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Optimized Low Complexity Sensor Node

Positioning in Wireless Sensor Networks
Naveed Salman, Student Member, IEEE, Mounir Ghogho, Senior Member, IEEE, and A. H. Kemp, Member, IEEE

Abstract—Localization of sensor nodes in wireless sensor
networks (WSNs) promotes many new applications. Longer life
time is imperative for WSNs, this requirement constrains the
energy consumption and computation power of the nodes. In
order to locate sensors at a low cost, the received signal strength
(RSS)-based localization is favored by many researchers. RSS
positioning does not require any additional hardware on the
sensors and does not consume extra power. A low complexity
solution to RSS localization is the linear least squares (LLS)
method. In this paper, we analyze and improve the performance
of this method. Firstly, a weighted least squares (WLS) algorithm
is proposed which considerably improves the location estimation
accuracy. Secondly, reference anchor optimization using a tech-
nique based on the minimization of the theoretical mean square
error (MSE) is also proposed to further improve performance
of LLS and WLS algorithms. Finally, in order to realistically
bound the performance of any unbiased RSS location estimator
based on the linear model, the linear Cramer-Rao bound (CRB)
is derived. It is shown via simulations that employment of
the optimal reference anchor selection technique considerably
improves system performance, while the WLS algorithm pushes
the estimation performance closer to the linear CRB. Finally, it
is also shown that the linear CRB has larger error than the exact
CRB, which is the expected outcome.

Index Terms—Localization, Received signal strength (RSS),
Cramer-Rao bound.

I. INTRODUCTION

W
IRELESS sensor networks (WSNs) consists of many

small (up to several hundred) of low powered sensing

nodes [1]. These nodes can be capable of sensing temperature,

humidity, light intensity etc. In location aware WSNs, these

nodes aside from sensing environmental conditions can also

locate themselves. Thus promoting many new applications in

the wireless communications industry. These applications may

include firefighter tracking, cattle/wild life monitoring and

logistics [2]. One way to locate the nodes is to use global

positioning system (GPS), however deploying a GPS chip

on every sensor node is expensive and energy consuming.

Moreover, GPS assisted nodes can only be located when a

guaranteed line of sight (LoS) is present with the navigational

satellite. Hence nodes can be located using local positioning

systems.

Various techniques can be found in literature to locate

wireless sensor nodes. Location algorithms, which are based

on the absolute distance between nodes are known as range

based algorithms. On the other hand, algorithms that do

not require determining the actual inter-node distance for
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localization are called range-free positioning algorithms [3],

[4]. Range free algorithms are based on the number of hops

for communications between two nodes as a distance metric.

Range based algorithms are however more accurate than range

free algorithms.

In the context of range based algorithm, distance can be

estimated between nodes by making use of the angle of the

impinging signal, this technique is more commonly known as

the angle of arrival (AoA) technique [5], [6]. Apart from being

very sensitive to errors due to multipath, AoA is not favored

for low complexity WSN localization as an array of antennas

or microphones are required on the sensor nodes to estimate

the angle of the incoming signal. This increases the complexity

and cost of the system. Absolute distance can be estimated

using either the delay or attenuation of the signal. Systems

capitalizing on the delay are more commonly known as time

of arrival (ToA) systems. ToA localization, although more

accurate, requires highly accurate clocks and hence are high

in complexity [7], [8], [9]. On the other hand, received signal

strength (RSS) based systems require no additional hardware

and hence are more suitable for WSNs [10], [11], [12], [13].

For location estimation via RSS (and ToA) the so called

trilateration technique is used. A number of nodes, usually

high in resources and with known locations known as anchor

nodes (AN) are used to estimate the locations of target nodes

(TN). The location of ANs can be determined using GPS or

they can be placed at predetermined positions. Readings from

the TN is received at the ANs and are transmitted to a central

station for processing.

Due to the non linear nature of the localization problem,

location estimation via RSS (and also for ToA) can be achieved

using maximum likelihood (ML) techniques [14], [15], [16]

that commonly operate in an iterative fashion. Generally,

a close initial estimate of location is required for the ML

algorithm. Furthermore, the ML technique due to its iterative

nature is high in complexity. On the other hand, location can

also be estimated employing a low complexity linear least

squares (LLS) approach [17].

