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ABSTRACT

An ideal magnetohydrodynamics code with adaptive mesh refinement was used to investigate

the interactions of fast-mode shocks with self-gravitating, isothermal cores with mass-to-flux

ratios that are somewhat below the minimum value required for gravitational collapse. We

find that shock focusing produces colliding flows along the field lines that generate very high

densities, even for relatively weak shocks. Self-gravity plays only a minor role in determining

the highest density that is reached, but it does play a role in the subsequent evolution. The

densities at comparable times differ by a factor of a few for shocks initially propagating

perpendicularly or obliquely to the magnetic field in the ambient medium.
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1 IN T RO D U C T I O N

The importance of shock–cloud interactions for feedback in star

formation has motivated a number of groups to perform 3D mag-

netohydrodynamics (MHD) simulations of shocks interacting with

individual clouds (Gregori et al. 2000; Shin, Stone & Snyder 2008;

Kwak, Shelton & Raley 2009; Van Loo, Falle & Hartquist 2010;

Shelton, Kwak & Henley 2012; Johansson & Ziegler 2013). None

of these simulations included self-gravity, and only those of Van

Loo et al. (2010); Johansson & Ziegler (2013) and some of those

of Shelton et al. (2012) included radiative cooling. Like the two-

dimensional simulations of Fragile et al. (2005), Lim, Falle &

Hartquist (2005) and Van Loo et al. (2007, 2010) considered the

production of cooler regions by including the thermal instability

of a warm-phase material. Shelton et al. (2012) focused on X-ray

emission and cloud destruction rather than the cloud internal struc-

ture.

This paper concerns the effects of shocks, which are likely to be

driven by the outflows of recently born stars, on cores in molecular

clouds. A core is assumed to be in an isothermal magnetized equilib-

rium state, such as those considered by Mouschovias (1976a,b), and

is magnetically subcritical, i.e. its mass-to-flux ratio is somewhat

below the critical value for the core to collapse under gravity. The

analysis of infrared polarization maps of some molecular clouds

has shown that they contain pc-scale cores that are magnetically

subcritical (Chapman et al. 2011; Marchwinski, Pavel & Clemens

2012). We shall see that, although even quite weak shocks can

produce a large increase in density, this does not lead to gravita-

tional collapse in ideal MHD. However, self-gravity does retard the

⋆ E-mail: B.Vaidya@leeds.ac.uk

subsequent re-expansion. We intend to include ambipolar diffusion

and the Hall effect in future work (e.g. Ashmore et al. 2010).

2 N U M E R I C A L T E C H N I QU E

The calculations were performed with the hierarchical adaptive

mesh refinement (AMR) code, MG Falle et al. (2012). This solves

the equations of ideal MHD using a second-order upwind scheme

with the linear MHD Riemann solver described in Falle, Komis-

sarov & Joarder (1998) combined with the divergence cleaning

technique described in Dedner et al. (2002). A hierarchy of n grids

levels, G0, . . . , Gn − 1, is used, and the mesh spacing for Gn is �x/2n,

where �x is the cell size for the coarsest level, G0. G0 and G1 cover

the entire domain, but finer grids need not do so. Refinement is on a

cell-by-cell basis and is controlled by error estimates based on the

difference between solutions on different grids, i.e. the difference

between the solutions on Gn − 1 and Gn determine refinement to

Gn + 1. Self-gravity is computed using a full-approximation multi-

grid to solve the Poisson equation.

3 IN I T I A L C O N D I T I O N S

The initial core has density ρi, sound speed cc and radius Ri, and is

embedded in a warmer uniform medium with sound speed ce = 4cc

and pressure 0.9ρic
2
c . This is implemented by defining an advected

scalar, α, that is unity in the cloud and zero in the surroundings. The

sound speed, c, is then given by c2 = αc2
c + (1 − α)c2

e . This scalar

is also used to turn off gravity in the external medium. Both the core

and its surroundings are threaded by a uniform magnetic field with

magnitude B0. We use dimensionless units in which ρi = 1, cc =
1.0 and the gravitation constant G = 1.0. In these units the core has

Ri = 2.5/
√

4π = 0.705 and a free-fall time of (3π/32)0.5. For the
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Published by Oxford University Press on behalf of the Royal Astronomical Society

 at U
niversity of L

eeds on January 22, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


MHD shocks and subcritical cores 1259

adopted units, the initial magnetic pressure is B0
2/2 (note that we

have suppressed factors of 4π in the equations).

