (PAA) as a bioburden reduction agent. Stress
relaxation data was analysed using a Maxwell–Wiechert viscoelastic model and, in addition to classical
material properties, the tangent modulus of the toe-region was determined from strength testing data.
In both studies, the majority of decellularised groups demonstrated no statistical differences for material
properties such as tensile strength and Young’s modulus compared to native controls. Different trends
were observed for many of the viscoelastic parameters, but also for the tangent modulus in the toe-
region indicating a change in performance at low strains. The most severe deviations from the profile of
the native tangent modulus were found to occur in Study 2 when PAA was used for bioburden reduction.
Classic material properties (E, UTS etc.) are often used to compare the characteristics of native and
decellularised tissues, however they may not highlight changes occurring in the tissues at low strains. In
this study, this represented the physiological strains encountered by substitute acellular ACL grafts.
Acetone was chosen as the fat reduction step whereas, antibiotics was preferable over PAA as a
bioburden reduction step.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Rupture of the anterior cruciate ligament (ACL) is becoming a
more prevalent issue in younger populations with increasingly
more active lifestyles. It has been estimated to occur at an annual
rate of 1 in 3000 in the US alone, translating to over 100,000
reconstruction surgeries to restore joint stability (Woods and
Gratzer, 2005). Damage to the ACL leads to instability of the knee
and reduced function, which in turn may lead to damage to the
meniscus and degenerative joint disease such as osteoarthritis
(Corry et al., 1999; Spindler and Wright, 2008). Surgical interven-
tion is required to restore stability to the knee.

Bone-patellar tendon‐bone autografts present one treatment
option but can often induce complications such as knee stiffness,

patellofemoral pain and donor site morbidity, symptomatic to the
graft’s harvest (Peterson et al., 2001). An alternative treatment
choice is reconstruction of the ACL using semitendinosus or
gracilis tendon autograft, which has increased in use with sig-
nificant improvements in fixation methods (Aga et al., 2013; Kousa
et al., 2003a, 2003b; Robbe and Paletta, 2004; Samuelsson et al.,
2013). However, these grafts also suffer complications of donor site
morbidity and nerve damage during the harvesting procedure
remains a possibility. Allografts may also be used, but their success
may be limited by adverse immunological reactions (Prokopis and
Schepsis, 1999). Additionally, it is unlikely that the cells present in
allografts and autografts remain viable and this can lead to
deterioration of the mechanical properties over time (Woods and
Gratzer, 2005). This is because the rate of tissue degradation (as a
result of graft necrosis) typically exceeds that of cellular repopula-
tion, collagen remodelling and maturation (Corsetti and Jackson,
1996; Mcfarland, 1993). The decellularisation of allogeneic or
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xenogenic tissue grafts to remove the cells and immunogenic
components offers a promising alternative to current solutions.

Decellularisation techniques have been applied to a number of
biological tissues to create acellular biological scaffolds. These
include cartilage (Yang et al., 2010), bladder (Bolland et al., 2007),
heart valves (Booth et al., 2002; Knight et al., 2008; Korossis et al.,
2002), meniscus (Stapleton et al., 2008), in addition to ligaments
(Harrison and Gratzer, 2005; Ingram et al., 2007; Tischer et al.,
2010; Woods and Gratzer, 2005) and tendon (Pridgen et al., 2011).
The ideal acellular biological scaffold should be biocompatible,
promote cell in-growth, have the ability to be remodelled and
possess the necessary mechanical properties to survive at the site
of implantation. The latter becomes an issue of great importance
with reference to ACL reconstruction as the acellular biological
scaffold would need to maintain joint stability under intensive,
repetitive loading conditions. Hence, it is vital that the decellulara-
tion process applied to ligament and tendon grafts preserves the
graft tissue’s mechanical properties as much as possible in order to
maintain sufficient mechanical integrity during the regenerative
process in-vivo.