In this paper we analyze and propose improvement to the

performance of the LLS RSS location estimator. The LLS

technique does not require a close initial estimate and is of

low complexity as it does not require multiple iterations. The

basic concept behind the LLS technique is that instead of using

individual readings from ANs, readings from AN pairs are first

formulated (subtracted from each other) to linearize the non

linear system of equations. Generally, a reference node has to

be chosen and paired with all other ANs. However, random

selection of an AN as a reference can cause performance
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degradation. Other techniques to linearize the system includes

averaging the readings from all ANs and then pairing them

with individual AN. Finally, pairing each AN with every other

AN can be used for linearization. The system performance can

be optimized by choosing an optimal reference AN and pairing

it with all other ANs .

For ToA systems, the authors in [18] have formulated a

technique to choose an optimal reference AN, however no such

study has been done for RSS localization. In this paper we

devise a technique for optimal reference AN selection using

the RSS systems. In order to further improve the performance,

the correlation between the (now linear) RSS readings is used

and a weighted least squares (WLS) algorithm is proposed.

For optimized performance the optimal AN selection for the

WLS method is also given in the paper.

In order to compare the MSEs of estimators the Cramer-

Rao bound has been extensively used as a benchmark. For ML

algorithms, the CRB on location estimated has been derived

for ToA in [19], [20] and for RSS systems in [12]. However,

since the LLS method is note based on individual readings, the

CRB given in [12] does not tightly bound the performance of

the LLS-RSS estimator. For ToA LLS technique the CRB is

given in [18]. In this paper we derive the linear CRB to tightly

bound the performance of the LLS and WLS algorithm based

on the RSS system.

To sum up, the main contributions of this paper are as

follows:

• WLS algorithm for the linear model is proposed.

• Optimal anchor selection for both LLS and WLS methods

is proposed.

• Linear CRB for RSS systems is derived.

Simulation results show that the linear CRB is significantly

larger than the exact CRB and is thus more realistic in lower

bounding the performance of RSS systems using the linear

model. It is shown via simulations that the performance of

the LSS estimator improves considerably when the optimal

reference AN is used. The system performance is further

improved using the WLS algorithm with optimal AN selection.

The rest of the paper is organized as follows. Section II

presents the problem statement and the system model. In

Section III, the linear RSS model and the LLS solution is

presented. In section IV, the WLS algorithm is proposed.

In section V, the optimal reference AN selection technique

is presented. In section VI, linear CRB is derived. Finally,

in section VII, we discuss the simulation results which are

followed by conclusions.

II. SYSTEM MODEL

For future use, we define the following notations.

Rn is the set of n dimensional real numbers. Tr(M) and

det(M) represent the trace and determinant of the matrix M

respectively. (.)T is the transpose operator. E(.) refers to the

expectation operator. (M)ij refers to the element at the ith row

and jth column of matrix M. N (µ, σ2) represents the normal

distribution with mean µ and variance σ2. 1N×N represents

the (N ×N ) matrix of all ones.

A two dimensional (2-D) network is considered, consist-

ing of a TN which has unknown coordinates θ = [x, y]
T

(

θ ∈ R2
)

that are to be estimated, and M ANs with known

locations θi = [xi, yi]
T (

θi ∈ R2
)

for i = 1, ...,M. The

received power at the ANs due to random shadowing is log-

normally distributed. This model is based on empirical results

obtained in [21], [22]. Thus the distance di between the TN

and the ith AN, is related to the path-loss at the ith AN, Li ,

and the path-loss exponent (PLE), αi, as [23]

Li = L 0 + 10αi log10 di + wi, (1)

where L0 is the path-loss at the reference distance d0 (d0 <

di, and is normally taken as 1 m) and wi is a zero-mean

Gaussian random variable with known variance representing

the log-normal shadowing effect, i.e. wi ∼
(

N
(

0, σ2
i

))

. The

PLEs are assumed to be known via prior channel modeling or

accurate estimation [25]. The path-loss is calculated as

Li = 10 log10 P − 10 log10 Pi (2)

where P is the transmit power at the TN and Pi is the received

power at the ith AN. The distance di is given by

di =

√

(x− xi)
2
+ (y − yi)

2
.

The observed path-loss (in dB) from d0 to di, zi = Li−L0,

can be expressed as

zi = fi(θ) + wi, i = 1, ...,M (3)

where fi (θ) = γαi ln di and γ = 10
ln 10 . In a vector form,

we have

z = f (θ) +w, (4)

where z = [z1, ..., zM ]
T

is the vector of the observed path

loss. f (θ) = [f1 (θ) , ..., fM (θ)]
T

is the actual path-loss vector

and w = [w1, ..., wM ]
T

is the noise vector.

