Effect of simplifications of bone and components inclination on the elastohydrodynamic lubrication modeling of metal-on-metal hip resurfacing prosthesis.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/82461/

Article:

https://doi.org/10.1177/0954411912472845

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/
The Effect of Simplifications of Bone and Components Inclination on the Elastohydrodynamic Lubrication Modelling of Metal-on-Metal Hip Resurfacing Prosthesis

Qingen Meng a,*, Feng Liu a, John Fisher a, Zhongmin Jin a,b,*

a Institute of Medical and Biological Engineering,
School of Mechanical Engineering,
University of Leeds, UK

b School of Mechanical Engineering,
Xi’an Jiaotong University, China

* Corresponding author
Email: qingen.meng@gmail.com, Z.Jin@leeds.ac.uk
Abstract

It is important to study the lubrication mechanism of metal-on-metal (MOM) hip resurfacing prosthesis in order to understand its overall tribological performance, thereby minimize the wear particles. Previous elastohydrodynamic lubrication (EHL) studies of MOM hip resurfacing prosthesis neglected the effects of the orientations of the cup and head. Simplified pelvic and femoral bone models were also adopted for the previous studies. These simplifications may lead to unrealistic predictions. For the first time, an EHL model was developed and solved for a full MOM hip resurfacing arthroplasty. The effects of the orientations of components and the realistic bones on the lubrication performance of MOM hip resurfacing prosthesis were investigated by comparing the full model with simplified models. It was found that the orientation of the head played a very important role in the prediction of pressure distributions and film profiles of the MOM hip resurfacing prosthesis. The inclination of the hemispherical cup up to 45° had no appreciable effect on the lubrication performance of the MOM hip resurfacing prosthesis. Moreover, the combined effect of material properties and structures of bones was negligible. Future studies should focus on higher inclination angles, smaller coverage angle and micro-separation related to the occurrences of edge-loading.

Keywords

Hip resurfacing arthroplasty; lubrication analysis; metal on metal; orientations of cup and head; bone
Introduction

Metal-on-metal (MOM) hip resurfacing arthroplasty has become an attractive method of joint reconstruction for young and active patients due to its theoretical biomechanical advantages [1, 2]. Although significantly lower wear rates have been observed for MOM hip resurfacing prostheses, compared with conventional MOM total hip replacements (THRs) [3-5], some clinical and computational results indicated an opposite trend [6-8]. A Medical Device Alert has been issued for the high failure rate of one type of MOM hip resurfacing prosthesis [9]. Moreover, the size of the metallic particles of MOM hip resurfacing prostheses is as small as that of the THR s (in nanometer) [4]. The ions levels of Cobalt (Co) and Chromium (Cr) in blood or urine of patients with MOM resurfacing prostheses are comparable with those of the patients with THR [10-12]. Furthermore, the life expectancy of the majority of the patients receiving MOM hip resurfacing prosthesis is considerably longer than that of the elderly patients who traditionally receive THRs. Therefore, the concerns raised by the long-term exposure to elevated metal ion levels in the body still exist. These concerns include hypersensitivity, tissue toxicity, carcinogenicity, chromosomal aberration, and the risk of passing chromosomal abnormalities to the next generation [13, 14]. More recently, pseudotumours, caused by edge loading and increased metallic wear particles, have been found in a number of clinical studies of MOM hip resurfacing prosthesis [15-18]. Therefore, metallic particles of MOM hip resurfacing prosthesis have to be minimized to avoid potential adverse biological reactions.

Since wear particles are mainly generated by the direct contact between bearing surfaces, they can be reduced by using bearing materials with high wear resistance. Moreover, a synovial fluid type of lubricant generally forms in the joint capsule after hip arthroplasty. Promoting lubricant protection between the bearing surfaces is also an effective approach to
reducing wear, because an effective lubricant film is able to separate the bearing surfaces and reduce the proportion of the load carried by asperity contacts. Therefore, it is important to study the lubrication mechanism in hip resurfacing prostheses. Elastohydrodynamic lubrication (EHL), considering the interaction between the deformation of the bearing surfaces and the hydrodynamic pressure between the bearing surfaces, plays an important role in the study of lubrication mechanism of hip prostheses in terms of accurately predicting film thickness and pressure distribution [19]. The current EHL models applicable to hip replacements can be found in a few review papers [19, 20].