We have identified the porcine super flexor tendon (pSFT) as a
possible candidate for use in ACL reconstruction. The pSFT is
readily procured and once split along its long axis offers double
bundle deployment opportunities similar to hamstring tendon
autografts. The aim of this study was to investigate the effects of
the decellularisation process and of variations thereupon on the
mechanical properties of the pSFT. Initial decellularisation was
achieved using an adaptation of a previously used protocol for the
meniscus (Stapleton et al., 2008). The subsequent effects of
including fat reducing agents (acetone or chloroform–methanol)
in the decellularisation process on the biomechanical properties
were also determined by comparison to native tissue (Study 1).
The superior fat reduction agent was then incorporated into the
next generation of the decellularisation process. Following this, a
further study (Study 2) investigated the effects of including
different sterilisation regimens upon the biomechanical properties
of the decellularised tissue. This was performed by including
either peracetic acid (PAA) or antibiotics as an initial bioburden
reduction step and investigating how their inclusion affected the
mechanics with/without PAA as a terminal sterilant.

2. Materials and methods

2.1. Tissue sourcing

Female �70 kg, 4 month old, large white pigs were obtained from the abattoir
(J. Penny, Leeds, UK) within 24 h of slaughter. Once removed, all pSFT’s were stored
at �20 1C with phosphate buffered saline (PBS) soaked filter paper prior to
preparation and testing, whether they contributed to native (untreated) or
decellularised test groups. A population size of n¼6 was chosen for all test groups
investigated.

2.2. Decellularisation

2.2.1. Study 1: Fat reduction study
pSFT’s allocated for decellularisation were subjected to three freeze-thaw

cycles. After the first thaw, the pSFT's were frozen in hypotonic buffer supple-
mented with protease inhibitors (10 mM tris, 2.7 mM EDTA [Fisher Scientific],
10 KIU ml�1 aprotinin [NHS Supplies, Leeds, UK]). The hypotonic buffer was
replenished after the second thaw. For fat reduction, the tendons were then
subjected to either 3�1 h washes with acetone (VWR International) at room
temperature, or 1�1 h with chloroform–methanol (2:1; v/v [VWR, Atom Scien-
tific]) and 1�30 min wash with methanol (Atom Scientific) at room temperature.
Tendons were subsequently washed five times for 5 min in PBS plus 10 KIU ml�1

aprotinin (NHS Supplies, Leeds, UK) at room temperature, before being transferred
to individual pots containing 100 ml hypotonic buffer (10 mM tris, 2.7 mM EDTA
[Fisher Scientific], 10 KIU ml�1 aprotinin [NHS Supplies, Leeds, UK]), and incubated
at 37 1C. After 24 h the solution was changed to hypotonic buffer containing the
ionic surfactant sodium dodecyl sulphate (0.1%; w/v SDS [Sigma], 10 mM tris,

2.7 mM EDTA [Fisher Scientific], 10 KIU ml�1 aprotinin [NHS Supplies, Leeds, UK])
for 24 h. This was repeated twice. After the final hypotonic SDS wash, the tendons
were washed in PBS containing 10 KIU ml�1 aprotinin (NHS Supplies, Leeds, UK)
three times; 30 min, 70 h and a further 30 min. Each tendon was then incubated in
60 ml of nuclease solution (50 mM tris buffer, 1 mMMgCl2 � 6H2O [Fisher Scientific],
1 U ml�1 Benzonase [Merck]) at 37 1C with agitation at 80 rpm three times for 2 h
each. Next, the tendons were washed three times in PBS containing EDTA (2.7 mM
EDTA [Fisher Scientific]) before an overnight wash in hypertonic buffer (50 mM tris,
1.5 M sodium chloride [Fisher Scientific]). After three 30 min PBS washes, samples
were sterilised using PAA (0.1%; v/v [Sigma]) for 3 h. A further 3�30 min, 2�60 h,
and 1�120 h PBS washes completed the process.

Hence, four groups were investigated in Study 1:

� Native (untreated)
� DC1
� DC1þACE
� DC1þCM.

DC1: decellularisation process without any fat reduction treatment, ACE:
acetone treatment, CM: chloroform–methanol treatment, þ denotes ‘with’.

The steps investigated and the processes involved are shown in Fig. 1(a).

