The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Mapping and Scheduling Strategies for Heterogeneous
Architectures.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/82581/

Monograph:

Ramos-Hernandez, D.N., Tokhi, M.O. and Bass, J.M. (1998) Mapping and Scheduling
Strategies for Heterogeneous Architectures. Research Report. ACSE Research Report
736 . Department of Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

MAPPING AND SCHEDULING STRATEGIES FOR
HETEROGENEOUS ARCHITECTURES

D. N. Ramos-Hernandez + M. O. Tokhi % and J. M. Bass ¥

+ Department of Automatic Control and Systems Engineering,

i The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.

Tel: + 44 (0)114 222 5617.
Fax: + 44 (0)114 273 1729.
E-mail: o.tokhi@sheffield.ac.uk.

1 School of Electronic Engineering and Computer Systems,
University of Wales, Bangor, Dean Street, Gwynedd, LL57 1UT, UK.

Research Report No. 736

December 1998

200448776

AR

i

Ramos-Hernandez, Tokhi and Bass

Abstract

Extensive and computationally complex signal processing and control applications are
commonly constructed from small computational blocks where the load decomposition and
balance may not be easily achieved. This requires the development of mapping and scheduling
strategies based on application to processor matching. In this context several application
algorithms are utilised and investigated in this work within the Development Framework (DF)
approach. The DF approach supports the specification, design and implementation of real-time
control systems. It also contains several mapping and scheduling tools to improve the
performance of systems as well as tools for code generation. To improve the performance of
an application a new approach, namely the Priority-Based Genetic Algorithm (PBGA) is
developed and reported in this paper. The approach is applied to several applications using
parallel and distributed heterogeneous architectures and its performance verified in comparison

to several previously developed strategies.

Keywords: Distributed systems, genetic algorithms, heuristic algorithms, heterogeneous

architectures, mapping, parallel systems, scheduling.

ii

Ramos-Hernandez, Tokhi and Bass

CONTENTS

Title

Abstract

Contents

List of tables and figures

1
2

Introduction
Algorithms and hardware architectures

2.1 Application algorithms
2.1.1 The LMS algorithm
2.1.2 The beam simulation algorithm
2.1.3 The VAP algorithm
2.1.4 The BEN2aSYS

2.2 Hardware resources
2.2.1 Topology of the parallel heterogeneous system
2.2.2 Topology of the distributed heterogeneous system

The Development Framework

Simulink diagrams and the Development Framework representations of the
applications

Mapping and scheduling approaches

5.1 Modified Menasce approach

5.2 Simple GA

5.3 Priority-based GA mapping algorithm

Experimentation and results

6.1 Experiments and results with the parallel heterogeneous architecture
6.2 Experiments and results with the distributed heterogeneous architecture
Conclusion

Acknowledgements

References

iii

v

[

N N W a wn A W W W N

10
10
10
11
12
13
15
16
17
17

Table 1:
Table 2:

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:

Figure 18:
Figure 19:

Figure 20:

Figure 21:

Figure 22:

Figure 23:
Figure 24:

Ramos-Hemandez, Tokhi and Bass

LIST OF TABLES AND FIGURES

VAP execution times.
Execution time speedup with the PBGA over MM and SGA.

Block diagram of the LMS adaptive filter algorithm.

The cantilever beam in flexure..

Block diagram of the VAP algorithm..

Block diagram of the BEN2aSYS.

Topology of the parallel heterogeneous system.

Architecture of the distributed heterogeneous system.

Overview of the Development Framework.

Simulink diagram of the LMS algorithm.

Simulink diagram of the beam simulation algorithm.

Data flow diagram of the converted LLMS algorithm.

Data flow diagram of the converted beam simulation algorithm.

Data flow diagram of the converted VAP.

Data flow diagram of the converted BEN2aSYS algorithm.

Example of a small population.

Procedure of obtaining the final priority list.

Communication times in the distributed system based on CAN bus.

Scheduling and inter-processor communication of the VAP for two, three and four
processors.

Objective values reached for the VAP with two, three and four processors.
Mapping and scheduling of the LMS, beam simulation, VAP, BEN2aSYS using
the PBGA approach (parallel heterogeneous architecture).

Objective values with mapping and scheduling of the LMS, Beam simulation,
VAP, BEN2aSYS using the PBGA approach (parallel heterogeneous
architecture).

Mapping and scheduling of the LMS, beam simulation, VAP, BEN2aSYS using
the PBGA approach (distributed heterogeneous system).

Objective values with mapping and scheduling of the LMS, beam simulation, VAP,
BEN2aSYS$ using the PBGA approach (distributed heterogeneous system).
BEN2aSYS and VAP (parallel heterogeneous architecture), optimal values.
BEN2aSYS and VAP (distributed heterogeneous system), optimal values.

iv

Ramos-Hernandez, Tokhi and Bass

1 Introduction

One of the objectives in heterogeneous computing is to decompose an application into several
tasks and match each task to the machine which is best suited for its execution. In this manner,
mapping and scheduling are two important issues to be considered in a heterogeneous system
(Siegel et al., 1996). The scheduling problem in multiprocessor systems can be stated as a set
of partially ordered computational tasks onto the multiprocessor system, so that some criteria
will be optimised. The scheduling problem depends heavily on the topology of the task graph
representing the precedence relations among the computational tasks, the topology of the
multiprocessor system, the number of parallel processors, the uniformity of the task processing
time, and the performance criteria chosen (Huo er al., 1994).

The multiprocessor scheduling problem is computationally complex, so that heuristic
algorithms have been proposed to obtain optimal and sub-optimal solutions. Most of the
existing techniques are based on list scheduling, where each task is assigned a priority either
statically or dynamically. Whenever a processor becomes available a task with the highest
priority is selected from the list and assigned to the processor (Ahmad and Dhodhi, 1996).
Kasahara and Narita proposed a heuristic algorithm (critical path/most immediate successors
first) and an optimisation/approximation algorithm (depth first/implicit heuristic search)
(Kasahara and Narita, 1984). Chen et al. developed a state-space search algorithm coupled
with a heuristic to solve the multiprocessor scheduling problem (Chen et al., 1988). Recently,
genetic algorithms (GAs) have been used for solving parallel processing problems..such as
scheduling, data organisation and partitioning, communication and routing. Genetic algorithms
are defined as search algorithms based on the mechanics of natural selection and natural
genetics (Goldberg, 1989). GAs have been applied to optimisation problems. However, GAs
differ from traditional optimisation methods in the following ways: a GA uses a coding of the
parameter set rather than the parameters themselves; a GA searches from a population of
search nodes instead of from a single one; a GA uses an objective function instead of auxiliary
knowledge. Finally, a GA utilises probabilistic transition rules. Ahmad and Dhodhi developed
a technique based on the problem-space GA (PSGA) for the static scheduling of direct cyclic

graphs onto homogeneous multiprocessor systems to reduce the response-time (Ahmad and

Ramos-Hernandez, Tokhi and Bass

Dhodhi, 1996). Baxter et al. (1996) proposed several mapping and scheduling algorithms that
attempt to minimise the cycle-time of the application algorithms for parallel heterogeneous
architectures. These include a heuristic algorithm called the Modified Menasce (MM), a simple
genetic algorithm (SGA), a grouping genetic algorithm (GGA) which is an augmented version
of the SGA with several specialised operators to improve performance, and a GA with a
mechanism to adapt the operator probabilities based on their recent performance (AGA). A
priority based genetic algorithm (PBGA) approach is proposed in this paper and its
performance verified in comparison to the approaches reported in (Baxter et al., 1996). The
objective of this comparison is to minimise the overall execution time of signal processing and
control applications. The comparison is done within a parallel heterogeneous architecture. The
method is further tested in a distributed heterogeneous architecture.