Although a large number of lubrication studies have been performed for THRs [20], only few studies [21-23] have been performed to investigate how design parameters, such as the head diameter, diametric clearance, cup wall thickness and detailed structures and fixation of the femoral component, affect the EHL of MOM hip resurfacing prostheses. These studies assumed that the cup was horizontally positioned and the head was vertically positioned. However, both in-vivo and in-vitro wear studies of MOM hip resurfacing prostheses suggested the importance of the orientation of the acetabular components [24-29]. Moreover, in these studies, the pelvis and femur were simplified using equivalent bone models with appropriate material properties [21-23]. Although a contact mechanics study has been performed to justify the application of the equivalent bone models [22], the effects of realistic bone structures on the lubrication performance of MOM hip resurfacing prostheses remain unknown due to the lack of a full model that considers the realistic geometries and material properties of the pelvis and femur.

Therefore, the aim of this study was twofold. At first, an EHL model for a full MOM hip resurfacing arthroplasty was developed. In this model, the realistic structures and material properties of bones, components and their fixations were all incorporated. Subsequently, the
effects of the orientations of components and the structures of realistic bones on the lubrication were investigated by comparing this full model with simplified models.

Models and Methods

Full model

The full MOM hip resurfacing model (model-f) considered in the present study is shown in Figure 1. The diameter, radial clearance and cup thickness of this surface hip prosthesis were 50 mm, 75 μm and 3.94 mm, respectively [23]. The minimum and maximum thicknesses of the head were 2.5 and 9 mm, respectively. The radius and length of the pin of the head were approximately 3.5 mm and 60 mm, respectively. Both the acetabular and femoral components were made of CoCr alloy with the elastic modulus and Poisson’s ratio of 220 GPa and 0.3, respectively. The acetabular component was positioned into the acetabulum with an inclination angle of 45° (β in Figure 2). With a stem to provide the alignment, the femoral component was fixed in the femur using acrylic cement, also with an inclination angle of 45°. No anteversion was considered in the present study. The effect of anteversion will be considered in future studies. The solid models of the hemi-pelvis and the proximal femur were created from CT data [30]. A uniform thickness of 1.5 mm was adopted for the cortical bone of the pelvis [31]. The thickness of the cortical bone of the femur was variable with a maximum value of approximately 4.5 mm. The elastic modulus and Poisson’s ratio of the cortical bone of both the pelvis and femur were 17 GPa and 0.3 [32]. The elastic moduli of the cancellous bone of the pelvis and femur were assumed to be 0.5 and 1.5 GPa, respectively. The Poisson’s ratio of the cancellous bone of both the pelvis and femur was 0.3 [31, 33]. The elastic modulus, Poisson’s ratio and thickness of the acrylic cement mantle were 2.5 GPa, 0.25 and 1.0 mm, respectively [31, 33]. These material parameters are summarized in Table
1. The interfaces between the components and the bone, the femoral component and the cement, and the cement and the bone were assumed to be perfectly bonded to simulate a fully in-grown bone situation or the perfect cement interlocking.

The lubricant in artificial hip joints is periprosthetic synovial fluid. Previous studies showed protein in synovial fluid may play an important role in the film formation of MOM hip implants through two mechanisms, a boundary layer of adsorbed protein molecules augmented by a high-viscosity fluid film generated by hydrodynamic effects [34-36]. However, due to the lack of a full rheological model of the lubricant[37], the effect of protein was not considered in this study. Since the viscosity of the synovial fluid does not change with pressure up to 100 MPa [38] and the pressure levels in artificial hip joints are unlikely to exceed 100 MPa, the synovial fluid can be considered as isoviscous. Moreover, although the synovial fluid behaves as a powerful non-Newtonian fluid under relatively low shear rates, under higher shear rates (~ 10^5/s) likely to be experienced in the hip joint, it can be considered as a Newtonian fluid [39]. Therefore, the synovial fluid was considered as isoviscous and Newtonian. A higher viscosity of 0.01 Pa·s was adopted in the present study to facilitate the numerical process, as compared with a more realistic value of 0.002 Pa·s for the synovial fluid and 0.0009 Pa·s for the bovine serum with a concentration of 25% used in the simulator testing [39].