2.2.2. Study 2: Sterilisation study
The decellularisation procedure for Study 2 was as described for Study 1 but

with the acetone treatment included as a fat reduction step. The following changes
were then subsequently introduced. A 3 h bioburden reduction step was included
immediately after the acetone treatment using either peracetic acid (0.1%; v/v
[Sigma]) or an antibiotic solution (PBS containing 0.05 mg ml�1 vancomycin
hydrochloride, 0.5 mg ml�1 gentamicin sulphate, 0.2 mg ml�1 polymyxin [all from
Sigma]), both at room temperature. In addition, each bioburden reduction step was
investigated with and without the terminal PAA treatment described in Study 1.
This was to determine any interacting effects it may have with the bioburden steps
on the mechanical properties of the tissue.

Hence, seven groups were investigated in Study 2:

� Native (untreated)
� DC2þTPAA
� DC2�TPAA
� DC2þPAAbioþTPAA
� DC2þPAAbio�TPAA
� DC2þABbioþTPAA
� DC2þABbio�TPAA.

DC2: decellularisation process with acetone permanently included
(i.e. DC2¼DC1þACE), TPAA: terminal peracetic acid treatment, PAAbio: peracetic
acid bioburden treatment, ABbio: antibiotic bioburden treatment. þ and � denote
‘with’ and ‘without’ respectively.

The steps investigated and the processes involved are shown in Fig. 1(b).

2.3. Biomechanical testing

2.3.1. Specimen preparation
For each group investigated, pSFT’s were removed from storage and immersed

in dry ice to aid processing them into dumbbell shapes with a working cross-
sectional area of 3.5�5 mm and gauge length of 30 mm. All specimens were then
wrapped in PBS soaked filter paper and allowed to thaw and equilibrate at room
temperature for at least 2 h prior to mechanical testing.

2.3.2. Stress relaxation testing
Specimens were mounted via bespoke grips (Fig. 2) to an Instron 3365 (Instron,

Bucks, UK) materials testing machine equipped with a 500 N load cell. The grips
were manufactured to utilise dry ice to apply the long established principles of
‘cryo-grips’ (Riemersa and Schamhardt, 1982). A probe was used to measure the
temperature of the specimens at the gauge length, to ensure they had remained at
room temperature and had not been adversely affected by the freezing action of
the grips.

Once secured in position, specimens were tensioned to a pre-load of 0.5 N,
followed by 10� preconditioning cycles between 0 and 5% strain at a rate of
15 mmmin�1. A ramp and hold cycle was then applied consisting of a ramp phase
at a rate of 30 mm min�1 until a stress of 5 MPa was achieved. This stress was
deemed physiologically relevant based on studies determining the tensile load
experienced by the ACL in-vivo (Fleming and Beynnon, 2004; Hosseini et al., 2011;
Shelburne et al., 2004) and its cross-sectional area (Hashemi et al., 2005). The
specimens were then held at the strain developed at the end of the ramp phase for
a period of 300 s whilst stress relaxation occurred. Data was recorded at a
frequency of 10 Hz. Stress (σ) was calculated by the dividing the force recorded
by the load cell by the working cross-sectional area of the specimen, whereas
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strain (ε) was determined by dividing the crosshead displacement by the gauge
length of the specimen.

The relaxation modulus (E(t)) was calculated from the experimental data using
the following relationship:

E tð Þ ¼ σðtÞ
ε

and fitted (r240.96) to a modified Maxwell–Wiechert model using the non-linear
least squares method (Jimenez Rios et al., 2007):

E tð Þ ¼ E0þ
1
t0

∑
n

i ¼ 1
Eiτi � exp �ðt=τ1 Þð Þ expðt0=τi Þ �1

� �

The modification performed to the model accounted for any stress relaxation
that may have occurred during the ramp phase (0rtZt0). The simplest form of the
model consists of two Maxwell elements in parallel with a single spring (i.e. n¼2).
E0 is the time-independent elastic modulus of the single spring, whereas Ei and τi
represent the time-dependent elastic modulus and relaxation time respectively of
the Maxwell elements

2.3.3. Strength testing
After stress relaxation testing was performed, all specimens were wrapped in

PBS soaked filter paper and allowed to equilibrate at room temperature for at least
2 h prior to strength testing. Specimens were mounted to an Instron 3366 (Instron,
Bucks, UK) materials testing machine equipped with a 1000 N load cell. A pre-load

Fig. 1. (a) Study 1: the inclusion of acetone or chloroform–methanol as a fat reduction step, (b) Study 2: the inclusion of peracetic acid or antibiotics as a bio-burden
reduction step and how these performed with/without peracetic acid as a terminal sterilant.