Since the noise is Gaussian and assuming independence of

the noise components, the joint conditional probability density

function (pdf) of z is given by

p (z | θ) =
M
∏

i=1

1
√

2πσ2
i

exp

{

−
(zi − fi (φ))

2

2σ2
i

}

. (5)

Thus, the maximum likelihood (ML) estimate of (5) is

equivalent to the nonlinear least square (NLS) solution of the

cost function

ε (θ) = (z− f (θ))
T
(z− f (θ)) . (6)

The solution to (6) is obtained using high complexity

iterative techniques such as the Gauss-Newton or Levenberg-

Marquardt techniques [15], [16]. Due to its iterative nature,

the ML techniques can converge to local minimum instead of

global minimum if given an initial seed that is far from the

actual node location. Hence a close initial guess is essential

to the reliability of the ML technique. In addition to the high

complexity of the ML method, it can suffer from various other

challenging issues detailed in [26].

In order to bypass the close initial estimate requirement

and high complexity of the ML method, location coordinates
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can be estimated using a low complexity linear least squares

technique explained in the next section.

III. LINEAR MODEL

The idea behind the LLS is to first linearize the RSS

measurements and then use ordinary least squares (OLS) to

estimate the unknown parameters. This idea was first intro-

duced for ToA systems in [24] and analyzed for the same in

[18]. However, for RSS measurements the the linearization is

somewhat different due to additional parameters such as the

PLEs. The non-linear system of path-loss equations can be

linearized as follows. From (3), it can be readily shown that

E

(

1

βi

exp

(

2zi
γαi

))

= d2i ,

where βi = exp
(

2σ2

i

(γαi)
2

)

. Similarly choosing a reference AN,

it can be shown

E

(

1

βr

exp

(

2zr
γαr

))

= d2r

where βr = exp
(

2σ2

r

(γαr)
2

)

. For linearization, the square of

each distance equation is subtracted from the square of a

reference distance equation d2r . This results in a linear system

which is represented in matrix form as

b = Aθ + v, (7)

where b = [b1, ..., bN ]
T
, is the observation vector and is given

by

b =











δr − δ1 − κr + κ1

δr − δ2 − κr + κ2

...

δr − δN − κr + κN











for δr = 1
βr

exp
(

2zr
γαr

)

and δi =
1
βi

exp
(

2zi
γαi

)

. While

κr = x2
r + y2r and κi = x2

i + y2i

for i 6= r, i = 1, ..., N and N = M − 1; and A is the N × 2
data matrix

A = 2











x1 − xr y1 − yr
x2 − xr y2 − yr

...
...

xN − xr yN − yr











.

v is the noise vector which has zero mean and variance

given by

σ̌2
i = E

[

(

δr − δi − d2r + d2i
)2
]

= d4i exp

(

4σ2
i

(γαi)
2

)

− d4i + d4r exp

(

4σ2
r

(γαr)
2

)

− d4r (8)

and covariance

E
[(

δr − δi − d2r + d2i
) (

δr − δj − d2r + d2j
)]

=

{

d4r exp

(

4σ2
r

(γαr)
2

)

− d4r

}

. (9)

The solution to the LLS problem in is obtained by minimizing

the cost function

εLLS (θ) = (b−Aθ)
T
(b−Aθ)

and is given as [27]

θ̂LLS = A†b, (10)

where A† is Moore–Penrose pseudoinverse i.e.

A† = (ATA)−1AT . The LLS can be implemented in

three different ways

1) LLS-ref: In this implementation, dr is the distance of

the TN from a reference AN as shown above.

2) LLS-avg: Instead of choosing a reference distance, dr is

taken as the average of all distances from the ANs. Thus in

this case, d2r = 1
N

∑N
i=1 d

2
i .

3) LLS-comb: In this case, combination of all pairs of ANs

is considered and subtracted from each other. This results in

M×
(

M−1
2

)

equations. This technique is studied for ToA case

in [28]. The elements of data matrix A are now given by

A = 2





















x1 − x2 y1 − y2
...

...

x1 − xN y1 − yN
x2 − x3 y2 − y3

...
...

xN−1 − xN yN−1 − yN





















Similarly element of vector b are given as bij =
[

δi − δj − κi + κj

]

for for i, j = 1, ...,M and i < j.

It should be noted that the number of equations increase

considerably for large number of ANs. Hence LLS-comb is

not favorable for large number of ANs.

We will compare the performance of all variants of the LLS

algorithm in the simulation section.