A ball-in-socket configuration shown in Figure 2 was employed to represent the articulation between the femoral and the acetabular bearing surfaces for the EHL analysis. The walking condition was represented by the three-dimensional (3D) loads and motions [40, 41] applied to the head. Both the loading and velocity were assumed to be steady-state in the present study to reduce computational time.
The governing equations for the lubrication model included the Reynolds equation, the film thickness equation and the load balance equations. The steady-state Reynolds equation governing the hydrodynamic action between two bearing surfaces of hip prostheses took the following form in spherical coordinates [41]:

\[\sin \theta \frac{\partial}{\partial \theta} \left(h^3 \sin \theta \frac{\partial p}{\partial \theta} \right) + \frac{\partial}{\partial \phi} \left(h^3 \frac{\partial p}{\partial \phi} \right) \]

\[= 6\eta R_c^2 \sin \theta \left[-\omega_x \left(\sin \phi \sin \theta \frac{\partial h}{\partial \theta} + \cos \phi \cos \theta \frac{\partial h}{\partial \phi} \right) \right. \]

\[+ \omega_y \left(\cos \phi \sin \theta \frac{\partial h}{\partial \theta} - \sin \phi \cos \theta \frac{\partial h}{\partial \phi} \right) \]

\[+ \omega_z \sin \theta \frac{\partial h}{\partial \phi} \] (1)

where \(p \) is the hydrodynamic pressure in the bearing; \(h \) is the film thickness; \(\eta \) is the viscosity of the periprosthetic synovial fluid; \(R_c \) is the radius of the cup; \(\omega_x, \omega_y \text{ and } \omega_z \) are the angular velocities of the femoral head around the \(x, y \text{ and } z \) axes, respectively; \(\phi \) and \(\theta \) are the spherical coordinates, as defined in Figure 3.

The boundary conditions for equation (1) were:

\[p = 0 \text{ at the edge of the cup} \] (2)

As shown in Figure 3, the edge of the cup was:

\[\begin{cases} \theta_{in} = 0, \theta_{out} = \pi \\ \phi_{in} = \beta, \phi_{out} = \pi + \beta \end{cases} \] (3)

where \(\beta \) is the inclination angle of the cups of the models, equal to 45\(^\circ\) in the present full hip resurfacing model.

The Swift-Steiber (Reynolds) boundary condition was employed for the continuity of flow and the indication of the film rupture at the outlet:
\[\frac{\partial p}{\partial \phi} - \frac{\partial p}{\partial \theta} = 0 \quad (4) \]

The film thickness consisted of the undeformed gap and the elastic deformation of bearing surfaces due to hydrodynamic pressure:

\[h = R_h - e_x \sin \theta \cos \phi - e_y \sin \theta \sin \phi - e_z \cos \theta + \delta \quad (5) \]

where \(R_h \) is the radius of the head; \(e_x, e_y \) and \(e_z \) are the eccentricities of the femoral head relative to the cup; \(\delta \) is the local deformation of the bearing surfaces of the cup and head.