A. Herbert et al. / Journal of Biomechanics 48 (2015) 22–2924



of 0.5 N was applied, followed by 10� preconditioning cycles between 0 and 5%
strain at a rate of 15 mmmin�1 and a ramp to failure at a rate of 30 mm min�1.
Failure was defined as mid-substance rupture. Data was recorded at a frequency of
10 Hz.

For each specimen, the following Gaussian function was fitted (r240.99) to the
stress-strain data up to the failure point using non-linear least squares regression:

σ εð Þ ¼ ∑
3

i ¼ 1
ai � exp �ðε�bi=ci Þ2ð Þ

where ai, bi, and ci are constants to be determined.
This was differentiated twice and the locations at which the 2nd order

differential was found to be zero were determined. The first of these was
interpreted to mark the transition from the toe-region of the curve into the
linear-region and the third marked the end of the linear-region. The corresponding
strain values for these points were noted and used to distinguish between the
experimental data for the toe-region and the linear-region (indicated with arrows
in Fig. 3). The transition point between both regions (εT, σT) comprised of the
transition strain (εT) and transition stress (σT).

Stress–strain data in the toe-region was fitted (r240.97) to the following
exponential function:

σ εð Þ ¼ A� expðB�ε�1Þ

where A is a constant of magnitude and B describes the sensitivity of σ(ε) to
increasing strain.

This can be differentiated with respect to ε to yield the tangent modulus
describing the toe-region:

dσðεÞ
dε

¼ AB� expðB�εÞ

hence, AB represents the zero-strain tangent modulus.

Fig. 3. The experimental stress–strain data was fitted to a 3rd order Gaussian function from which the first and second derivatives were calculated. The first location at
which the second derivative was zero was interpreted as the transition point from the toe-region into the linear-region. The third location at which the second derivative was
zero was interpreted to mark the end of the linear-region.

Table 1
Study 1: results from stress relaxation testing (mean 795% CI). Superscripts indicate significance—groups that do not share the same letter are significantly different (1-way
ANOVA with Tukey post-hoc analysis). DC1: decellularisation process without any fat reduction treatment, ACE: acetone treatment, CM: chloroform–methanol treatment.

Group E0 (MPa) E1 (MPa) E2 (MPa) τ1 (s) τ2 (s)

Native 71.6777.37(a) 12.7771.11(a) 11.9873.87(a) 4.5770.63(a) 147.03711.73(a)

DC1 40.7172.64(b) 6.0671.12(b) 6.8971.70(b) 5.4770.50(a) 122.10710.32(b)

DC1þACE 42.1477.32(b) 6.6371.68(b) 7.3371.89(a) 5.0470.89(a) 133.90713.88(a)

DC1þCM 41.7573.82(b) 5.6871.39(b) 6.2271.46(b) 5.9770.47(b) 114.92710.12(b)

Fig. 2. Experimental set-up for stress relaxation testing: (a) schematic of tissue
grips including void for dry ice, (b) a decellularised specimen is processed to a
dumbbell shape and (c) specimen is mounted in the grips and subjected to testing.
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Stress–strain data in the linear-region was fitted to a linear function, the slope
of which was deemed to be the Young’s modulus of the collage phase of the tissues
(E). Finally, the ultimate tensile strength (UTS) and failure strain (εFAIL) were
determined at the point of failure.

2.4. Statistical analyses

Statistical variances between groups were determined using a one-way analysis
of variance (ANOVA). Tukey’s significant difference test was used for post-hoc
evaluation. A P-value of o0.05 was considered to be statistically significant.