IV. WEIGHTED LEAST SQUARES ALGORITHM

For the LLS solution obtained in (10), no knowledge about

the reliability of each measurement is used. If this information

is present, links that are more reliable are given more weigh-

tage than others. Thus utilizing the information present in the

covariance matrix, a weighted least square (WLS) algorithm

is proposed in this section.

For a given covariance matrix C (θ) the WLS solution is

obtained by minimizing the cost function

εWLS (θ) = (b−Aθ)
T
C (θ)

−1
(b−Aθ) ,

where the elements of C (θ) are given by (8) and (9). It is

however noted that the elements of the C (θ) are dependent on

the actual distance of the target node from the anchors, which

is unknown, hence the estimated distance is used to estimated

the covariance matrix C
(

θ̂
)

. The WLS estimate is obtained

as follows

θ̂WLS = A‡b‡, (11)

where A‡ =

{

AT
[

C
(

θ̂
)]−1

A

}

−1AT and b‡ =
[

C
(

θ̂
)]−1

b.
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It is noted that similar to LLS, the WLS algorithm can also

be implemented in three different modes i.e. WLS-ref, WLS-

avg and WLS-comb. It is however seen that the covariance

matrix is different for the three implementations. For WLS-

ref, the diagonal and non diagonal terms of C (θ) are given

by (8) and (9). For WLS-avg, where the reference anchor is

the mean of all anchors, the M ×M covariance is matrix is

given below.

C (θ) =

diag
{

d41 exp
(

4σ2

1

(γα1)
2

)

− d41+, ...,+d4N exp
(

4σ2

N

(γαN )2

)

− d4N

}

+ 1M×M

{

d
4

r exp

(

4σ2
r

(γαr)
2

)

− d
4

r

}

, (12)

where d
4

r = 1
M

∑M
i=1 d

4
i , σ2

r = 1
M

∑M
i=1 σ

2
i and αr =

1
M

∑M
i=1 αi.

For the WLS-comb, development of the of the
(

M2−M
2

)

×
(

M2−M
2

)

covariance matrix becomes slightly complicated.

As for WLS-ref and WLS-avg, the non-diagonal elements are

same, however this is does now hold for WLS-comb for which

the diagonal terms are given as

σ̃2
i = E

[

(

δi − δj − d2i + d2j
)2
]

= d4i exp

(

4σ2
i

(γαi)
2

)

− d4i + d4j exp

(

4σ2
j

(γαj)
2

)

− d4j (13)

for i, j = 1, ...,M and i < j.

On the other hand, the non-diagonal terms are given by

E
[(

δi − δj − d2i + d2j
) (

δk − δl − d2k + d2l
)]

for i, j = 1, ...,M and i < j

and k, l = 1, ...,M and k < l

=

{

d4i exp

(

4σ2
i

(γαi)
2

)

− d4i

}

for i = k.

=

{

d4j exp

(

4σ2
j

(γαj)
2

)

− d4j

}

for j = l.

= −

{

d4i exp

(

4σ2
i

(γαi)
2

)

− d4i

}

for i = l.

= −

{

d4j exp

(

4σ2
j

(γαj)
2

)

− d4j

}

for j = k.

= 0 for i 6= l and j 6= k.

V. OPTIMAL REFERENCE ANCHOR NODE SELECTION

Generally, the performance of LLS-avg and LLS-comb

is slightly better than LLS-ref implementation due to the

averaging effect of all ANs. Similarly, the performance of

WLS-avg and WLS-comb is better than WLS-ref. However,

in its basic form, LLS/WLS-ref randomly selects a reference

AN. This could at times lead to degraded system performance

as the accuracy of the location estimate depends on factors

such as the true distance dr from the TN, shadowing noise

variance σ2
r and the PLE αr of a particular reference AN. In

this section, a technique to select the optimal reference AN is

proposed. The optimal reference AN is chosen to be the AN

that minimizes the MSE of the location estimates. Thus

θiopt = argmin
θi

(MSE) . (16)

where

MSE
(

θ̂
)

= Tr

{

E

[

(

θ̂ − θ0

)(

θ̂ − θ0

)T
]}

, (17)

where θ̂ is the estimated location via LLS or WLS and θ0

is the true location coordinates. The theoretical MSE is given

for the LLS and WLS algorithm in the following subsections.

Theoretical MSE for LLS

For LLS, the estimated location θ̂ is given by θ̂LLS =
A†b while θ0 can be represented by θ0 = A†b0, where b0

represents the noise free observation vector and is given by

b0 =











d2r − d21 − κr + κ1

d2r − d22 − κr + κ2

...

d2r − d22 − κr + κN











.

