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Abstract: We report planar integration of tapered Terahertz (THz) quantum cascade lasers (QCLs) 
with spoof surface plasmon (SSP) structures. The SSP structure consists of one plasmonic coupler 
and periodically arranged scatters. The resulting surface-emitting THz beam is highly 
collimated with a beam divergence as narrow as 3.6˚×9.7˚. As the beam divergence is inverse 
proportional to the light emission area, this low divergence indicates a good waveguiding property of 
the SSP structure, while the low optical background of the beam implies a high coupling 
efficiency of the THz wave from the laser cavity to the SSPs. Since all the structures are in-plane, 
this scheme provides a promising platform where the well-established SP techniques can be 
employed to engineer the THz QCL beam with high flexibilities. 
 
1. Introduction 

With the flexibility of confining and manipulating the optical wave at a subwavelength level 
by structuring the metallic surface, surface plasmons (SPs) have boosted numerous studies in 
compact photonic circuits [1], enhanced light-matter interactions [2], near-field imaging system 
[3] and beam shaping [4–6], etc. However, in the terahertz (THz) region, flat metal surface 
cannot support bound surface modes. Fortunately, it has been recently found that metal surface 
corrugated at subwavelength scales can support tightly confined THz surface waves, just like the 
SPs behavior at shorter wavelength [7]. Such surface waves are hence called “spoof” surface 
plasmons (SSPs). SPP structure has been fabricated on the facet of THz QCLs for collimation 
purpose, achieving a beam divergence of ~11.7˚×16˚ [8]. The drawbacks of this scheme are the 
limited area of the laser facet and the incompatibility of the fabrication with conventional optical 
lithography, all of which limit the further application of the SSP structure. 

In this work, we report the planar integration of tapered THz QCLs with SSP waveguides, 
which are further processed into unidirectional SSP out-couplers by introducing periodically 
arranged scatterers. The resulting surface-emitting THz beam is highly collimated with a beam 
divergence as narrow as 3.6˚×9.7˚. More importantly, since all the structures are planar, this 
scheme provides a platform where an integrated THz photonic circuit may be built by integrated 
other optoelectronic devices like Schottky diode THz mixer [9], graphene modulator and/or 
graphene detector. 
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2. Results 
 

 

Fig. 1. (a) 3D schematic cross-section view of our device along the red dashed line in (b). (b) Scanning electron microscope (SEM) 
image of a fabricated device. Also shown is a ridge laser fabricated by the side of the device. (c) Enlarged view of the central 

region of the device. (d) Pulsed light-current-voltage (LIV) characteristics of the laser under different heat sink temperatures. 
Inset: laser spectra of devices A and B at 4.3 A and 9 K, where their far-field patterns were measured. 

 
 

 
 

Fig. 2. (a) SEM images of the device A and B showing that the groove width of device A is 600 µm and that of device B is 
1000 µm. (b) horizontal and vertical line scans of the far-field pattern in (c) across the peak value. (c), (d) Measured far-field 
patterns of devices A and B, respectively. (e) Simulated far-field pattern of device A at 94 µm wavelength. (f) Simulated far-

field patterns of devices B considering the multi-mode emission from 92 µm to 98 µm. 
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