3. Results

3.1. Study 1: Fat reduction study

The stress relaxation testing results (Table 1) showed signifi-
cant differences for the parameters E0 and E1 for all decellularised
groups compared to the native control. For the parameters E2
and τ2, the use of acetone to reduce the fat content appeared to
have a positive effect on the properties of the pSFT, as no
significant difference was found between DC1þACE and the native
specimens.

The results from the strength testing (Table 2) showed no
significant variation between the groups for the clasical material
paramters of UTS, E and εFAIL. Differences were, however, found to
occur in the early phase of loading. Native tissue had a signifi-
cantly lower transition strain (εT) compared to the tissue that had
been decellularised and treated with chloroform–methanol,
although the transition stress (σT) had not changed. The parameter
A was significantly lower for native tissue compared to all the
other decellularised tissues. No differences were found for the
zero-strain tangent modulus (AB). When the mean tangent mod-
ulus in the toe-region was calculated for these groups, DC1þACE
appeared to be closest to representing the native control (Fig. 4a).

Due to the apparent positive effect acetone had in the stress
relaxation testing (E2 and τ2) and the negative effect treatment
with chloroform–methanol had on the transition strain and
tangent modulus in the strength testing, acetone was deemed to
be the superior candidate as a fat reduction step. Hence, acetone
was included as a permanent feature of the decellularisation
process used in Study 2.

3.2. Study 2: Sterilisation study

The results of the stress relaxation testing performed in Study
2 are presented in Table 3. As was found in Study 1, significant
differences were found for the parameters E0 and E1 for all
decellularised groups against the native control. For E0, the groups
DC2þPAAbioþTPAA and DC2þPAAbio�TPAA were significantly
lower than all other decellularised groups. For E1, DC2þPAA-
bio�TPAA was significantly lower than DC2þTPAA, with no
difference between the remaining decellularised groups. For E2,
both DC2þPAAbioþTPAA and DC2þPAAbio�TPAA were signifi-
cantly lower than DC2þTPAA, with no difference between the rest
of the decellularised groups. In the case of the time constants,
DC2þPAAbioþTPAA was significantly different than the native

control for τ1 and both DC2þPAAbioþTPAA and DC2þPAAbio�T-
PAA were significantly different than the control for τ2.

The strength testing demonstrated that in most cases there
were no significant differences found for UTS, E and εFAIL in Study 2
(Table 4). The only exception was that the group DC2þABbioþ
TPAA was found to have a higher UTS than both DC2þTPAA and
DC2�TPAA. Although no differences were found for the para-
meters A and AB, significant differences were found to occur in the
remaining parameters defining the early phase of loading of the
groups. The groups DC2þPAAbio�TPAA, DC2þABbioþTPAA and
DC2þABbio�TPAA were all found to possess significantly higher
transition stresses compared to the native control, although no
significant differences were found between decellularised groups.
For transition strain, DC2þPAAbioþTPAA and DC2þPAAbio�T-
PAA were significantly larger and little significance was found
between decellularised groups. The dimensionless B parameter
was found to be significantly lower in the groups DC2þPAA-
bioþTPAA, DC2þPAAbio�TPAA, DC2þABbioþTPAA and DC2þ
ABbio�TPAA compared to native specimens, with no significant
differences between decellularised groups.

Table 2
Study 1: results from strength testing (mean 795% CI). Superscripts indicate significance—groups that do not share the same letter are significantly different (1-way ANOVA
with Tukey post-hoc analysis). DC1: decellularisation process without any fat reduction treatment, ACE: acetone treatment, CM: chloroform–methanol treatment.

Group σT (MPa) εT (mmmm�1) A (MPa) B (dim’less) AB (MPa) UTS (MPa) E (MPa) εFAIL (mmmm�1)

Native 9.8371.68(a) 0.08670.001(a) 0.4070.12(a) 50.6373.19(a) 19.9775.27(a) 52.2274.62(a) 235.15731.56(a) 0.31570.028(a)

DC1 11.3071.96(a) 0.11270.018(a, b) 1.0570.25(b) 36.8177.39(a) 39.08716.01(a) 40.8376.48(a) 202.04722.41(a) 0.29770.023(a)

DC1þACE 14.2274.07(a) 0.09670.005(a, b) 1.1170.29(b) 37.7775.54(a) 40.7275.68(a) 46.4177.60(a) 211.29724.89(a) 0.29770.023(a)