Putting elements of θ̂LLS and θ0 in (17) and after some

manipulation we obtain

MSE
(

θ̂LLS

)

= Tr
{

A†K
(

A†
)

T
}

, (18)

where

K =E
(

bb
T
)

− 2E (b)bT
0 + b0b

T
0

where E (b) = b0. The diagonal and off diagonal elements

of E
(

bb
T
)

are given by (14) and (15) respectively.

Theoretical MSE for WLS

For the MSE of the WLS algorithm we use the estimated

θ̂WLS (11) in (17) to obtain the following MSE expression.

MSE
(

θ̂WLS

)

= Tr

{

[

A‡C (θ)
−1

E

(

bb
T
) [

C (θ)
−1
]T
(

A‡
)T
]

− 2
[

A‡C (θ)
−1

b0b
T
0

(

A†
)T
]

+
[

A†b0b
T
0

(

A†
)T
]

}

.

(19)

It is noted that the theoretical MSE depends on the actual

distances which are unknown, hence their estimates are used

to estimate the MSE in (18) and (19). Once the optimal AN

is selected, it is used again in the LLS solution (10) or WLS

solution (11) to provide the final estimate of the TN location.

This will be referred to as LLS-opt and WLS-opt respectively.

The following results were obtained via simulations.
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{

E

(

bb
T
)}

ii
= κ2

r + κ2
i +

d4

r

β2
r
exp

(

8σ2

r

(γαr)
2

)

+
d4

i

β2

i

exp
(

8σ2

i

(γαi)
2

)

− 2d2

r

βr
exp

(

2σ2

r

(γαr)
2

)

− 2d2

i

βi
exp

(

2σ2

i

(γαi)
2

)

− 2κrκi −

2d2

id
2

r

βiβr
exp

(

2σ2

r

(γαr)
2

)

exp
(

2σ2

i

(γαi)
2

)

+
2d2

rκi

βr
exp

(

2σ2

r

(γαr)
2

)

+
2d2

iκr

βi
exp

(

2σ2

i

(γαi)
2

)

.

(14)

{

E

(

bb
T
)}

ij
= κ2

r +
d4

r

β2
r
exp

(

8σ2

r

(γαr)
2

)

−
d2

jd
2

r

βjβr
exp

(

2σ2

j

(γαj)
2

)

exp
(

2σ2

r

(γαr)
2

)

− d2

id
2

r

βiβr
exp

(

2σ2

i

(γαi)
2

)

exp
(

2σ2

r

(γαr)
2

)

+

d2

id
2

j

βiβj
exp

(

2σ2

i

(γαi)
2

)

exp
(

2σ2

j

(γαj)
2

)

− 2d2

rκr

βr
exp

(

2σ2

r

(γαr)
2

)

+
d2

rκj

βr
exp

(

2σ2

r

(γαr)
2

)

+
d2

jκr

βj
exp

(

2σ2

j

(γαj)
2

)

+
d2

rκi

βr
exp

(

2σ2

r

(γαr)
2

)

+

d2

iκr

βi
exp

(

2σ2

i

(γαi)
2

)

− d2

iκj

βi
exp

(

2σ2

i

(γαi)
2

)

−
d2

jκ

βj
exp

(

2σ2

j

(γαj)
2

)

− κrκi − κrκj + κiκj .

(15)

Result 1. Equal PLEs and equal distances : In case of

equal PLEs and equal distances of the TN from all ANs i.e

αi = α, di = d ∀ i , the AN with the smallest noise variance

σ2
i is selected as the reference AN.

Result 2. Equal PLEs and equal noise variance : For

equal PLEs and equal noise variance from all ANs i.e αi =
α, σ2

i = σ2 ∀ i, the AN with the shortest distance di from the

TN is selected as the reference AN.

Result 3. Equal distance and equal noise variance: For

equal noise variance and equal distances of the TN from all

ANs i.e σ2
i = σ2, di = d ∀ i, the AN with the largest PLE αi

is chosen as the reference AN.