The organisation of the paper is as follows. Section 2 describes the application algorithms
and the hardware used in this investigation. The description of the Development Framework is
presented in Section 3. Section 4 presents the Simulink diagrams and the Development
Framework representations of the application algorithms. Section 5 describes the proposed
mapping and scheduling approach, namely the PBGA and the different approaches of the
Development Framework. The results obtained with the different approaches with both
parallel and distributed heterogeneous architectures are presented in Section 6, and finally, the

paper is concluded in Section 7.

2 Algorithms and hardware architectures

In this section, several signal processing and control applications are described as case studies
considered in this work. These include an adaptive filtering algorithm, the simulation algorithm
for a cantilever beam, the control law for an autopilot and a benchmark problem. The parallel
heterogeneous architecture and the distributed heterogeneous network used are also described
in this section. The parallel heterogeneous architecture consists of two different processors:

the Texas Instruments TMS320C40 (C40) DSP device and the INMOS T805 (T8) transputer.

B

Ramos-Hernandez, Tokhi and Bass

The distributed heterogeneous network includes two nodes and several sensors and actuators,

which communicate with each other via a CAN (controller area network) bus.

2.1 Application algorithms

The application algorithms considered in this study include the least mean square (LMS)
adaptive filter algorithm, a cantilever beam simulation algorithm, the versatile auto-pilot
(VAP) algorithm and a continuous benchmark pr?blem (BEN2aSYS). Among these the LMS
algorithm is of irregular nature, with uneven inner and outer loops performed and many
multiply and accumulate functions. The beam simulation algoﬁthm is of regular nature and is
based on matrix multiplication and addition. The VAP algorithm is a multiple-input multiple-
output control law. The BEN2aSYS is the autopilot portion of the algorithm developed at
Johns Hopkins University Applied Physics Laboratory (JHU/APL) (Hawley and Stevens,
1986: Rimer et al., 1990; The Mathworks, 1992). These algorithms are briefly described
below.

2.1.1 The LMS algorithm

The LMS adaptive filter algorithm was developed by Widrow and his co-workers (Widrow et
al., 1975). It is based on the steepest descent method where the weight vector is updated

according to
Wi, =W, +2e,uX, (1)
where, W, represents the weight vector, X, the input signal vector, { is a constant that

controls the stability, and e; = y; — W}TX ; is the output error. A block diagram representation

of the algorithm is shown in Figure 1.

2.1.2 The beam simulation algorithm

Consider a cantilever beam system with a force U (x,t) applied at a distance x from its fixed

end at time ¢ (see Figure 2). This produces a deflection y(x,t) of the beam from its stationary

. r!'

Ramos-Hernandez, Tokhi and Bass

position at the point where the force has been applied. The dynamic equation representing this

system is given as (Tokhi and Hossain, 1994) N

0*y(x,t) 9*y(x,1) 1
2 ’ A
+ =—Ul{x,t (2)
g ox* or? m (1)

where |l is a beam constant and m is the mass of the beam. Discretising the beam into a finite
number of sections (segments) of length Ax and considering the deflection of each section at
time steps At, using the central finite difference (FD) method, a discrete approximation to

equation (2) can be obtained as (Tokhi and Hossain, 1994)

(Ar)?
m

Y, =-Y,_, —ASY, + U(x,r) (3)

where A% = (At)z(Ax)_4u2, S is a pentadiagonal matrix, entries of which depend on the
physical properties and boundary conditions of the beam, ¥, (i = k + 1,k,k —1) represents the
deflection at sections 1,...,n of the beam at time step i , and Ar and Ax are increments along
the time and the distance coordinates respectively. Equation (3) represents a discrete

formulation of the dynamic behaviour of the beam in transverse motion.

2.1.3 The VAP algorithm

The VAP control law is the most complex of the two laws for approach and landing developed
in the theoretical studies at Royal Aerospace Establishment, Bedford (Garcia-Nocetti and
Fleming, 1992; Goddard, 1979). The control law has previously been employed on the Civil
Avionics Section’s BAC 1-11, using a single-processor (M68000) implementation. The VAP

is a four inputs, two outputs control algorithm.

Figure 3 shows a block diagram of the VAP algorithm. The inputs are pitch rate (q),
barometric height error (hg), vertical acceleration (d°h/d:*) and airspeed error (u,). The
outputs are elevator rate demand (dn, / dt) and throttle demand (v,).

The notation in Figure 3 follows the convention that the gain between the elevator
position and an aircraft state error input is denoted by G with the error variable as a subscript.

Similarly, A is used to denote the gain associated with throttle position. The throttle position

Ramos-Hernandez, Tokhi and Bass

control laww consists of a smoothing lag on the airspeed error input together with the A gains.
As the elevator servo-system is a rate demand servo, the elevator control law demand is of
derivative type. The first component of the elevator control law comprises G gains together
with a 0.1s lag. In the second component of the law, the height error inputs from several
sources are mixed in complementary filters with normal acceleration information. The signals

are further transformed by the lag terms and G gains (Garcia-Nocetti and Fleming, 1992).

2.1.4 The BEN2aSYS

The Autopilot and Airframe system is presented in three parts, corresponding to the three
phases in the design of such a system. The initial design considers a low-order and uncoupled
system. In the intermediate design, the model is upgraded to a three-channel, coupled and low-
frequency model, which sometimes is used for initial performance analysis. In the final phase,
the model is extended to include all the high-frequency filtering found in a system in the
advanced stages of the design process. For experimental purposes only the simple model is

considered in this work. Figure 4 shows the autopilot and airframe pitch channels.

2.2 Hardware resources

This section describes the hardware that comprise the parallel and distributed heterogeneous

architectures. These architectures are utilised for investigations throughout this research.

2.2.1 Topology of the parallel heterogeneous system

The topology of the parallel heterogeneous system used to carry out the experimental
investigations in this work is shown in Figure 5. This comprises a Transtech TMBO8
motherboard with 10 TRAMs possessing two INMOS T805 (T8) transputers. The root T8
incorporates 2 Mbytes local memory and is connected to the Host computer (SUN SPARC).
The root T8 is connected, via its link 2 to a sub-network of three Texas Instruments

TMS320C40 (C40) DSP devices each with 3 Mbytes DRAM and 1 Mbyte SRAM. Further

descriptions of the processors are given in the following paragraphs.

Ramos-Hermandez, Tokhi and Bass

The T8 is a 32 bit CMOS microcomputer with a 64 bit floating point unit. It is a general-
purpose medium-grained parallel processor with 25 MHz clock speed, yielding up to 20 MIPS
performance and is capable of 4.3 MFLOPS. This has 4 Kbytes on-chip RAM for high speed
processing, a configurable memory interface and four standard INMOS communication links.
The links operate at speeds of 20 Mbits/sec, achieving data rates of up to 1.7 Mbytes/sec uni-
directionally or 2.3 Mbytes bi-directionally. The T805 can directly access a linear address
space of 4 Gbytes and a configurable memory controller provides all timing, control and
DRAM refresh signals for a wide variety of mixed memory systems (Inmos, 1989).