DC1þCM 12.3072.61(a) 0.11670.022(b) 0.9370.27(b) 37.81710.96(a) 34.54714.30(a) 39.0178.10(a) 200.67734.63(a) 0.28070.023(a)

Fig. 4. The mean tangent modulus (constructed using the mean values for
parameters A and B) during the early phase of loading in the toe-region for the
groups in (a) Study 1 and (b) Study 2. In each case the profile terminates at the
transition strain (εT). ACE: acetone treatment, CM: chloroform–methanol treat-
ment, TPAA: terminal peracetic acid treatment, PAAbio: peracetic acid bioburden
treatment, ABbio: antibiotic bioburden treatment.
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When the mean tangent modulus was calculated, the inclusion
of both bioburden reduction steps had an effect, shifting the
profiles to the right of the graph meaning more strain was
required for the specimens to enter the linear-region of their
respective load curves (Fig. 4b). This appeared to be more
substantial when PAA was used as the bioburden reduction agent.

4. Discussion

In the pursuit of decellularisation, many agents and processes
are used, which may adversely affect the extra-cellular matrix
(ECM) constituents and mechanical properties (Ingram et al.,
2007; Tischer et al., 2010; Woods and Gratzer, 2005). Thus, the
aim of this study was to mechanically characterise an acellular
pSFT following different iterations of the decellularisation process
in an attempt to optimise it. This was achieved via two separate
studies; Study 1 investigated the use of acetone and chloroform–

methanol as a fat reduction step whereas Study 2 investigated the
use of PAA or antibiotics as a bioburden reduction step and their
possible interactions with PAA as a terminal sterilisation step.

The stress relaxation results from Study 1 demonstrated a
significant decrease in the time-independent and time-dependent
moduli for all the decellularised groups (Table 1). Few differences
were found in the time constants, although the most altered was
found to be τ2 in the chloroform–methanol group. The cause of the
reduction in E1 and E2 (the time-dependent moduli) appears
relatively intuitive. The removal of the cellular material created a
more porous and open extracellular matrix and a porous scaffold is
highly desirable for cell seeding or infiltration of native cells (Ge et
al., 2006). However, this feature also facilitated increased interstitial
fluid flow and reduced viscous resistance. The viscosity can be
described as the product of the time-dependent modulus and its
corresponding time constant (Eiτi). Hence, the viscosity within each
of the Maxwell elements of the viscoelastic model was reduced. It
has previously been suggested that the steady-state viscoelastic
response of tendons may be predominately caused by fluid exuda-
tion (Buckley et al., 2013). Furthermore, through stress relaxation

studies of mouse tail tendon, it has been suggested that the time-
dependent properties are largely due to poroelastic effects (Yin and
Elliott, 2004). Thus, given this apparent mechanical dependence on
fluid movement, it is likely that the reduced viscosities observed for
decellularised groups in this study were due to the removal of the
cellular material and consequently increased fluid flow. The reduc-
tion in E0 (the time-independent modulus) is an indicator of a
reduction in the equilibrium elasticity of the decellularised tendons.
Collagen crimping is a phenomenon that has been suggested to
provide stiffness in low loading conditions (Hansen et al., 2002;
Miller et al., 2012a, 2012b); hence, the decellularisation process may
have consequently altered the crimping pattern. It has been demon-
strated that there is increased extensibility with reduced fibril crimp
periods in mitral valve chordae tendineae (Liao and Vesely, 2003)
and a similar mechanical response has been observed at different
sites in human patellar tendons in which differences in the crimp
period exist (Stouffer et al., 1985). Thus, contraction in the tissue and
a reduction in the crimp period due to the decellularisation process
may explain the reduced equilibrium elasticity via increased
extensibility.

