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 3

common-mode rejection ratio (CMRR) analysis is applied. 

Normally, CMRR is defined by the differential-mode 

transmission versus the common-mode signal transmission 

from the input port (port A) to output port (port B) as follows 

[14];- 

ܴܴܯܥ   ൌ ʹͲ logଵ଴ ቚௌ೏೏ಳಲௌ೎೎ಳಲ ቚ     (6), 

 

where CMRR is in decibels (dB). ܵௗௗ஻஺ and ܵ௖௖஻஺ denote the 

differential transmission coefficients and common mode 

transmission coefficients from input port A to output port B, 

respectively. Similarly, the CMRRs of the 2-port differential 

transmission line that is used in the proposed differential SPR 

can be defined as follows, 

ଶଵܴܴܯܥ  ൌ ʹͲ logଵ଴ ቚௌ೏೏మభௌ೎೎మభ ቚ      (7a), ܴܴܯܥଵଶ ൌ ʹͲ logଵ଴ ቚௌ೏೏భమௌ೎೎భమ ቚ     (7b), 

 

where ܴܴܯܥଶଵ and ܴܴܯܥଵଶ refer to the CMRR from 

differential port 1 to 2  and port 2 to 1, respectively. ܵௗௗଶଵ and  ܵௗௗଵଶ are differential-mode transmission parameters from port 

1 to 2 and from port 2 to 1, respectively. ܵ௖௖ଶଵ and ܵ௖௖ଵଶ are 

common-mode transmission parameters from port 1 to 2 and 

from port 2 to 1, respectively. 

 For the 3-port balun circuit that is used in the proposed 

differential SPR, the CMRR is defined in a different way 

since the common-mode port is unavailable at the single-

ended port of the balun. This can be defined as follows [14];-  

ௗ௦ܴܴܯܥ   ൌ ʹͲ logଵ଴ ቚௌ೏ೞௌ೎ೞ ቚ     (8a), ܴܴܯܥ௦ௗ ൌ ʹͲ logଵ଴ ቚௌೞ೏ௌೞ೎ቚ      (8b), 

 

where ܴܴܯܥௗ௦ and ܴܴܯܥ௦ௗ refer to the single-ended to 

differential ports and from differential to single-ended ports, 

respectively. ܵௗ௦ and ܵ௖௦ denote the transmission coefficients 

from single-ended port to differential and to common modes, 

respectively. ܵ௦ௗ and ܵ௦௖ are the transmission coefficients 

from differential and common-mode to single-ended modes, 

respectively.  

By applying the CMRR definitions of differential line and 

balun circuit to the proposed differential SPR shown in Fig. 1, 

we define its CMRR as the ratio between the differential and 

common-mode signal transmissions at power reading port k (k 

being 3, 4, 5 or 6) referred to the single-ended RF input port 1 

as follows, 

௞ଵܴܴܯܥ  ൌ ʹͲ logଵ଴ ቚௌ೏ೖభ௔భௌ೎ೖభ௔భቚ     (9) 

 

Eliminating ܽଵ, by using (3b) and rewriting in term of ߁, we 

obtain, 

௞ଵܴܴܯܥ    ൌ ʹͲ logଵ଴ ቚሺௌ೏ೖమௌమభିௌ೏ೖభௌమమሻ௰ାௌ೏ೖభሺௌ೎ೖమௌమభିௌ೎ೖభௌమమሻ௰ାௌ೎ೖభ ቚ   (10) 

 

From (10), it is shown that the CMRR of the proposed 

differential SPR is a function of the load, with reflection 

coefficient ߁, at port 2. This means that to evaluate the CMRR 

of the differential SPR, various DUT measurements are 

required - in particular, five standard loads ߁ of 0, -1, 1,+j and 

-j. However, ܵ௖௞ଵ and ܵ௖௞ଶ in (10) will not be obtained by 

direct measurement since the common-mode signal is 

unavailable at single-ended port of the 3-port balun. In this 

paper, ܵௗ௞௜, and ܵ௖௞௜ where i is either 1 or 2, can be obtained 

by the steps given below:-  

 

 Step 1: Measure the 3-port single-ended S-parameters of the 

balun connected at power reading port k. Convert the single-

ended S-parameters of the balun to mixed-mode S-parameters. 