In addition, the external load components, \(w_x, w_y \) and \(w_z \), were balanced by the integration of the hydrodynamic pressure:

\[f_x = R_h^2 \int_{\theta_a}^{\theta_u} \int_{\phi_a}^{\phi_u} p \sin^2 \theta \cos \phi d\theta d\phi = w_x \quad (6) \]

\[f_y = R_h^2 \int_{\theta_a}^{\theta_u} \int_{\phi_a}^{\phi_u} p \sin^2 \theta \sin \phi d\theta d\phi = w_y \]

\[f_z = R_h^2 \int_{\theta_a}^{\theta_u} \int_{\phi_a}^{\phi_u} p \sin \theta \cos \theta d\theta d\phi = w_z \]

Numerical method

A flexibility matrix method able to consider the effects of complex structures of lubrication system [23, 42] was used to solve the above EHL model. The details of the method can be found somewhere else [23]. In brief, the Reynolds equation was solved using a Guass-Seidel scheme with local linearization; the elastic deformation was calculated separately from the Reynolds equation, by the product of the flexibility matrix of the lubrication nodes and the nodal force; the two solution modules exchanged data during an iterative process. The flexibility matrix was obtained by inverting the stiffness matrix, which was obtained through finite element (FE) analysis. The nodal force was obtained by transferring the hydrodynamic pressure according to isoparametric element definition.
Two 3D FE models were generated in I-DEAS (Version 11.0, Siemens PLM Software Inc., Plano, USA) to calculate the stiffness matrices of the nodes on the lubricated surfaces of the acetabular and femoral components (Figure 4). One included the acetabular component and the pelvis, and another incorporated the femoral component and the femur as well as their fixation. The meshes of the inner surface of the cup and the outer surface of the head were matched with the lubrication grid shown in Figure 3. A mesh density of 65×65 nodes on the contact surface was used for the present study [21, 23] (The differences in the maximum pressure and central film thickness caused by the increase of mesh density to 91×91 were less than 1% and 3%, respectively). The stiffness matrices of the nodes on the lubricated surfaces of the cup and the head were obtained by solving the FE models using Abaqus (Version 6.7 – 1, Dassault Systèmes Simulia Corp., Providence, USA). The structural information of these components was coupled into the lubrication analysis by the flexibility matrices.

It should be noted that when the deformation was calculated, the acetabular and femoral components underwent large bending and translational displacements under pressure. Since only the local deformation of the bearing surfaces should be considered in the EHL analyses [43], the mean large displacements were subtracted from the overall displacements of the surfaces, similar to the approach used in the EHL analysis of connecting-rod bearings [44, 45].

Simplified models

In order to examine the effects of the orientations of components of the hip resurfacing replacement and the structure of bones, three simplified models (model-s1, model-s2, and model-s3) using equivalent bone model were also solved. The detailed structure of the simplified models is shown in Figure 5(a). The elastic modulus and Poisson’s ratio of the
equivalent bone model were 3.0 GPa and 0.3 [22, 23], respectively. The orientations of the
components of the simplified models were different. Model-s1 was the widely-used model
for the lubrication analysis of hip resurfacing prosthesis [21-23], of which the acetabular
component was positioned horizontally and the femoral component was positioned vertically,
as shown in Figure 5(b). Both the cup and the head of model-s2 were inclined with an angle
of 45° to simulate an anatomical contact (Figure 5(c)). In model-s3 (Figure 5(d)), the cup was
inclined with an angle of 45° but the head was assumed to be vertical as that of model-s1.

Two reference models were also introduced to investigate the effect of the structures of bones.
Reference model one (model-r1) is the combination of the realistic femoral part of the full
model (Figure 4(b)) and the inclined equivalent pelvic part of simplified model two (model-
s2, figure 5(c)). Reference model two (model-r2) is the combination of the realistic pelvic
part (Figure 4(a)) and the inclined equivalent femoral part of simplified model two.