VI. PERFORMANCE BOUND

The CRB lower bounds the MSE performance of any

unbiased estimator. For 2-D TN location, the CRB on the

estimation MSE is given by

MSE
(

θ̂
)

≥
[I (θ)]11 + [I (θ)]22

det [I (θ)]
, (20)

where [I (θ)] is the Fisher information matrix (FIM), and

its elements are given by

[I (θ)]ij = −E

[

∂2 ln p (p | θ)

∂θi∂θj

]

. (21)

To lower bound the ML algorithms, the elements of the FIM

are given by

[I (θ)]=





∑M
i=1

γ2α2

i (x−xi)
2

d4

i
σ2

i

∑M
i=1

γ2α2

i (x−xi)(y−yi)

d4

i
σ2

i
∑M

i=1
γ2α2

i (x−xi)(y−yi)

d4

i
σ2

i

∑M
i=1

γ2α2

i (y−yi)
2

d4

i
σ2

i



 .

(22)

The CRB as obtained from the FIM in (22) only tightly

bounds the performance of ML type algorithms. Since the LLS

method is different from the ML approach, the exact CRB for

RSS-based localization in [12] does not accurately predict the

performance of estimators based on the linear model. Unlike

the conventional CRB, which is based on the observations

taken from individual ANs, the linear CRB is based on the

observations

pi =
1

βr

exp

(

2zr
γαr

)

−
1

βi

exp

(

2zi
γαi

)

.

Clearly, 1
βr,i

exp
(

2zr,i
γαr,i

)

represents a log-normal distribution;

a closed form expression for the difference of two log-

normal random variables is however not known. Although

the summation of two log-normal random variables can be

approximated by another log-normal random variable [29],

[30], pi can be approximated by a Gaussian random variable

i.e.

pi ∼ N
(

µiσ̌
2
i

)

where

µi = d2r − d2i (23)

and

σ̌2
i = d4r exp

(

4σ2
r

(γαr)
2

)

− d4r + d4i exp

(

4σ2
i

(γαi)
2

)

− d4i .

(24)

In vector form,

p(p | θ) ∼ N (µ (θ) ,C (θ)) , (25)

where µ (θ) = [µ1 (θ) , µ2 (θ) , ..., µN (θ)]
T

is the vector

constituting the means, and C (θ) is the N × N covariance

matrix whose elements are given by (9) and (12).

In order to prove the validity of the Gaussian assumption,

the empirical cumulative distribution function (CDF) of pi
and the theoretical Gaussian CDF are plotted in Fig. 1.

It is observed that even for a relatively large variance of

σ2
i = σ2

r = 6, the empirical CDF closely fits the Gaussian

CDF. The plot shows two cases, for dr > di and for dr < di.

It is clear that for both cases the Gaussian assumption holds

true.

For the multivariate Gaussian distribution in (25), the ele-

ments of the FIM are given by1

[I (θ)]ij =

(

∂µ (θ)

∂θi

)T

C−1 (θ)

(

∂µ (θ)

∂θj

)

+

0.5Tr

(

C−1 (θ)
C (θ)

∂θi

C−1 (θ)
C (θ)

∂θj

)

. (26)

1In this paper, the linear CRB is derived for the the LLS-ref model, for
other variants similar procedure can be followed.
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Figure 1. Empirical CDF of pi and theoretical Gaussian CDF. σ2
i = σ2

r = 6.

where
∂µi,j (θ)

∂x
= 2 (x− xr)− 2 (x− xi,j)

and
∂µi,j (θ)

∂y
= 2 (y − yr)− 2 (y − yi,j) . (27)

The derivatives of C (θ) are given by (28) and (29).

VII. SIMULATION RESULTS

For performance comparison, we consider a circular de-

ployment of 5 ANs around the origin of a 2-D coordinate

system with radius R. To evaluate the average performance at

various TN positions, 20 TNs are randomly deployed inside

the network. For simplicity, the noise variance associated with

all ANs is kept the same i.e σ2
i = σ2

r = σ2. A different

PLE value (given by vector α) is given to each AN, while

the root mean square error (RMSE) is compared when the

shadowing noise variance σ2 in the path-loss is increased. The

simulations are run independently η times. The network AN

and TNs deployment is shown in Fig. 2.

In Fig. 3, we analyze the performance of LLS-opt and LLS-

ref. For LLS-ref, the RMSE is given while choosing each AN

as a reference AN at a time for all 20 TNs. It is seen that

the selection of some ANs as reference ANs exhibits better

performance than others, this is primarily due to larger PLE

value for that particular AN. However, since the simulations

show the average performance for all 20 TNs, a larger PLE

does not guarantee a particular AN to be an optimal reference

AN, since it also depends on the actual distance from the TN.

On the other hand, the performance of LLS-opt supersedes

that of LLS-ref.