This was demonstrated further in the analysis of the toe-region
in the strength testing. The mean tangent modulus profiles
indicated that decellularisation had decreased the initial stiffness
of the tissues, with more strain required to match equivalent stress
levels in the native control group (Fig. 4a). Furthermore, more
strain was necessary for the specimens to reach the linear-region
of the load curve, a region synonymous with the full alignment
and extension of the collagen fibres (Allen et al., 1999; Wang,
2006). This trend was also observed in portions of the inferior
glenohumeral ligament, leading the authors to suggest that the
anterior pouch is highly crimped and requires greater strain before
reaching similar levels of stress in the superior and posterior
portions (Bigliani et al., 1992). In our study, although changes were
observed in the toe-region of decellularised specimens, they were
not witnessed elsewhere, as the UTS, E and εFAIL remained
comparable to native tissues. Bigliani et al. (1992) suggested that
if the amount and density of collagen fibers in regions of ligament
remain consistent, then ultimate stress values remain similar, but

Table 4
Study 2: results from strength testing (mean 795% CI). Superscripts indicate significance—groups that do not share the same letter are significantly different (1-way ANOVA
with Tukey post-hoc analysis). DC2: decellularisation process with acetone permanently included, TPAA: terminal peracetic acid treatment, PAAbio: peracetic acid bioburden
treatment, ABbio: antibiotic bioburden treatment.

Group σT (MPa) εT (mm mm�1) A (MPa) B (dim’less) AB (MPa) UTS (MPa) E (MPa) εFAIL (mmmm�1)

Native 9.8371.68(a) 0.08670.001(a) 0.4070.12(a) 50.6373.19(a) 19.9775.27(a) 52.2274.62(a, b) 235.15731.56(a) 0.31570.028(a)

DC2þTPAA 14.2274.07(a, b) 0.09670.005(a) 1.1170.29(a) 37.7775.54(a, b) 40.7275.68(a) 46.4177.60(b) 211.29724.89(a) 0.29770.023(a)

DC2�TPAA 15.7274.12(a, b) 0.10770.016(a, b) 1.2870.57(a) 36.0678.24(a, b) 41.80712.49(a) 45.6771.06(b) 232.89715.33(a) 0.27670.013(a)

DC2þPAAbioþTPAA 16.9473.40(a, b) 0.14870.031(b, c) 0.9470.39(a) 30.68710.33(b) 23.6774.98(a) 51.1278.12(a, b) 240.92738.18(a) 0.31270.030(a)

DC2þPAAbio�TPAA 18.2171.48(b) 0.15370.024(c) 0.9170.66(a) 29.1273.05(b) 25.26716.70(a) 49.9475.10(a, b) 266.27743.65(a) 0.31370.023(a)

DC2þABbioþTPAA 18.1973.58(b) 0.12070.021(a, b, c) 1.2470.53(a) 33.5375.86(b) 38.26711.26(a) 65.1879.70(a) 317.13743.78(a) 0.29270.028(a)

DC2þABbio�TPAA 18.5373.29(b) 0.11670.021(a, b, c) 1.2670.53(a) 34.7775.78(b) 40.14710.97(a) 61.5274.53(a, b) 296.77725.59(a) 0.26770.018(a)

Table 3
Study 2: results from stress relaxation testing (mean 795% CI). Superscripts indicate significance—groups that do not share the same letter are significantly different (1-way
ANOVA with Tukey post-hoc analysis). DC2: decellularisation process with acetone permanently included, TPAA: terminal peracetic acid treatment, PAAbio: peracetic acid
bioburden treatment, ABbio: antibiotic bioburden treatment.

Group E0 (MPa) E1 (MPa) E2 (MPa) τ1 (s) τ2 (s)

Native 71.6777.37(a) 12.7771.11(a) 11.9873.87(a) 4.5770.63(a) 147.03711.73(a)

DC2þTPAA 42.1477.32(b, c) 6.6371.68(b) 7.3371.89(a, b) 5.0470.89(a, b) 133.90713.88(a, b)

DC2�TPAA 55.6674.48(b) 5.6771.08(b, c) 4.0971.27(b, c) 4.8270.92(a, b) 124.42717.97(a, b)

DC2þPAAbioþTPAA 30.2273.84(d) 3.8671.79(b, c) 2.7570.88(c) 5.9570.79(b) 112.20712.75(b)

DC2þPAAbio�TPAA 29.6376.97(d) 3.4471.02(c) 2.2670.36(c) 6.0170.42(a, b) 111.0679.90(b)