The C40 is a 32-bit DSP device with 40 MHz clock speed, 8 Kbytes on-chip RAM, and
512 bytes on-chip instruction cache. It is capable of 275 MOPS and 40 MFLOPS. This
processor has six communication ports for high speed inter-processor communication (20-
Mbytes/sec asynchronous transfer rate at each port for maximum data throughput), six-
channel DMA coprocessor for concurrent I/O and CPU operation, two identical external data
and address buses supporting shared memory systems and high data rate (single-cycle
transfers), and on-chip program cache and dual-access/single-cycle RAM for increased

memory access performance and separate internal program data (Texas Instruments, 1991).

2.2.2 Topology of the distributed heterogeneous system

The distributed heterogeneous system utilised in this work consists of two nodes (PC
machines, 486 and 386), and several sensor and actuator devices connected via CAN
(Controller Area Network) bus (see Figure 6). Each PC contains a CAN application controller
2 (CAN-AC2), which exchanges information with the PC through a dual ported RAM
(DPRAM). The CAN-AC2 contains its own processor (NEC V25+) and two CAN
connections that can be operated in parallel (Softing, 1996). The CAN controller controls all
the mechanisms specified in the CAN protocol. The sensors and actuators are autonomous

devices connected to the nodes via CAN bus.

Ramos-Hernandez, Tokhi and Bass

CAN Bus architecture:

The CAN bus has several advantages to develop real-time distributed systems, such as
acceptable speed, high noise immunity, low cost per node, relative degree of determinism and
high reliability (Rodd ez al., 1997). CAN is a serial communication protocol (ISO/IS-11898,
1993). This was developed by Robert Bosch GmBH for use in time-critical applications in the
automotive industry. The characteristics of CAN include high transmission rate, flexibility,
high data integrity, prioritised access control, data consistency and error detection function
(Yun et al., 1997).

The CAN bus has a multi-master priority-based bus access, with non-destructive
contention-based arbitration. An identifier (ID) is given to each message in order to identify
the message and to control the bus access. Thus, the identifiers of the packets are not
associated with the directions of the stations, but to the data itself. A station wishing to
transmit sends data and ID together, and other stations receive or ignore the message
depending on the ID. Therefore, the ID classifies the message and is used to define the priority
of each message. Each station constantly monitors the bus to determine whether any station is
using the network. The message with the lowest ID value wins the right to use the network
while others stop their transmission immediately. Since this identifier-based bitwise arbitration
does not lose any information and time, it is called non-destructive bus access. So, the
network is utilised efficiently even under heavy network load. CAN supports data rates

ranging from 5 Kbps to 1 Mbps, with either linear bus or star topology.

3 The Development Framework

The Development Framework is an advanced CACSD environment to support the
specification, design and implementation of real-time control systems (Bass et al., 1994).
Three phases are identified into the Development Framework: the specification phase, in
which the designer specifies, analyses and simulates the application, the software design phase,

which enables to analyse and refine the system under development, and the implementation

Ramos-Hernandez, Tokhi and Bass

phase, which allows to generate source code of the system. Figure 7 illustrates these three
phases.

In the specification phase, the Simulink toolbox (The Mathworks, 1992) is used to
support the modelling and simulation of the application and is also used to provide a well
documented mechanism of specification of control systems. Once the control engineering
representation is obtained using Simulink, the Development Framework includes tools that
automatically translate this representation into a software engineering domain. In this phase,
the Development Framework produces a data-flow diagram (DFD) in the file format of the
Software through Pictures (StP) CASE environment. Thus, the DFD is equivalent to the
Simulink diagram and each functional block (gains, transfer function, for example) is
converted to a process symbol within the Development Framework. This complete description
of the application system allows the analysis, implementation and documentation of the
proposed design. Finally, the Development Framework tools translate the software
engineering representation into source code that can be compiled into executable code for a
network of processors. To obtain the source code of the application, firstly, it is necessary to
apply the mapping tool, which appends an annotation to the DFD to indicate the task to
processor mapping and determine the task execution order. From this information the code
generator creates the source code for the implementation which is then compiled.

The Development Framework incorporates several code generators which exist for the
different forms of hardware architectures, including single processor UNIX workstations and
also heterogeneous architectures (consisting of mixed networks of transputers, C40 DSPs, and
Intel i860). However, the Development Framework as well as other environments; for
example, Ptolemy (Pino et al., 1994), Comdisco’s DPC (Powell et al., 1992) and CADIS’s
Descartes (Ritz er al., 1992) do not incorporate a bus-based architecture. A bus-based
architecture has several advantages in the development of real-time distributed systems, such
as acceptable speed and high reliability. In order to incorporate an architecture based on CAN
bus into the Development Framework, a tool for automatic code generation was developed.
Thus, C code is generated automatically and the application can be implemented in a

distributed heterogeneous environment based on CAN bus.

Ramos-Hernandez, Tokhi and Bass

4 Simulink diagrams and the Development Framework representations
of the applications

In previous investigations the Simulink block diagrams of the VAP and BEN2aSYS were
developed (Baxter et al., 1996; Garcia-Nocetti and Fleming, 1992; The Mathworks, 1992).
Thus, it was only necessary to develop further the block diagrams for the LMS and the beam
simulation algorithms in this work. Figures 8 and 9 show the Simulink diagram of the LMS
and the beam simulation algorithms respectively. It is noted in Figures 8 and 9 that a small
number of control blocks including unit delays, multiplexes, de-multiplexes, S-Functions,
gains, sums and constants are used to construct control and digital signal processing
applications, such as the LMS and beam simulation algorithms.

Since the mapping and scheduling problem depends heavily on the topology of the task
graph representing the precedence relations, It is necessary to convert the block diagram
representations of the applications into task graph form. To do this the Development
Framework is used, which produces the DFD for each application. Figure 10 shows the DFD
for the LMS algorithm. For this algorittm a DFD with eleven processes was generated. As
noted each process corresponds to the block diagram in the Simulink representation. In the
DFD of Figure 10 a duplicating de-multiplexer (Demux 1) process is added where lines within
the block diagrams split.

Figure 11 shows the DFD generated for the beam simulation algorithm. In this diagram
two de-multiplexer processes are added in the translation. Thus, the DFD possesses eight
processes with their corresponding data communication flows.

Figure 12 shows the DFD of the VAP control law. This application contains 40 processes
and significant cross-coupling terms. Finally, the DFD of the converted BEN2aSYS system is
shown in Figure 13. The diagram only shows the top level of the BEN2aSYS translation. The
number of processes generated is 47 in all its levels. Thus, this is the most complex of the

applications considered in this work.

Ramos-Hernandez, Tokhi and Bass

5 Mapping and scheduling approaches

The mapping and scheduling problems are simple in concept. However, several factors need to
be considered. For example, a single task must be mapped to a single node with the aim of
minimising its execution time, but the upper and lower bounds of the execution time are
difficult to obtain. In heterogeneous architectures execution time of a task will vary depending
upon which processor type it is mapped on. Thus, each task should be matched to the
processor that achieves minimum execution time. Inter-processor communication overhead,
which often dominates the computing time, is important. Furthermore, it is important to note
that a DFD has precedence, so that, tasks cannot be executed until their predecessors have
been completed. Finally, it is important to consider the interference cost that occurs when the
combination of several tasks on a processor affect their expected execution times (Baxter ef
al., 1996). The remainder of this section focuses on first describing the MM and SGA
approaches previously proposed (Baxter et al., 1996) and then presenting the PBGA
approach. The MM approach is considered for reasons of comparison of the GA algorithms

with a heuristic technique.