In Fig. 4, we compare the results obtained for the theo-

retical MSE for LLS and WLS to the simulation for both

algorithm respectively. It can be seen that that theoretical

MSEs accurately predicts the performance of the LLS and

WLS algorithms.

In Fig.5, performances of the variants of LLS and WLS

are compared with LLS-opt and WLS-opt. The linear CRB

is also plotted for comparison. For LLS-ref and WLS-ref,

we randomly select AN-3 as the reference AN. As expected
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Figure 2. Network deployment
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Figure 3. Performance comparison between LLS-ref for each AN as
reference AN and LLS-opt. R = 50 m, η = 900, M = 5, α =
[2.4, 2.6, 2.8, 3, 3.2]T .

performance of LLS-avg and LLS-comb exceeds that of LLS-

ref. However, the performance the LLS-opt surpasses all the

other three LLS implementations. Interestingly, WLS-ref with

reference AN-3 outperforms LLS-opt. However, the three

variants of WLS algorithms perform similarly. While the

WLS-opt performs better and approaches linear CRB.
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Figure 4. Performance comparison between theoretical MSE for LLS
and WLS with simulation. R = 50 m, η = 900, M = 5, α =
[2.4, 2.6, 2.8, 3, 3.2]T .
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∂C(θ)
∂x

= diag
{

4d21 (x− x1)
[

exp
(

4σ2

1

(γα1)
2

)

− 1
]

+, ...,+4d2N (x− xN )
[

exp
(

4σ2

N

(γαN )2

)

− 1
]}

+1N×N

{

4d2r (x− xr)
[

exp
(

4σ2

r

(γαr)
2

)

− 1
]}

(28)

∂C(θ)
∂y

= diag
{

4d21 (y − y1)
[

exp
(

4σ2

1

(γα1)
2

)

− 1
]

+, ...,+4d2N (y − yN )
[

exp
(

4σ2

N

(γαN )2

)

− 1
]}

+1N×N

{

4d2r (y − yr)
[

exp
(

4σ2

r

(γαr)
2

)

− 1
]}

(29)
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Figure 5. Performance comparison between different LLS and WLS
implementations, linear CRB. R = 50 m, η = 900, M = 5, α =
[2.4, 2.6, 2.8, 3, 3.2]T .
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Figure 6. Performance comparison between linear CRB, linear CRB with
optimal reference anchor and CRB. R = 50 m, η = 900, M = 5, α =
[2.4, 2.6, 2.8, 3, 3.2]T .

In Fig.6, the CRB is compared with the linear CRB and

as expected the performance the linear CRB shows larger

error than the exact CRB. Thus the linear CRB is a more

realistic bound for the linear RSS estimator. On the other hand,

the linear CRB changed little with optimal reference anchor

selection.

VIII. CONCLUSIONS

The RSS based LLS localization algorithm is a low com-

plexity technique for node positioning for WSN positioning.

In this paper, we have carried out a performance analysis

and proposed improvements to the LLS method. The linear

model was introduced and modified for three different LLS

variants. Performance was improved with a WLS algorithm

that uses the information present in the covariance matrix

of the observations. Further performance improvement was

achieved with an optimal reference AN selection technique.

The performance of the WLS method was shown to be close

to the linear CRB which we have also derived. The linear CRB

was shown to have larger error than the conventional CRB and

thus realistically bounded the MSE of RSS location estimators

operating on the linear model.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[2] N. Patwari, J. N. Ash, S. Kyperountas, A. O. H. III, R. L. Moses, and
N. S. Correal, “Locating the nodes: cooperative localization in wireless
sensor networks,” IEEE Signal Processing Mag., vol. 22, no. 4, pp.
54–69, Jul. 2005.

[3] D. Niculescu and B. Nath, “DV based positioning in ad hoc networks,”
Telecommun. Syst., vol. 22, no. 1, pp. 267–280, Jan. 2003.

[4] C. Savarese, J. Rabaey, and K. Langendoen, “Robust positioning al-
gorithms for distributed ad-hoc wireless sensor networks,” in Proc.
USENIX Tech. Annu. Conf., Jun. 2002, pp. 317–327.

[5] B.D. Van Veen and K.M. Buckley, “Beamforming: A versatile approach
to spatial filtering,’’ IEEE ASSP Mag., vol. 5, no. 2, pp. 4–24, Apr. 1988.

[6] B. Ottersten, M. Viberg, P. Stoica, and A. Nehorai, “Exact and large
sample ML techniques for parameter estimation and detection in array
processing,’’ in Radar Array Processing, S.S. Haykin, J. Litva, and T.
Shepherd, Eds. New York: Springer- Verlag, 1993, pp. 99–151.