The same numerical procedure as described in Numerical method was used to solve the EHL
of these simplified models. Moreover, the static dry contact mechanics of the simplified
models (model-s1, model-s2, and model-s3) were also solved to provide corroboration for the
EHL models and also to further investigate the effects of the orientations of the components.
3D FE contact mechanics models were created in NX I-DEAS and solved using Abaqus. For
each model, the back of the equivalent bone was fully constrained and a vertical load was
applied through the center of the head. The friction between the bearing surfaces was not
considered because its effect on the contact pressure in a well lubricated MOM hip bearing is
negligible. Moreover, it has also been shown that for a MOM hip bearings, a friction
coefficient up to 0.2 did not affect the contact pressure prediction [46]. The difference in the
maximum contact pressure caused by the increase of mesh density from 64 × 64 elements to
96 × 96 elements on the contact surface was 7%. The mesh density of 96 × 96 elements on
the contact surface was employed for all the dry contact models, resulting in a total of
approximately 75,000 8-node linear hexahedral and 6-node linear tetrahedral elements for
each dry contact model. With the cup surface being chosen as the slave surface, the element-
based surfaces of the cup and head were defined as a contact pair. “Node to surface” was
used as the contact discretization for the contact pair. The contact tracking approach was
“small sliding”. The option “adjust = 0.0” was used to avoid the initial overclosure of the
surfaces. The key word “CLEARANCE” was used to accurately define the initial gap
between the bearing surfaces.

9 Results

Although a wide range of steady-state load and velocity has been considered for the EHL
model, the full model was compared with the simplified models under a condition that only
considered the vertical load and flexion/extension rotation since in a walking cycle the load is
mainly in the vertical direction and the major velocity is in the flexion/extension direction.
The model condition was: \(w_x = 0.0 \text{ N}, \ w_y = 3200.0 \text{ N}, \ w_z = 0.0 \text{ N}, \ \omega_x = 2.0 \text{ rad/s}, \ \omega_y = 0.0 \text{ rad/s} \) and \(\omega_z = 0.0 \text{ rad/s} \). In the dry contact mechanics analyses of the simplified models,
correspondingly, only a vertical load of 3200 N was applied. Figure 6 shows the contour
plots of the hydrodynamic pressure of the full hip resurfacing EHL model and the simplified
models under the same conditions. The contour plots of the corresponding lubricant film
thickness are shown in Figure 7. Figure 8 is the comparison of the pressure distribution and
film thickness on the lines of \(\phi = 90^\circ \) and \(\theta = 90^\circ \) of the full hip resurfacing EHL model and
the simplified models. The dry contact pressure distributions of the three simplified models
under the vertical load of 3200 N are plotted in Figure 9. Figure 10 shows the comparison of
the pressure distribution and film thickness on the lines of \(\phi = 90^\circ \) and \(\theta = 90^\circ \) of the full hip
resurfacing EHL model and the reference models.
Discussion

It is well known that EHL solutions take long computational time and therefore assumptions are usually made to simplify the problem. For example, previous EHL studies of hip resurfacing prostheses used simple supports to represent bones and ignored the effects of the orientations of prosthetic components [21-23]. The present study attempts to examine the validity of these assumptions.

Under typical EHL conditions, the hydrodynamic pressure is generally expected to be similar to the dry contact pressure since the lubrication film is very thin. Therefore, the comparison between hydrodynamic pressure and dry contact pressure is able to verify the solutions of dry contact mechanics and steady-state EHL models. The hydrodynamic pressure obtained from the full model was verified by comparing indirectly with the corresponding dry contact pressure presented in a previous study [33]. Under the same load of 3200 N, the profile of the hydrodynamic pressure shown in Figure 6(a) was similar to that of the dry contact pressure. Moreover, the maximum hydrodynamic pressure predicted from the EHL model was 21.8 MPa, consistent with the maximum dry contact pressure of 22 MPa [33]. The direct comparison between the hydrodynamic pressure and dry contact pressure of the simplified models of the present study is able to provide more supports for the solutions. It is clear that the profiles and the magnitudes of the hydrodynamic pressures of the simplified models shown in Figure 6 closely resembled those of the corresponding dry contact pressures shown in Figure 9.

The widely-used simplified model with a horizontal cup and a vertical head bone (model-s1) did not predict correct pressure distribution and film thickness for MOM hip resurfacing prosthesis, as indicated in Figures 6 to 8. Obvious differences in both profile and magnitude of pressure distribution and film thickness were found between the full model and model-s1.
As shown in Figure 6, the position of the maximum hydrodynamic pressure predicted from
the full model was different from model-s1. This is extremely important because it represents
the position of the maximum stress experienced by the components. Moreover, the central
film thickness of the full model was significantly thicker than that of model-s1 (Figures 7 and
8). The present findings call for questions in majority of previous lubrication studies reported
in the literature, largely based on model-s1.