  

Step 2: Measure the 3-port single-ended S-parameter of the 

differential SPR structure. These three single-ended ports are 

port i, k+ and k-. Noted that port k+ and k- are differential ports 

of differential line at power reading port k that is connected to 

the balun, and can be measured by removing the balun at 

power reading port k.  

 

 Step 3: Convert the 3-port single-ended S-parameters 

obtained from Step 2 to mixed-mode S-parameters. 

 

 Step 4: Connect the mixed-mode S-parameters obtained 

from Step 1 and Step 3 in the flow graph shown in Fig.3. 

 

The above measurement procedure is based on a two-port 

network analyzer measurement. During the measurement 

procedure, only two ports are measured and the other ports are 

terminated by its characteristics impedance. This is similar to 

the 3-port balun S-parameter extraction [23].  

In Fig. 3, the mixed-mode S-parameters obtained from Step 

3 are indicated with the bar symbol. The symbol i can be 

either 1 or 2, for port 1 or port 2 of the differential SPR and 

k={3, 4, 5, 6} for the power reading ports. The dark, gray and 

dotted lines represent the differential-mode, common-mode 

and conversion-mode paths, respectively. From Fig. 3, we 

apply Mason�s rule [24] to solve for  ܵௗ௞௜ and ܵ௖௞௜, giving the 

expressions (11a) and (11b).  

 

 

 
Fig. 3 Signal flow graph for calculating Sdki and Scki 
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(a)                         (b) 

     
(c) (d) 
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          (g) 

Fig. 7 Simulated performance of the differential sampled-line six-port network with ideal baluns: (a) Differential mode transmission, (b) Single-ended mode 

transmission, (c) Common-mode transmission, (d) CMRR at port 3, (e) CMRR at port 4, (f) CMRR at port 5, and (g) CMRR at port 6. 
 

CMRRs at all power sampling ports are better than 60 dB, 

which is mainly due to the ideal balun performance. Clearly 

the actual balun performance is very important for eliminating 

common-mode noise in the proposed differential SPR � more 

so than the CPS differential line performance. This is because 

the CMRR of the balun is much greater than the CPS 

differential line. 

D. Performance for impedance measurement 

In this section, the proposed differential SPR is simulated to 

predict its behavior with several load impedances. The 

simulation is performed for two different design cases � with 

ideal and imperfect baluns. In practice, baluns will always 

exhibit imbalance and we model this by inserting a phase 

shifter and attenuator to artificially produce imbalance effects 

as illustrated in Fig. 8. The phase shifter and attenuator are 

varied from ±20 degree and ±2 dB, respectively, to producing 

imbalance effects. For the ideal balun case, the phase shifter 

and attenuator are set to zero.  

Prior to impedance measurement, a calibration process is 

performed at frequencies around 1 GHz. The 1 GHz simulated 
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(c) 

Fig.14 Measured reflection coefficients of the differential SPR structure (x), 
compares to automatic network analyzer (o) at (a) 0.950 GHz, (b) 0.975 GHz 

and (c) 1 GHz 

C. Reflection coefficient measurement 

The reflection coefficient measurement of the proposed 

differential SPR structure is demonstrated and discussed in 

this subsection at frequencies around 1 GHz. Prior to 

reflection coefficient measurement, calibration must be 

performed to eliminate the systematic noise and some 

uncertainties in the measurement system from various 

components such as the logarithmic detector and analog-to-

digital converter. To counteract these uncertainties, a 

calibration scheme based on a statistical method that uses the 

weighted squared error technique [22] was chosen. This was 

achieved by applying (7a) and (7b). After calibration was 

performed, measurements on ten different DUTs were carried 

out. These measurements are compared to those obtained from 

a commercial automatic vector network analyzer (HP8510C) 

in Fig. 14. Figs. 14(a)-14(c) show the reflection coefficient 

measurements made with the differential SPR at three 

frequencies - 0.95 GHz, 0.975 GHz and 1 GHz. It is found 

that the measured results of the proposed differential SPR are 

close to the measured results from the 8510C network 

analyzer. The mean absolute errors compared to the results 

obtained from the network analyzer are 0.032, 0.029 and 

0.033 at 0.95 GHz, 0.975 GHz and 1 GHz, respectively. 