This initial core is not in equilibrium, but evolves into an equi-

librium state provided the mass-to-flux ratio is below a critical

value. This equilibrium state, which is produced by the collapse

of a uniform, non-rotating, isothermal, spherical core, is the same

as one of those specified by Mouschovias (1976a,b). For a zero-

temperature core, the critical value of mass-to-flux ratio is given by

(Mouschovias & Spitzer 1976)

Mcrit

�crit

=
0.53

3π

(

5

G

)1/2

. (1)

Since, in the case of ideal MHD, the mass-to-flux ratio does not

change, we have

M

�
=

4ρiRi

3B0

. (2)

We set

λ =
M

�

�crit

Mcrit

= 0.707, (3)

which gives an initial plasma β

βi =
2ρic

2
c

B2
0

= 0.224. (4)

The equilibrium core has an oblate shape with an aspect ratio

∼0.46. The maximum value of the density is 2.08 and the maximum

value of β is 0.426.

All calculations were performed on a three-dimensional Cartesian

grid, −2 ≤ x ≤ 2, − 2 ≤ y ≤ 2, − 2 ≤ z ≤ 2, with the centre of the

core at the origin. Initially six grids were used with a resolution of

103 on G0, which gives an effective maximum resolution of 3203

(2253 for the initial cloud). Note that G0 needs to be coarse in

order to ensure fast convergence of the MG Poisson solver. For the

evolution to the equilibrium state, free-flow boundary conditions

were imposed on all boundaries.

This resolution is more than adequate for the equilibrium state,

but as we shall see, it is not sufficient to resolve the high-density

region that is produced by the shock interaction. However, the code

has the ability to change the number of levels during the course of

the calculation, so that additional levels could be added as necessary.

4 SH O C K IN T E R AC T I O N

A fast-mode shock was introduced on to a grid containing the equi-

librium core by setting the conditions on the x = 2 plane to the

post-shock state for such a shock in the negative x direction with an

upstream state corresponding to that of the warm medium.

We consider two cases: perpendicular (θ = 90◦) and oblique

(θ = 45◦), where θ is the angle between the shock normal and the

upstream magnetic field far from the core. For the perpendicular

shocks, the equilibrium core was generated from an initial state

with the magnetic field in the z direction, but for the oblique shock

it was at 45◦ to the z-axis.

We chose to characterize the strength of the shock by its Alfvén

Mach number

Ma = Vshock/Va, (5)

where Vshock is the shock speed in the upstream rest frame and Va is

the Alfvén speed given by

Va = B/
√

ρ (6)

in our equations. This has the advantage that an oblique shock has

the same speed as a perpendicular shock with the same value of Ma.

Fig. 1 shows the density for a perpendicular shock with Ma = 2.0

at four times, measured from the time that the shock was introduced.

As can be seen from the figure, a filamentary high-density region

is formed, which is highly flattened parallel to the magnetic field.

In order to resolve this, it was necessary to add an extra three-grid

level as the calculation proceeded to give an effective resolution of

25603 (9003 for the initial cloud). Even so, this is barely sufficient to

resolve the high-density region in its most compressed state. Fig. 2

shows that the oblique shock also generates a dense region.

Careful examination of the results shows that the dense region is

the result of shock focusing by the density gradient at the edge of

the core. A plane shock that encounters such a density gradient is

refracted until its direction of propagation becomes parallel to the

density gradient (much like water waves on a sloping beach). In the

Figure 1. Density, velocity vectors and magnetic field lines for the perpendicular shock. Each of the four columns represents the solution at the time (expressed

in terms of free-fall time) indicated below the panels. The top panels show the z = 0 plane and the bottom panels the y = 0 plane. The white arrows in the top

panels indicate velocity vectors and the solid lines in the bottom panels represent the magnetic field lines. The colour bar placed above the top panels provides

the measure of core density in terms of ρi for each column.
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Figure 2. Same as for Fig. 1, but for the y = 0 plane for the oblique case.

perpendicular case, this leads to strong focusing on the z = 0 plane

where the density contours have a small radius of curvature. As in a

Munro jet (Birkhoff et al. 1948), this would lead to a large pressure

and hence density even if there were no magnetic field, but here the

velocities along the field are of the order of the post-shock Alfvén

speed, which is significantly higher than the gas sound speed in the

core. As a result, convergence along the field lines leads to a higher

density than in the purely hydrodynamic case.

It is possible to estimate the way in which the maximum density

scales with Ma and the initial β in the core. For a perpendicular

isothermal shock, the compression (see Appendix in Yu et al. 2006)

is

τ =
1

2

[

−β0 − 1 +
√ {

(1 + β0)2 + 8M2
a

}]

, (7)

where β0 is the upstream β. The post-shock total pressure is then

p =
B2

0

2

(

τ 2 + τβ0

)

, (8)

where B0 is the upstream magnetic field.