5.1 Modified Menasce approach

The MM algorithm is a simple heuristic that constructs a mapping in a single pass (Baxter et
al., 1996). This algorithm is based on task execution times for each processor, communication
costs and the precedence of tasks. The algorithm determines the mapping of the tasks and the

order in which they should be executed.

5.2 Simple GA

The SGA is a basic three operator approach (Baxter et al., 1996). This algorithm uses a simple
encoding strategy, where the chromosome length is equal to the number of tasks and the value
of each element of the chromosome corresponds to the processor to which that task is mapped
to. The number of individuals in the population is currently set to twice the number of tasks in

the application. Its objective function is based on the precedence tasks graph of the

10

Ramos-Hemandez, Tokhi and Bass

application. The fitness vajues are derived from the objective values by lirear ranking, with a
selection pressure of 2, prior to selection. The selection strategy is stochastic universal
sampling with a generation gap of 1. The crossover is reduced to surrogate shuffle crossover

with a survival rate of 0.3. Finally, the mutation survival rate is set to 0.02.

5.3 Priority-based GA mapping algorithm

The PBGA is also a basic three operator approach. Each individual (chromosome) of the
population, as in the SGA approach, has a length‘equal to the number of tasks and the value of
each element represents the processor to which it is mapped, as shown in Figure 14.

The fitness value of each chromosome is calculated according to the fitness function
(objective function). The objective function of the PBGA is based on a priority assigned to
each task. In a real-time system this will ensure minimum execution time with the allocation of
processes. The priorities are obtained according to the sequence of the tasks in the data-flow
diagram. A priority equal to one (highest priority) is assigned to all these tasks with zero
precedence tasks (input tasks). Then, the priority is increased by one for each successor. This
procedure is repeated until either the successor is an output or its priority has been assigned. If
the task’s priority has been assigned already, this means that a loop has been found and the
task needs to keep its priority. After this procedure a temporal priority list is created. Thus, an
input task can have several temporal priority lists, from among which the one with the highest
priority for each task, is chosen as the priority list. Similarly, the application can have several
priority lists, from which the final priority list, is constructed and passed as parameter (o the
objective function. Figure 15 shows a simple example illustrating the process of obtaining the
final priority list.

The execution times for each task in different processors, the inter-processor
communication time, the precedence of the tasks in the DFD and the data communication are
also passed as parameters to the objective function. In the objective function, the tasks with

highest priority (one) are scheduled first on the processor where they were mapped. This

11

Ramos-Hemandez, Tokhi and Bass

process is repeated until all tasks arc scheduled. In the PBGA approach the cost of inter-
processor communication is also considered.

The fitness values are derived from the objective values by linear ranking. A stochastic
universal sampling selection strategy is used with a generation gap of 1. A simple one-point

crossover operator is used with a crossover rate of P_, = 0.6. Finally, a mutation operator is

used with a mutation rate of Pm = 0.7/ (number of tasks) to indicate the percentage of the

total number of genes in the population which are mutated in each generation.

6 Experimentation and results

This section is divided into two parts; experiments and results using the parallel heterogeneous
architecture (T8 and three C40s) and experiments and results carried out with the distributed
heterogeneous network based on the CAN bus. In order to obtain the mapping and scheduling
of the different applications, it is required to know a-priori the execution times for each task
on all the processors. Thus, the C code generated for each application using the Development
Framework is compiled and executed on each processor in both architectures. In this manner,
the computing time for each task is obtained. Moreover, it is necessary to know a-priori the
precedence relations of the tasks and their priorities. To obtain this information two C
programs were developed. The programs were implemented in ANSI C using several
functions of the Framework Information Interchange (FII). The FII is a data storage, creation
and access mechanism, which is used for the Development Framework’s tools (Browne et al.,
1997). The procedure to obtain the priorities was explained in Section 5.3. The C program

developed to obtain the precedence relations of each task consists of the following two steps:

1) input and output tasks connected to external devices are eliminated, and a task list is
created,
2) from the task list, the precedence relations of each task are obtained. A precedence

relation is an input task.

12

oo AR

Ramos-Hemmandez, Tokhi and Bass

It is also required to know a-priori the commurication times between processors. In case of
the parallel heterogeneous architecture inter-processor communication is point-to point
message passing and hence the communication times are straightforward to obtain.

In the distributed heterogeneous system based on the CAN bus, the end-to-end
communication delay for a message is not simple to obtain, considering the time taken to
access and transmit data on a communication link, the time taken to deliver the message to the
destination processor, and the time taken to assemble and queue the message at the source
processor (Tindell et al., 1994). The times invol':/ed in the overall communication process are:
(1) real to integer conversion (tg), (2) CAN bus time (foy) and (3) integer to real
conversion (f,,). Figure 16 illustrates these three times. The time taken to deliver or access a
message in the buffer and to queue the message are not considered due to the poor precision
of the PC nodes. To obtain the times #, and f,, the applications were implemented on the
distributed architecture and an average of these times was computed (g, + Iz =307 psec).

For the bus time 7, 2 frame of 130 bits was considered. This resulted in t.,, =130 psec.

The MM, SGA and PBGA approaches were executed on a Sun workstation and for the

GA routines the GA Toolbox of MATLAB 4.2b was used.

6.1 Experiments and results with the parallel heterogeneous architecture

The execution times for the VAP algorithm using the MM and SGA approaches were
previously obtained for the case of four processors (Baxter et al., 1996). In this paper, the
execution times for two and three processors are also obtained and presented for reasons of
comparison with the execution times of the PBGA approach. Thus, the VAP was mapped

using the MM, SGA and PBGA accordingly. The population size used was 68 (34 tasks x 2,

input and output tasks are not considered) and the number of generations considered was 20.
The results obtained with the PBGA are shown in Table 1. The execution times for the MM
and SGA are also shown in this table.

Table 1 confirms that the GA based approaches outperform the MM approach. For the

case of the GA approaches, it can be seen that a significant reduction in execution time is

13

Ramos-Hemandez, Tokhi and Bass

obtained with the PBGA approach than with the SGA. This indicates that improving the
objective function results in a reduction in the execution time. Table 2 shows the performance
in terms of execution time speedup achieved with the PBGA over the MM and SGA
approaches. It is noted, that the PBGA outperforms the MM approach by 2.559 and the SGA
approach by 2.004 for the case of two processors.

Figure 17 shows the distribution of the tasks on two, three and four processors using the
PBGA and considering inter-processor communication (pctt) for each case. The distribution of
the tasks in time is shown along the horizontal axis, as the task starts and finishes. The number
of tasks is indicated along the vertical axis. It can be observed that for the case of two and
three processors the inter-processor communication time is acceptable, as it takes less than
half of the total execution time of the application. However, in the case of four processors this
ime increases, due to heavy communication between processors when the number of
processors increases.

Figure 18 shows the objective values reached in each generation after executing the
PBGA approach for the case of two, three and four processors. It is noted that an acceptable
objective value is obtained with a small number of generations.

For the case of the LMS, beam simulation and BEN2aSYS applications, the MM and
SGA approaches were applied to minimise their overall execution time. However, using these
approaches some problems arose. The applications include feedback loops in their control
representations. Thus, when the MM and SGA approaches were executed for these
applications no solution was reached, since these approaches do not consider cyclic data-flow
diagrams. In contrast, using the PBGA approach, the mapping and scheduling of these
applications was found. The PBGA solves the recurrence by assigning a priority to each task.
Therefore, the PBGA results in a better method to solve the mapping and scheduling problem
than the MM and SGA approaches. Figures 19 and 20 show the results obtained using the
PBGA approach for all the applications with two processors (T8&C40). The scheduling and
inter-processor communication times are shown in Figure 19 and the objective values are
shown in Figure 20. This representation later allows comparing results with the distributed

system.