D. Interference rejection in the differential SPR 

In this subsection, the performance of the differential SPR 

in a hostile electromagnetic environment is investigated and 

compared to the single-ended SPR. A 2.5 GHz rectangular 

microstrip patch antenna on Duroid 5880 substrate (substrate 

height=0.787 mm, copper thickness=0.017 mm, ߝ௥=2.20, tan  is chosen to generate the electromagnetic wave (0.0009= ߜ

interference with the differential and single-ended SPRs, as 

illustrated in Fig. 15. This antenna has patch size 12x16 mm 

and a feed line 2x10 mm that is connected to the wide side at 

distance 2 mm away from the edge of the patch). The patch 

antenna is placed above the center of the differential and 

single-ended SPRs at a distance of 150 mm. The input signal 

to the patch antenna was varied from -20 to +5 dBm. This 

emulates common-mode noise in the SPR systems. To 

validate the common-mode rejection of the differential SPR, 

the reflection coefficient of various electrical loads that cover 

the Smith Chart area were measured by the differential and 

single-ended SPR with and without the 2.5 GHz inference 

present, respectively.  

  
(a)           (b) 

Fig. 15 Experimental setup to investigate the effect of electromagnetic wave 

interference on:  (a) differential SPR and (b) single-ended SPR 

 

 
(a) 

 
(b) 

Fig.16 Effect of emulated interference on (a) differential SPR and (b) single-

ended SPR measurements. 

 

Fig. 16 (a) and (b) show the magnitude error of reflection 

coefficients at 1 GHz when using the differential and single-

ended SPRs, respectively, in the presence of interference. 

From -20 to -10 dBm interference signal power, the reflection 

coefficient error for the single-ended SPR is comparable to the 

differential SPR. However, as the antenna feed power is 

increased beyond -10dBm, it can be seen that the single-ended 

SPR is no longer useable at all, whilst the differential SPR still 

maintains its performance thanks to its common-mode 

rejection. It should be noted for completeness that the 
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reflection coefficient error of different electrical loads is not 

equal as the common-mode rejection ratio is a function of load 

reflection coefficient. 

VI. CONCLUSIONS 

The analysis and design of a differential six-port 

reflectometer has been presented. The system has been 

demonstrated experimentally at 1 GHz and produced DUT 

measurements that match the results from a commercial vector 

network analyzer. The proposed differential SPR structure 

aims to reduce the inherent common-mode noise in the 

system. The differential SPR structure is composed of a 

sampled-line differential six-port network with baluns. The 

balanced ports of the baluns are connected to the differential 

six-port network while the single-ended ports serve as the 

interface with the signal source, DUT and RF detectors. 

Determination of the DUT reflection coefficient with the 

differential SPR structure has been analyzed by using mixed-

mode S-parameters as well as studying the common-mode 

rejection ratio. The effect of imbalance of the balun can be 

removed by the calibration procedure prior to the 

measurement. From the CMRR results, it is shown that the 

technique is capable of reducing the common-mode noise. It is 

noted that the common-mode noise rejection ratio depends 

mainly on the performance of balun rather than CPS 

differential line, which is clearly one of the key components 

determining the rejection of common-mode noise and 

interference. The reflection coefficient measurements obtained 

from the proposed differential SPR are in good agreement 

with the commercial network analyzer. It is believed that the 

proposed differential SPR structure will find various 

applications for reflection coefficient measurement where 

common-mode noise or interference is of concern. 
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