DC2þABbioþTPAA 48.4576.72(b, c) 6.2671.45(b, c) 3.9470.72(b, c) 6.6471.49(a, b) 133.32717.96(a, b)

DC2þABbio�TPAA 41.8274.00(c, d) 5.0270.78(b, c) 3.7670.51(b, c) 5.8770.33(a, b) 104.99710.37(b)
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that the stress–strain profile can vary based on the micro-
organisation of the fibers. Classical material properties such as
UTS have previously been used to examine decellularisaion effects
on tissues (Ingram et al., 2007; Pridgen et al., 2011; Woods and
Gratzer, 2005). Hence, it is now apparent that a broader examina-
tion of the stress–strain curves, such as that reported here, is
required for complete characterisation. Study 1 investigated the
mechanical effects when either acetone or chloroform–methanol
was introduced to aid fat removal. Due to its superior performance
over chloroform–methanol in aspects of both the stress relaxation
testing (E2 and τ2) and the tangent modulus in the strength
testing, acetone was chosen to be included. However, there are
other reasons to promote the use of acetone. It is a universially
accepted solvent and is washed from specimens more easily than
chloroform–methanol as it is miscible in water and chloroform
is not.

In Study 2, the stress relaxation results exhibited a similar
trend to Study 1 with significant differences seen for the decel-
lularised groups against the native group for most of the moduli
determined. As the majority of the decellularisation process had
remained the same, this could be attributed to the same effects
suggested for Study 1, namely a changing of the collagen crimping
pattern altering E0 and increased interstital fluid flow altering E1
and E2. Amongst the decellularised groups, the largest reductions
appeared to have occurred when PAA was employed as a biobur-
den reduction step. This was a feature also discovered when the
toe-region was examined in the strength testing. The most severe
deviations from the profile of the native tangent modulus were
found to occur when PAA was used for bioburden reduction,
regardless of whether PAA was used again as a terminal sterilant
or not. This is shown in Fig. 4b, with significant shifting to the right
of the profiles for DC2þPAAbioþTPAA and DC2þPAAbio�TPAA
indicative of a substantially reduced stiffness within the tissues.
Hence, it appears that a PAA treatment step early in the decel-
lularisation process adversely affected the toe-region mechanics,
much more so than with the use of antibiotics. Acetic acid has
been shown to cause a reduction in the mechanical properties of
bovine pericardium (Dong et al., 2009), but it is understood that
PAA has little effect on ECM’s (Crapo et al., 2011; Gilbert et al.,
2006). Hence, it is unclear why use of PAA in the initial steps of the
process had such an effect. The most likey explanation is that it
had an interaction with subsequent treatment steps, a cascade that
resulted in ECM alteration. The decellularisation processes had
largely no effect on the UTS, E and εFAIL in Study 2, again emulating
the trends observed in the first study.

There are limitations in this study, however. First, the strain
experienced by the specimens was measured using the crosshead
displacement. This assumed that preferential extension occurred
at the smaller cross-sectioned gauge length and that this equates
to the crosshead displacement. Strain measurement was
attempted using a digital video extensometer, however difficulty
was encountered isolating and contrasting the reference markers
on wet tissue against the local background. A second limitation
was that testing was not performed using a saline water bath. Such
a system ensures specimens remain fully hydrated and at physio-
logical temperature and pH throughout testing. However, this
would have precluded the use of cyro-grips, which provided the
dual benefits of secure fixation and ensuring mid-substance failure
occurred on each occasion.

In conclusion, this study describes characterisation work in the
development of an acellular, biocompatible graft for reconstruc-
tion of the ACL. Acetone was found to be a more effective solvent
as a fat reduction step than chloroform–methanol, whereas anti-
biotics were preferable to PAA as a bioburden reduction step. The
use of a freely sourced xenogenic biomaterial eliminates issues
such as donor site morbidity with autografts and limited supply

with allografts. More fundamentally, this study presents essential
new knowledge of the effect of different elements of decellular-
isation bioprocesses, which can aid in the development of future
bioprocesses and decellularised scaffolds for soft tissue repair.
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