14

.
S S T S T

Ramos-Hemandez, Tokhi and Bass

It is observed in Figures 19 and 20 that communication overheads for the beam simulation
and LMS are zero, meanwhile for the VAP this time takes less than half of the total execution
time and for the BEN2aSYS it takes more than half the total execution time. It is also
observed that for the LMS algorithm a minimum execution time is reached using the faster

processor (C40).

6.2 Experiments and results with the distributed heterogeneous architecture

Since the PBGA approach can be considered as aﬁ excellent mapping and scheduling strategy.
This approach was used to minimise the execution time of the applications with the distributed
heterogeneous architecture.

The mapping and scheduling solution and inter-processor communications for each
application are shown in Figure 21 and the objective values over 20 generations are shown in
Figure 22. For the case of the beam simulation and LMS algorithms no communication
overhead was noted in the overall execution time. However, in the case of the VAP and
BEN2aSYS, this time is more than half of the total execution time. For the LMS algorithm,
the PBGA approach resulted in a minimum execution time, allocating all the tasks to the faster
processor (486).

Comparing both architectures, the execution times of the LMS and beam simulation
algorithms are reduced with the parallel heterogeneous architecture. In contrast, the execution
times for the large applications such as the BEN2aSYS and VAP are reduced with the
distributed architecture. A similar distribution of tasks is observed in both architectures.
Moreover, it is observed that the PBGA approach allocated more tasks to the faster processor.

In order to obtain an optimal value of the total execution time and to reduce the inter-
processor communication, the PBGA approach was modified. This modification involves
running the approach until the best optimal value for each application is found. The
experiments were carried out for both the parallel and the distributed heterogeneous
architectures. In the case of the parallel architecture, no reduction in the overall execution time

was obtained for the beam simulation and the LMS algorithms. In contrast, for the

15

Ramos-Hernandez, Tokhi and Bass

BEN2aSYS the total execution time was minimised from 1.226 secs to 0.0138 se=s and for the
VAP from 1.254 secs to 0.67 secs. Figure 23 shows the reduction in the execution time for the
BEN2aSYS and for the VAP with the modified version of the PBGA approach. It is observed
that for the BEN2aSYS and VAP applications, no inter-processor communication time is
involved in the total execution time (pctt=0). These results were reached in the case of the
BEN2aSYS after 1200 secs with 800 generations and for the VAP after 200 secs with 900
generations of running the PBGA approach.

Similarly, in case of the parallel architecture, no reduction in execution time was found for
the beam simulation and LMS algorithms with the distributed heterogeneous architecture. For
the case of the BEN2aSYS, the total execution time decreased from 0.2922 secs to 0.0325
secs after executing the PBGA approach for 250 secs with 320 generations. In the case of the
VAP, the reduction of the total execution time was from 0.0652 to 0.0210 secs after 180 secs
with 800 generations. Also, the inter-processor communication in both applications was
reduced to zero. Figure 24 shows the optimal values obtained for the BEN2aSYS and VAP

applications.

7 Conclusion

An investigation into different mapping and scheduling approaches for heterogeneous
architectures has been presented in this paper. The MM approach is a simple strategy to map
and schedule tasks. However, its performance is poor compared with the GA approaches.
Thus, the MM is taking the maximum cycle-time expected for the application. The two GA
approaches have the same complexity and they only differ in the objective function.
Nevertheless, the PBGA outperforms the SGA approach. This means, that assigning a priority
to each task of the application is a better strategy than only considering the precedence of the
tasks. Moreover, with the PBGA, acceptable results can be obtained with only running this
approach for few generations. Meanwhile for the SGA, it is necessary to run the algorithm for

several hours to reach an optimal value. It is important to note that the inter-processor

16

Ramos-Hemandez, Tokhi and Bass

communication time has a heavy influence on the total execution time of the application and to
obtain an efficient mapping and scheduling, this time must be reduced.

The results with the modified PBGA, incorporating inter-processor communication have
demonstrated that for the beam simulation and the LMS algorithms no reduction in the total
execution time with either the parallel or the distributed architecture was obtained. However, a
significant decrease in the overall execution time for the BEN2aSYS and the VAP applications
was achieved with both architectures.

The new approach has been verified with \two different architectures and it has been
observed that in the case of large applications the overall execution time is reduced with the
distributed heterogeneous architecture, whereas for small applications the execution time is

minimised with a parallel heterogeneous architecture.

8 Acknowledgements

The authors acknowledge the financial support of CONACYT-MEXICO and the UK EPSRC
(Grant No. GR/K 64310).

9 References

AHMAD, 1. and DHODHI, M. K. (1996). Multiprocessor scheduling in a genetic paradigm,
Parallel Computing, 22, (3), pp. 395-406.

BASS, J. M., BROWNE, A. R, HAJJI, M. S., MARRIOTT, D. G., CROLL, P. R. and
FLEMING, P. J. (1994). Automating the development of distributed control software,
IEEE Parallel & Distributed Technology, 2, (4), pp- 9-19.

BAXTER, M. J.,, TOKHI, M. O. and FLEMING, P. J. (1996). An investigation of the
heterogeneous mapping problem using genetic algorithms, UKACC International
Conference on Control’96, Exeter, 2-5 September 1996, pp. 448-453.

BROWNE, A. R., BASS, J. M. and FLEMING, P. J. (1997). A building block approach to
the temporal modeling of control software, IFAC 4th Workshop on Algorithms and
Architectures for Real-Time Control, Algarve, April 1997, pp. 433-438.

17

Ramos-Hernandez, Tokhi and Bass

CHEN, C. L., LEE, C. S. G. and HOU, E. S. H. (1988). Efficient scheduling algorithms for
robot inverse dynamics computation on a multiprocessor system, IEEE Transactions on
Systems, Man, Cybernetics, 18, pp. 729-743.

[GARCIA-NOCETTI, D. E. and FLEMING, I. P. (1992). Parallel processing in digital
control, Springer-Verlag, London.

GODDARD, K. F. (1979). Theoretical studies of automatic control laws for a BAC 1-11
aircraft utilising the wing spoilers for direct lift control, Technical Report 79034, Royal
Aircraft Establishment.

GOLDBERG, D. E. (1989). Genetic algorithms in search, optimization, and machine
learning, Addison-Wesley.

HAWLEY, P. A. and STEVENS, T. R. (1986). Two sets of benchmark problems for CACSD
packages, Proceedings of the Third IEEE Symposium on Computer-Aided Control System
Design, Arlington, September 1986.

HOU, E. S. H., ANSARI, N. and REN, H. (1994). A genetic algorithm for multiprocessor
scheduling”, IEEE Trans. on Parallel and Distributed Systems, 5, (2), pp. 113-120.

INMOS. (1989). Transputer databook, Redwood Burn Ltd, Trowbridge.

ISO/IS 11898. (1993). Road vehicles-interchange of digital information-controller area
network (CAN) for high speed communication, ISO International Standard 11898.

KASAHARA, H. and NARITA, S. (1984). Practical multi-processing scheduling algorithms
for efficient parallel processing, IEEE Transactions on Computers, 33, (11), pp. 1023-
1029.