Model-s2 produced similar hydrodynamic pressure distribution and lubricant film thickness
profile to the full model (Figures 6 to 8). Since the only difference between model-s1 and
model-s2 was the orientations of the cup and head, this reflected a remarkable effect of the
anatomical inclination angle of the cup and head, particularly for resurfacing type prostheses
which tend to use thin components. The effects of the orientations of the components can be
further examined by comparing the EHL and dry contact mechanics solutions of model-s1,
model-s2 and model-s3. The inclination angles of the cups of model-s1 and model-s3 were
different, while their heads were positioned in a similar way. Therefore, the comparison
between them highlighted the effect of the orientation of the cup component. Since the dry
contact pressure and hydrodynamic pressure distribution and lubricant film profile of model-
s1 and model-s3 were identical (Figures 6 to 9), the inclination of the cup up to 45° had no
effect on the lubrication performance of MOM hip resurfacing prosthesis. This is consistent
with the conclusion drawn for the MOM spherical THR from a previous study [47]. It is also
reasonable to conclude that the inclination angle of the hemispherical cup (up to 45°) may
have negligible effect on the wear of hip resurfacing prostheses as it did not affect the
lubrication performance and contact mechanics of the MOM hip prosthesis. It should also be
noted that the contact areas of the cases investigated in this study were all within the cup
(away from the edge). However, it should be pointed out that in-vivo and in-vitro studies [24-
29] indicated that steeper acetabular components may cause severe wear. Since the effect of
the normal inclination of the cup itself can be excluded from the present study, future studies should concentrate on higher inclination angles, smaller coverage angle and micro-separation related to the occurrences of edge-loading.

In a similar manner, the remarkable differences in the hydrodynamic and dry contact pressures and lubricant film of model-s2 and model-s3 were attributed to the effect of the orientation of the head component, since the inclination angle of the cups of model-s2 and model-s3 was similar, while their heads were positioned in a different way. This is because the stiffness of the head is different at different contact positions due to the non-uniform structures of the head and its fixation. Finally, it can be concluded that the difference in the lubrication performance of model-s1 and model-s2 was caused by the orientation of the head component. Therefore, it is important to incorporate the correct orientation of the head component in the EHL and contact mechanics models of MOM surface hip prostheses.

Moreover, the agreement between the results of model-s2 and the full model implied that the combined effect of the material properties and structures of the bones on the lubrication performance of MOM hip resurfacing prostheses was negligible. This was consistent with the conclusion drawn from previous studies [21, 23]. Therefore, it is possible to replace the realistic bones using equivalent bone models with appropriate material properties in the EHL models of MOM hip resurfacing prostheses. However, there were still differences in the hydrodynamic pressure and film thickness between model-s2 and the full model. These differences indicated that the material parameters for the equivalent bone model adopted in the present study were not accurate enough to represent the realistic bones. Future studies should be conducted to obtain optimal material properties for the equivalent bone model.

The effect of the structures of the realistic femur and pelvis was also investigated by comparing the full model with reference models. Results shown in Figure 10 indicated that
the local fluctuations on the film thickness and pressure in the entraining direction of the full
test may be a result of the consideration of the realistic structure of the femoral bone, since
both the full model and model-r1 produced local fluctuations in the entraining direction while
model-r2 did not. Moreover, the approximate agreement between reference models and the
full model confirmed again the possibility to replace the realistic bones using equivalent bone
models with appropriate material properties in computational models.

The increasing early failure of MOM hip resurfacing implant has caused concerns. Along
with the corrosion between the large metal head and the stem [48], edge loading is an
important reason of this early failure [17, 49], because it not only increases the local contact
pressure, but also is believed to cause loss of lubrication [24, 50]. Edge loading occurs when
the contact patch between the acetabular and femoral components extends over the rim of the
cup, which may be caused by a steeply inclined cup and other factors such as small coverage
angle and smaller clearance [50]. However, the inclination angle (up to 45º) of the
hemispherical cup considered in this study was not large enough to cause edge loading.
Moreover, the consideration of edge loading in numerical lubrication analysis involves more
complex factors such as starvation. Therefore, the effect of edge loading was not included in
this study. This will be considered in future work.