For the incident shock in the low-density medium, we have β0 =
βi (= 0.224 in our case) and we can ignore the gas pressure to get

τi ≃
√

2Ma (9)

if we also ignore (1 + β0)2 compared with 8M2
a . The post-shock

pressure is then given by

pi ≃ τ 2
i

B2
i

2
≃ M2

a B2
i , (10)

where Bi is the initial magnetic field.

We can get a lower limit of the density behind the shock propa-

gating into the core by assuming a perpendicular shock with post-

shock pressure pi. This is clearly a lower limit since it ignores shock

convergence, the post-shock pressure is greater than pi due to the re-

flected shock, and the compression is greater if the shock is oblique.

The shock is clearly oblique for z �= 0 since it is propagating along

the density gradient, while the field in the equilibrium core is very

nearly parallel to the z direction.

If τc is the compression in this shock, then equation (8) gives

p =
B2

c

2

(

τ 2
c + τcβc

)

= pi = M2
a B2

i , (11)

where Bc and βc are the magnetic field and β in the core. Solving

this for τc gives

τc =
1

2

[

−βc +
√

(

β2
c + 8M2

a

B2
i

B2
c

)]

. (12)

For low-temperature cores close to criticality, Bc ≃ Bi, but although

βc < 1, it is not really small. Nevertheless, we shall neglect it to

get

τc =
√

2Ma. (13)

Since the shock is actually oblique, the post-shock velocity along

the field lines is of the order of the shock velocity except near z = 0.

The strength of the shock is considerably increased by convergence,

so that we can assume that it is strong, in which case its velocity,

Vs, is given by

V 2
s =

pi

ρc(1 − 1/τc)
(14)

which becomes

V 2
s ≃

M2
a B2

i

ρc(1 − 1/
√

2Ma)
(15)

upon substitution for pi and τc from equations (10) and (13).

The orientation of the shock relative to the field lines is such that

the flow parallel to the field is directed towards z = 0, which means

that we have two streams with velocity ≃Vs and density τcρc that

collide at z = 0. This produces a density of

ρmax ≃ τcρc

V 2
s

c2
c

. (16)

Substituting for τc and V 2
s from equation (13) gives

ρmax ≃ 2
√

2
M3

a

βc(1 − 1/
√

2Ma)
ρc. (17)

In our case, we have Ma = 2, ρc = 2.08 and βc = 0.426, which

gives ρmax = 171. As we can see from Fig. 3, the maximum density

is much higher than this (≃3103), which is presumably because

we have neglected both the effect of shock convergence and the re-

flected shock on the strength of the shock in the core. For Ma = 1.5,

the simulation gives ρmax = 315 (see Fig. 3), whereas the multipli-

cation of the Ma = 2 simulation result for ρmax by ζ 3/(1 − 1/
√

2ζ ),

where ζ = 1.5/2, gives ρmax = 1577. This disagreement is not too

surprising since the assumption of strong shocks is not valid for

such low Mach numbers. It would be nice to look at larger values of

Ma, but it then becomes very difficult to resolve the thickness of the

high-density region. All this tells us that equation (17) only gives a

rough indication of the maximum density, but we have established

that this mechanism can produce surprisingly high densities even

for relatively weak shocks.

Fig. 3 also shows that the oblique shock produces densities of the

same order as the perpendicular shock, which means that the effect

is not dependent on a precise alignment of the shock normal with

the z = 0 plane. Although the oblate shape of the equilibrium core
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Figure 3. The maximum density as a function of time.

means that shock convergence is less important if the shock normal

is not perpendicular to the field, this is compensated by the fact that

the density is higher behind the more oblique shock in the core.

In Fig. 3, we have also plotted the maximum density for the

perpendicular case with self-gravity switched off once the shock

begins to interact with the core. This clearly shows that self-gravity

has no effect on the evolution up to the point at which the maximum

density is reached, but that it does slow down the subsequent re-

expansion. In both cases the very high density does not persist for

long, but the density is still substantially larger than the initial value

even at the latest times.

5 D I S C U S S I O N A N D C O N C L U S I O N S

The main result of this paper is that, even for weak shocks, shock

focusing leads to surprisingly large increases in density in shock–

core interactions. This is entirely an MHD effect, but self-gravity

is nevertheless essential to the process. The shock is focused by

the density gradient in the gravitationally bound cloud and the re-

expansion of the dense region is prevented by its self-gravity.

Chen & Ostriker (2012) have argued that ambipolar diffusion in

a time-dependent shock can lead to a transition from a magneti-

cally subcritical to magnetically supercritical state. The inclusion

of ambipolar diffusion and Hall processes in future work of the

interactions of shocks with cores will therefore be of considerable

interest. The very large increases in density that we have found

suggest that the results of Chen & Ostriker (2012), who considered

plane-parallel flows only, provide rather conservative estimates of

the extent to which transient effects in shocks are likely to increase

the mass-to-flux ratio.
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