PINO, J. L, PARKS, T. M. and LEE, E. A. (1994). Automatic code generation for
heterogencous multiprocessors, Proceedings of IEEE International Conference on
Acoustics Speech and Signal Processing, 2, (Part II), pp. 445-448.

POWELL, D. G., LEE, E. A. and NEWMAN, W. C. (1992). Direct synthesis of optimized
DSP assembly code from signal flow block diagrams, Proceedings of IEEE ICASSP, San
Francisco, 1992, 5, pp. 553-556.

RIMER, M., FREDERICK, D. K. and HUANG, C. Y. (1990). Solutions of the second

benchmark control problem, /JEEE Control Systems Magazine, August.

18

s

Ramos-Hemandez, Tokhi and Bass

EITZ, S., PANKERT, M. and MEYR, H. (1992). High level software synthesis for signal
processing systems, Proceedings of IEEE International Conference on Application
Specific Array Processors, Berkeley, 1992, pp. 679-693.

RODD, M. G., DIMYATI, K. and MOTUS, L. (1997). The design and analysis of low-cost
real-time fieldbus systems, IFAC Distributed Computer Control Systems, Seoul, 1997, pp.
1-9.

SIEGEL, H. J., ANTONIO, J. K., METZGER, R. C,, TAN, M. and LI, Y. A. (1996).
Heterogeneous computing. In Zomaya, A. Y editor, Parallel & Distributed Computing
Handbook, McGraw-Hill. '

THE MATHWORKS. (1992). SIMULINK: Dynamic system simulation software, user’s
guide, The MathWorks Inc., pp.2.66-2.90.

SOFTING. (1996). Documentation for the CAN application controller 2, Version 2.00, Rev.
03, Softing GmbH, Munchen.

TEXAS INSTRUMENTS. (1991). TMS320C4x user’s guide, Texas Instruments.

TINDELL, K., BURNS, A. and WELLINGS, A. (1994). Analysis of hard real-time
communications, Technical report (27/06/94), Department of Computer Science,
University of York, England.

TOKHI, M. O. and HOSSAIN, M. A. (1994). Self-tuning active vibration control in flexible
beam structures, Proceedings of IMechE-I: Journal of Systems and Control Engitgeering,
208, (14), pp. 263 277.

WIDROW, B., GLOVER, J. R., McCOOL, J. M., KAUNITZ, J., WILLIAMS, C. S,
HEARN, R. H., ZEIDLER, J. R., DONG, E. and GOODLIN, R. C. (1975). Adaptive
noise cancelling: principles and applications, Proceedings of IEEE, (63), pp. 1692-1696.

YUN, J-A., NAM, S-W. and LEE, S. (1997). Evaluation of network protocol for automotive
data communication, IFAC Distributed Computer Control Systems, Seoul, 1997, pp. 73-
78.

19

Ramos-Hernandez, Tokhi and Bass

Table 1: VAP execution times;

G: Number of generations, P: Population size, GGPA: Generation gap, Pm: Mutation

survival rate.
Number of MM SGA PBGA
processors
Time (sec) G=20, P=68 G=20, P=68
GGPA=1, Pm=0.02 | GGPA=1, Pm=0.02
Time (sec) Time (sec)
2 3.2084 25122 1.2537
3 4.1574 2.7973 1.7156
4 4.6145 2.8819 1.8084

Table 2: Execution time speedup with the PBGA over MM and SGA.

Number of processors MM SGA
2 2.559 2.004
3 2.423 1.631
4 2.552 1.594

20

Ramos-Hernandez, Tokhi and Bass

WU
X:
.’ + F '5...
Xj Xjq Xj-2 X j—n+l
Y
LMS ALGORITHM
Wy =W, + 2UE x;
e T

T e, =Y — W, X,
€

Figure 1: Block diagram of the LMS adaptive filter algorithm.

S —————— R L

¥

Figure 2: The cantilever beam in flexure.

21

Ramos-Hemnandez, Tokhi and Bass

q
hg
+-
1 +
— Gy(s) = Gy(s)
+
] Ga(s) T@—
* -
= (22
i Gyls)
G, 8) T
u, G, (s} v
G,(s) u:

Figure 3: Block diagram of the VAP algorithm.

22

%

Ramos-Hernandez, Tokhi and Bass

S>> 5t [+ o [St [T

Yvw
Py

)

oE1(e)
oa5T(e) || 9952 [P odB3E

Y1

(a) The pitch autopilot channel.

(b) The pitch aircraft channel.

Figure 4: Block diagram of the BEN2aSYS.

23

Ramos-Hernandez, Tokhi and Bass

SUN Station
(Host)

T805
(Root)

Figure 5: Topology of the parallel heterogeneous system.

PC 386

CAN
CAN bus

Sensors & Actuators

S 2oy

Figure 6: Architecture of the distributed heterogeneous system.

24

iSS D e 4

Ramos-Hemandez, Tokhi and Bass

Kls : Sum(In1,In2,0ut)
Tl.s+1 =1, see
Pitch *D : {
Angle Transfer Fen + il::amr Out=In1+In2
Sum }

From Transfer Fen
To Sum

From Sum
To Pitch
Actuator

Figure 7: Overview of the Development Framework.

25

Ramos-Hernandez, Tokhi and Bass

t1

From
Workspace

S-Function

Mux

Unit Delay

Mux delaysf -JDemu —3- Imssf —9
— Mux

Demux

S-Functionl

Demux1

Unit Delayl

To Workspace

Figure 8: Simulink diagram of the LMS algorithm.

g

To Workspace5

Matrix
Gain
—»-
Unit Delay Unit Delay1
, 1.03001E-07, P+
Constant1 L
Sum

Figure 9: Simulink diagram of the beam simulation algorithm.

26

Ramos-Hermandez, Tokhi and Bass

Demux t » Mux1
(Flow 5)

S-Function to

Demux (Flow 4)
Demux 1to Mux1

(Flow €)

Demux to Demux 1

(Flow 15)
S-Functionl to

Demux] (Flow8)

Unit Delayl to
Mux1 (Flow 7)

Demux 1 to Unit

Delay (Flow 13)
Demux1 to Unit
Mux to Delayl (Flow 14)
S-Function
(Flow 9)
Demuxl to To
Waorkspace (Flow 11)
From Workspace
to Mix.(Flow 1)
by Flr:m ToTo Workspace ToWork-
or
(M:;I From From (Flow 12) space
Workspace (Flow 2) (Node 8)

Figure 10: Data flow diagram of the converted LMS algorithm.

Constant1
(Node 6)

Constant1
(Node 6)

Constant1
(Node 6)

Constant1 to

Sum (Flow 3)
Demux 1to To

Sum to Demux 1 W?;:(:xa;;es To
(Flow 9) Demux 1 Work-
"\ spaceS

(Node 8)
Node 7

Sum

(Node 2)
Unit Delay1 to
Sum (Flow 2) Demux 1 to Unit
Delay (Flow 5) ToTo
. Workspace5
.) Unit (Flow 8)
Matrix Gain te Delay1
Sum (Flow 1) (Node §) Unit Delay
(Node 4)
y
Unit Delay to To
Demux 2 to Unit Demux 2 (Flow 10) Work-
Delay1 (Flow 6) space5
(Node 7)

Demux 2
(Node 9)

Math‘
Gain

(Node 3)

Demux 2 to Matrix Gain
(Flow 4)

Figure 11: Data flow diagram of the converted beam simulation algorithm.