There are other limitations in the present study. Because of the non-symmetric and non-
compressible characteristics of the stiffness and flexibility matrices of the complex structure
of hip resurfacing system, only 65×65 nodes were used for the lubrication analysis due to
the extremely high computational cost and storage size requirement for the finer lubrication
meshes. As a result, a relatively high viscosity was adopted to facilitate the convergence of
numerical solution. It is expected that this issue will be solved using a method of selective-
fine-mesh with selective-storage [51]. Moreover, only steady-state condition was considered
as the first step to address the importance of the effect of orientation of components. Future
work will perform transient analyses.

Conclusions

The EHL of a full MOM hip resurfacing model and three simplified MOM hip resurfacing
models were also solved. A flexibility matrix method was used to solve these models. The
effects of the orientations of components and the structures of realistic bones on the
lubrication performance of MOM hip resurfacing prosthesis were investigated by comparing
the full model with the simplified models. It was found that the orientation of the head played
a very important role in predicting the pressure distribution and film profile of hip resurfacing
prosthesis while the inclination of the cup up to 45° had no appreciable effect on the
lubrication performance of MOM hip resurfacing prosthesis. It is expected that the inclination
angle of the hemispherical cup may have negligible effect on the wear of hip resurfacing
prostheses if the contact area is within the cup (away from the edge). Moreover, the
combined effect of material properties and structures of the bones may have a negligible
effect.

Acknowledgement

The authors would also like to thank Professor Peiran Yang of Qingdao Technological
University for his valuable discussion.

Funding acknowledgement

This work was support by the Overseas Research Students Awards Scheme (ORSAS) to
Qingen Meng, the National Natural Science Foundation of China (grant number: 50628505)
and the NIHR (National Institute for Health Research) as part of collaboration with the LMBRU (Leeds Musculoskeletal Biomedical Research Unit).

Conflict of interest

The authors have no conflict of interest to disclose for this work.

References

10. Clarke MT, Lee PTH, Arora A, et al. Levels of metal ions after small- and large-
diameter metal-on-metal hip arthroplasty. Journal of Bone and Joint Surgery-British
Volume 2003; 85B: 913-917.

bearings on systemic exposure to cobalt and chromium. Journal of Bone and Joint
Surgery-British Volume 2006; 88B: 443-448.

and metal-on-metal THA? Clinical Orthopaedics and Related Research 2008; 466:
700-707.

formation following hip resurfacing. Journal of Bone and Joint Surgery-British
Volume 2009; 91B: 1566-1574.

inflammatory pseudotumour have a poor outcome. Journal of Bone and Joint Surgery-British
Volume 2010; 92B: 356-361.

17. Kwon YM, Glyn-Jones S, Simpson DJ, et al. Analysis of wear of retrieved metal-on-
metal hip resurfacing implants revised due to pseudotumours. Journal of Bone and

Tribology 2006; 220: 719-727.

21. Udoﬁa IJ, Jin ZM. Elastohydrodynamic lubrication analysis of metal-on-metal hip-

22. Liu F, Jin ZM, Roberts P, et al. Importance of head diameter, clearance, and cup wall
thickness in elastohydrodynamic lubrication analysis of metal-on-metal hip
resurfacing prostheses. Proceedings of the Institution of Mechanical Engineers, Part H:

1 **Nomenclature**

\(e_x, e_y, e_z \) eccentricity components of femoral head in the \(x, y \) and \(z \) directions (m)

\(f_x, f_y, f_z \) calculated load components in the \(x, y \) and \(z \) directions, respectively (N)

\(h \) film thickness (m)

\(p \) hydrodynamic pressure (Pa)

\(R_c \) radius of acetabular cup (m)

\(R_h \) radius of femoral head (m)