27

Ramos-Hernandez, Tokhi and Bass

From Step Step Input to

Input D 5 (Fow 44]
o . @

A1 to A6 (Flow 26)

AS to Scope
(Rlow 36)
To Scope
= (Row 37)
A5 to A8 (Fow 6)

ot @
Input 1

JFrom Sty Stop Input

‘mts'i to Demux 6
o £1) (Flow 52) Demux 3 to G12
From Step Step (Row 12)
Inputd nput3 to G11 G11 to| Damux 3 G12 to Aua
swp |(Row 1)/ g \(Row 10 (Rdw 45) {Flow 18)
Inputd Input3
Demu: Au
Demux 2
to G
(Row 7) m
AT #{ Scopel S 1
o AT to Scope? (Flow 38) w To Scopet cope
(Row 39)
G10 to Demux 2
(Fow 49) Ghb to A5 (Row 25)

Demux 2 to Ghb

St=p (Row 17)
input2 -
From Step tep Input2 td

Input2 (Flow 9) G10 (Fow B)

Figure 12: Data flow diagram of the converted VAP.

Pitch
Autopilot
Channe

Demux 1 to Sum

Necp to Gain (Flow 43)

(Flow &7)

Demux 1 to
Np_data (Flow 1)

Transfer Fcn8

From Ncp
(Flow 48)

to Demux 3
(Flow 57)

Ncp

Demux 4 to To Np_data
Demux 1 (Flow 58) (Flow 2)

Pitch
Aircraft
Channe|

Np_data

Figure 13: Data flow diagram of the converted BEN2aSYS algorithm.

28

_.l

w)
°®
835
£ 2
=5 0
c.c

*.7

o 1
2 0
3 1
o 1
3 2

Ramos-Hernandez, Tokhi and Bass

processor number to which
the task is mapped

o 0
2 3
0 3
2 2
3 2 ...

number of tasks

=
"y 1 0
. 2 1
5% 3 0
T 1 3
i s o 1

Figure 14: Example of a small population.

cfc¥o

one input

temporal
el | 2] B e | X | st
E- 2 4 \ 5 \ 6
2 temporal
° a b 1] d e x — Jist
1 2 4 5 6 7
priority of the
task
riority
a | b t g]d — st
1 2 3 4 5
final
a f g d «—— priority
T2 3 4 5 6 it

Figure 15: Procedure of obtaining the final priority list.

29

——1

Ramos-Hernandez, Tokhi and Bass

r tCAN

Figure 16: Communication times in the distributed system based on CAN bus.

30

Proc #1 sor
- o
0 &P 40
5%[‘
E 20r § ‘E‘ =200
3 15f £l
~ 10 E
10}
Sf—xp
i . N A 0 i R L : i s
% 200 400 800 1000 1200 0 200 400 600 800 1000 1200
Time (msec) Time (msec)
Proc #2 = sor
30 = 0
5251 ’ﬁ='
L o™
E 20] E pctt = 480
¥ 15t { o 20F
= 10}
sk ‘ﬁ: 10}
=
0 . i i i ; oy i . N X)
(1] 200 400 600 800 1000 1200 0 200 400 800 800 1000 1200
Time (msec) Time (msec)
(a) Two processor implementation.
Proc #1
E i -]
=
201 L g pctt = 480
g] & 201
10—
=
4 . L 7 " - ’ = 8 zoo 4olo 800 solu 1050 1260 wl)u 16:)0
% 200 400 600 800 1000 1200 1400 1600 0 Time {fisic)
Proc #2 Time (msec)
- a0} 40
E = b pctt = 760]
£ 20 g 20
#
%10t
L = D 1 1 i 1 1 1 1 1
s
o : x . " A . A i
0 200 400 600 800 1000 1200 1400 1600 T - 1o
Proc #3 Time (msec)
. 3o} 'ﬁ 40
g e L]
g i~ o pci=620
20+ s g, peti=
& & 20
= 101 —
E =t 0 1 1 I L L L 1 L
0 - + - . L 1 L - [} 200 400 800 800 1000 1200 1400 1600
0 200 400 600 800 1000 1200 1400 1600 Tima (msec)
Time (msec)
(b) Three processor implementation.
[Proc #1 50
20 - =
3 — £
e
oo L s i ; i fi i i i 0 " n . n L " . A s
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 800 800 1000 1200 1400 .1600 1800
5 Proc #2 Time (msec) — 50" Time (msec)
— y
20 g =
¥ e o
L
oo " " s . A . : ; 5 0 L s . . s L . . .
(] 400 600 BOO 1000 1200 1400 1600 1800 0 200 400 800 800 1000 1200 1400 1800 1800
3 Proc #3 Time (msec) 4 sor Time (msec)
e]
E 20 ’.' E W: 1520
I S = o
(- 0 i F i i N i . . B % zolo 4(;0 I 8010 1000 12(I}0 0 : :
() 400 600 800 1000 1200 1400 1600 1800] LU
.E Proc 84 Time (msac)
8 20t
k] I
L 1 ' A L Il i
L 0= N " N N i 4 1 § I § 800 1000 1200 1400 1600 1800
0 200 400 600 800 1000 1200 1400 1600 1800 Time (msec)
Times (msec)

Ramos-Hemandez, Tokhi and Bass

(¢) Four processor implementation.

Proc #1: T8, Proc #2: C40, Proc #3: C40 and Proc #4: C40.
pett : inter-processor comimunication.

Figure 17: Scheduling and inter-processor communication of the VAP for two, three
and four processors.

3

Ramos-Hemandez, Tokhi and Bass

2 Best = 1254 (msec
10°
1686 , " . ' o : ; ;

1.35f 4

1.25 P L L 1 L
0 2 4 6 8 10 12 14 16 18 20

generation

(a) Two processors.

x10° Best = 1716 (msec)

26 — T T T T

251

24F 4

1.8F <

17 i L i L L L 1
°] 2 4 6 8 10 12 14 16 18 20

generation

(b) Three processors.

x10° Best = 1808 (msac)
28 T T T T T T T T T

2.7t
26 _
25 -
24t E
l._z.a -
22t

2.1

18 s L n I L 1
0 2 4 6 -] 10 12 14 16 18 20

generation

(c) Four processors.

Figure 18: Objective values reached for the VAP with two, three and four processors.

32

Ramos-Hemnandez, Tokhi and Bass

Scheduling Inter-processor communication
Proc 21 50p
e 40|
sf
| il
4 peni=0
%9 gm»
H
2} 10|
1
0 o s 0 D 20 25 30
Tima (msec)
50
wf
g3 o
Exl
i 10|
o 05) 15 20 25 3.0] 05 0 15 20 2% ag
Tima (masc) Time (mssc)
(a) Beam simulation.
n b sor
i w0
30 za) l
I bos = 40
¥ Bl
=
10| 10
o 0 e 00 w0 om0 1200 o 2m = 00 500 7000 1200
Tima (maec) Time {maec)
” sar
-
b i 230
y D
!m ’ a 20
“10 0
o e St
o) 400 500 800 Tom 120 o 2m 00 &0 800 1000 1200
Time (mssc) Tume (msec)
(b) BEN2aSYS.
Prc #1 50
8
4D
¥g _
f B
"
20
i
2r 10|
I T ® s 10 O 5 25 a0 40 50 60 70 80 %0 100
Tme (masc)
o "
40
|
S0 pen=0
Ex
10|
ntl 1 2‘ 3 4 5 ?I ﬁj 9‘ 'i; I"I] Ilﬂ ZID a0 l‘D 50 B..U 70 ﬂln 2.0 IB.D
Time (maec) Tims (masc)
(c) LMS.
Proc #1 50
W o
.
Em . Ewpnﬂm
15
m
!m‘ .=,=#=='
5 10
. i i
o 200 w0 600 800 1000 1200 o 20 400 60 1000 1200
Time (msec) Time (mssc)
Proc .
i #” ; 50
= 40
I = 1]
£ { %30
d g] jpct = 480
i ¢ Bl
=10
5| F |U"
= X .
] 200 400 600 800 1000 1200 () 200 a0 om0 10m0 1200
Tims (msac) Time (muec)

(d) VAP.
[Proc #1: T8 and Proc #2: C40. pett : inter-processor communication. 1

Figure 19: Mapping and scheduling of the LMS, beam simulation, VAP, BEN2aSYS
using the PBGA approach (parallel heterogeneous architecture).

33

Bast = 3.2 (msec)

Ramos-Hernandez, Tokhi and Bass

Best = 1226 (msec)

1400

ey

1200

1000

% 2 : s s w12 4 18 e 2 12 2 7 5 % e A a6, i® o6
peneration generation
Beam simulation BEN2aSYS
Best = 10.1 (maec) i Bost = 1254 (msec)
800 ; ; 165 b . '
1.8}
—
155
w0 |
15
.%:m L %1.45
£ i
14}
200 }
1350
100 |
13}
a " 1 1 T 1 s - 3 w 3 1 1.25 A 4 1 1 A
0 2 4 6 8 10 12 14 16 18 20 0 2 4 e & 10 12 14 16 18 20
genaration generation
LMS VAP

Figure 20: Objective values with mapping and scheduling of the LMS, Beam
simulation, VAP, BEN2aSYS using the PBGA approach (parallel

heterogeneous architecture).

34

Scheduling

Proc 1
8
5
i
I3[
F2
1
o 0 20 30 40 60
Tema {meec)
Proc #2
of
st
at
.!Cl
L8
| R—
o i i L . i
o 10 20 30 40 60
Time (maac)
n
- i
X a0
5 !
Bl '
3
10
o %0 100 150 200 20
Tims (maac)
n
40 '
%0 v
£ [
N
E 4
10|
i ;5 . i
(] 50 10 150 o0 20
Twne (mesc)

80 100

120

Teme (masc)
Proc #2
8
ge.
*l
-
2
i " " " L ¥ A "
] 20 40 60 _80 100 120 140 160
Time (meec)
Proc #1
20 f
25]
20|
.las
= 10|
S8f of
"o 10 30 r))
Tima (maac)
Proc #2
20,
25) =
X
e i
1%
1
=10
of =
=
"o 10 20 30 © o)
Tume (msec)

(a) Beam simulation.

(b) BEN2aSYS.

(c) LMS.

(d) VAP.

Ramos-Hemandez, Tokhi and Bass

Inter-processor communication

50
|

30 40 50 60
Tums (maec)

g

ap 40 50 60
Tima {msec)

X =131.1
B =

150 200 250
Time (msec)

o = 1311
£

150
Tima (msec)

[+] 20 40 80

80 100 120 14.0 160
Time (msac)

pen =0
£x

80 100 120 4o 180
Tima (mssc)

30
Time (maec)

[Proc #1: 486 and Proc #2: 386. pctt : inter-processor communication.]

Figure 21: Mapping and scheduling of the LMS, beam simulation, VAP, BEN2aSYS

35

using the PBGA approach (distributed heterogeneous system).

Ramos-Hernandez, Tokhi and Bass

Best = 6.7 (msec) Best = 2902.2 (msec)
250 T —r T €50 x T -
800
200 F
550 +
150 | s
))
H i
100 | 400 |
aso -
50 b
300 F
" o . L N . s . " . L L s L L
OD 2 4 8 é _l‘(-) 12 14 18 ;B 20 e 0 2 4 L] a 10 12 14 18 18 20
generation generation
Beam simulation BEN2aSYS
Best = 17.2 (mssc) Best = 85.2 (masc)
150 T T T T 220 T r T
200
180
100
160
! % 140
2
120
50 b
100
80
0 L L L L s s L s . 80 N s . L L s . . 1
0 2 4 [8 10 12 14 16 18 20 0 2 4 8 8 10 12 14 L] 18 20
gensration generation

Figure 22: Objective values with mapping and scheduling of the LMS, beam simulation,
VAP, BEN2aSYS using the PBGA approach (distributed heterogeneous
system).

36

———

Proc #1

Proc #2

Tesk number
8

3

1op

4
L] 8 10
Time (msec)

pcH=0
Bl

[} 8
Time (msac)

[8 T
Tune (msec)

4‘ 6] “;
Tima (msec)

Task rumbor
o w3308

o
g

4

200 300 400 500
Tima (msec)

600

200

300 400 00 00

Tima (masc)

. Figure 23: BEN2aSYS and VAP (parallel heterogeneous architecture), optimal values.

300 400 500 600

Time {masc)

[Proc #1: T8 and Proc #2: C40. pctt: inter-processor communication.]

(a) BEN2aSYS.

(b) VAP.

37

Ramos-Hernandez, Tokhi and Bass

x10* Besl = 12.8 (masc)

25

i

basl objv

o5 ‘li
800

o 100 200 300 400 500 600 700 900
gnn-mnn
x 0" Simulaled Execution Time using GA Schedulat

Execulion Time (maec)
ry

400 600 800 1000 ¥
Elapsed Running Time (sacs)

x10” Bast = 670.8 (msac)

a8
[}

. s e s . " L n '
100 200 300 400 500 800 o0 800 800 1000
genaralion

Simuimied Exeastion Trme using GA Scheduler

[100 120 140 160 180 200
Bapuod Funning Time (sscs)

] 5 10 15 2 = 30
Tme (msec)

¥
10]
o 3 [15 ES 3 0
Time (msec)
50
%0
=30 pn=0
Ew
10/
[} 5 10 15 = 30
Time (meec)
50
0
&
&0 poi=0
Ex
10
o 5 10 15 0 = a0
Tima (mesc)
Proc 11 ——
30 =
Xl —
Sn =
! 15 ==
=10 Fad
5 [—]
L] 2 4 6 B 10 12 14 16 18 20
Teme (meac)
Proc #2
a0 =
5 =
2 =
= —_—
=10 _

: L L . " . L
0 2 4 6 8 10 12 14 16 18 20
Tiemo (mssc)

L N n s " L s
GB 2 4 L] [} 10 12 AL 16 AL 20
Time (msec)

8 10 12
Time {mesc)

(a) BEN2aSYS.

(b) VAP.

Ramos-Hemandez, Tokhi and Bass

Beat =32.5 (msac)

best obj

g

Execulion Time fmaec)

Simulated Execulion Tima using GA Scheduler

g

100 150
Elapsed Funnng Tme (secs)

Best = 21 (msac)

4 s L " "
100 200 300 400 500 600 00 800 900

g

Execution Time (msec)

Simulaled Execution Time using GA Scheduler

100 120 140 160 180

n ® ®
Elapsed Running Time (secs)

[Proc #1: T8 and Proc #2: C40. pctt: inter-processor communication.]

{ "'_‘)-F_igure 24: BEN2aSYS and VAP (distributed heterogeneous system), optimal values.

38