\(w_x, w_y, w_z \) applied load in the \(x, y \) and \(z \) directions, respectively (N)

\(x, y, z \) Cartesian coordinates

\(\beta \) inclination angle of cup (degree)

\(\delta \) local elastic deformation of bearing surfaces (m)

\(\eta \) viscosity of synovial fluid (Pa·s)

\(\phi, \theta \) spherical coordinates (degree)

\(\omega_x, \omega_y, \omega_z \) angular velocities around the \(x, y \) and \(z \) axes, respectively (rad/s)
1 **Captions**

Figure 1 (a) Schematic diagram of a full MOM hip resurfacing arthroplasty model; (b) the cross section of the full model shown in Figure 1(a)

Figure 2 Schematic diagram of the inclined ball-in-socket model for the lubrication analysis of hip resurfacing system

Figure 3 Definition of spherical coordinates and lubrication grid under spherical coordinates

Figure 4 Finite-element models to calculate the stiffness matrices of the lubrication nodes of the full hip resurfacing replacement: the pelvis and cup (a); the proximal femur and head (b)

Figure 5 Schematic diagrams of simplified models: (a) detailed structure of simplified models; (b) cross section of model-s1, a horizontally positioned cup and a vertically positioned head; (c) cross section of model-s2, both the cup and the head were inclined to simulate an anatomical contact; (d) cross section of model-s3, the cup was inclined but the head was vertical

Figure 6 Contour plots of the hydrodynamic pressure (MPa) of model-f (a), model-s1 (b), model-s2 (c) and model-s3 (d)

Figure 7 Contour plots of the film thickness (µm) of model-f (a), model-s1 (b), model-s2 (c) and model-s3 (d)

Figure 8 The pressure distribution and film thickness on the lines of $\phi = 90^\circ$ (a, b) and $\theta = 90^\circ$ (c, d) of the full hip resurfacing EHL model and simplified
models

Figure 9 Dry contact pressure distribution (MPa) of simplified models: model-s1 (a), model-s2 (b) and model-s3 (c) respectively, under a vertical load of 3200 N

Figure 10 The pressure distribution and film thickness on the lines of $\phi = 90^\circ$ (a, b) and $\theta = 90^\circ$ (c, d) of the full hip resurfacing EHL model and reference models
Figure 1 (a) Schematic diagram of a full MOM hip resurfacing arthroplasty model; (b) the cross section of the full model shown in Figure 1(a)
Figure 2 Schematic diagram of an inclined ball-in-socket model for the lubrication analysis of hip resurfacing system
Figure 3 Definition of spherical coordinates and lubrication grid under spherical coordinates
Figure 4 Finite-element models to calculate the stiffness matrices of the lubrication nodes of the full hip resurfacing replacement: the pelvis and cup (a); the proximal femur and head (b)
Figure 5 Schematic diagrams of simplified models: (a) detailed structure of simplified models; (b) cross section of model-s1, a horizontally positioned cup and a vertically positioned head; (c) cross section of model-s2, both the cup and the head were inclined to simulate an anatomical contact; (d) cross section of model-s3, the cup was inclined but the head was vertical.
Figure 6 Contour plots of the hydrodynamic pressure (MPa) of the full hip resurfacing model (a), model-s1 (b), model-s2 (c) and model-s3 (d)
Figure 7 Contour plots of the film thickness (µm) of the full hip resurfacing model (a), model-s1 (b), model-s2 (c) and model-s3 (d)
Figure 8 The pressure distribution and film thickness on the lines of $\phi = 90^\circ$ (a, b) and $\theta = 90^\circ$ (c, d) of the full hip resurfacing EHL model and simplified models.
Figure 9 Dry contact pressure distribution (MPa) of simplified models: model-s1 (a), model-s2 (b) and model-s3 (c), respectively, under a vertical load of 3200 N.
Figure 10 The pressure distribution and film thickness on the lines of $\phi = 90^\circ$ (a, b) and $\theta = 90^\circ$ (c, d) of the full hip resurfacing EHL model and reference models.