[7] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless
location,” IEEE Signal Processing Mag., vol. 22, no. 4, pp. 24–40, July
2005.

[8] S. Gezici, “A survey on wireless position estimation,” Springer Wireless

Personal Communications, vol. 44, no. 3, pp. 263–282, Feb. 2008.

[9] I. Guvenc and C.-C. Chong, “A survey on TOA based wireless local-
ization and NLOS mitigation techniques,” IEEE Commun. Surveys and

Tutorials, vol. 11, no. 3, pp. 107–124, Aug. 2009.

[10] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless
location,” IEEE Signal Processing Mag., vol. 22, no. 4, pp. 24–40, July
2005.

[11] P. Bergamo and G. Mazzini, “Localization in sensor networks with
fading and mobility,” in Proc. IEEE Int’l Symposium on Personal, Indoor
and Mobile Radio Communications, Sep. 2002, vol. 2, pp. 750-754.

[12] N. Patwari, A. O. Hero, III, M. Perkins, N. S. Correal, and R. J. O’Dea,
“Relative location estimation in wireless sensor networks,” IEEE Trans.

Signal Processing, vol. 51, no. 8, pp. 2137-2148, Aug. 2003.

[13] R. Ouyang, A.-S. Wong, and C.-T. Lea, “Received signal strength-based
wireless localization via semidefinite programming: Noncooperative and
cooperative schemes,” IEEE Trans. Veh. Technol., vol. 59, no. 3, pp.
1307– 1318, Mar. 2010.

[14] A. Rabbachin, I. Oppermann, and B. Denis, “ML time-of-arrival esti-
mation based on low complexity UWB energy detection,” in Proc. IEEE
Int. Conf. Ultrawideband (ICUWB), Waltham, MA, Sept. 2006.

[15] X. Li, “RSS-Based Location Estimation with Unknown Pathloss Model,”
IEEE Trans. Wireless Commun., vol. 5, no.12, pp. 3626-3633, Dec. 2006.

[16] N. Salman, M. Ghogho, and A. H. Kemp, “On the joint estimation of
the RSS-based location and path-loss exponent,” IEEE Wireless Commun

Lett., vol. 1, no. 4, pp. 364–367, Aug. 2012.



8

[17] N. Salman, A. H. Kemp and M. Ghogho, “Low Complexity Joint Esti-
mation of Location and Path-Loss Exponent”, IEEE Wireless Commun.

Lett.-accepted for publication.
[18] I. Guvenc, S. Gezici, Z. Sahinoglu, “Fundamental limits and improved

algorithms for linear least-squares wireless position estimation,”Wirel.

Commun. Mob. Comput. (2010).
[19] Y. T. Chan, H. Y. C. Hang, and P. C. Ching, “Exact and approximate

maximum likelihood localization algorithms,” IEEE Trans. Veh. Tech-

nol., vol. 55, no. 1, pp. 10–16, Jan. 2006.
[20] C. Cheng and A. Sahai, “Estimation bounds for localization,” in Proc.

IEEE Int. Conf. Sensor and Ad-Hoc Communications and Networks

(SECON), Santa Clara, CA, Oct. 2004, pp. 415–424.
[21] H. Hashemi, “The indoor radio propagation channel,’’ Proc. IEEE, vol.

81, no. 7, pp. 943–968, July 1993.
[22] T.S. Rappaport, Wireless Communications: Principles and Practice.

Englewood Cliffs, NJ: Prentice-Hall, 1996.
[23] K. Pahlavan and A. Levesque, Wireless Information Networks. New

York: John Wiley & Sons, Inc., 1995.
[24] J. J. Caffery, “A new approach to the geometry of TOA location,” in

Proc. IEEE Veh. Technol. Conf. (VTC), vol. 4, Boston, MA, Sep. 2000,
pp. 1943–1949.

[25] A. Bel, J. L. Vicario, and G. Seco-Granados, “Localization algorithm
with on-line path loss estimation and node selection,” Sensors, vol. 11,

pp. 6905–6925, July 2011.
[26] G. A. F. Seber and C. J. Wild, Nonlinear Regression. Hoboken, NJ:

Wiley-Interscience, 2003.
[27] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation

Theory. Upper Saddle River, NJ: Prentice Hall, Inc., 1993.
[28] Venkatesh S, Buehrer RM. A linear programming approach to NLOS

error mitigation in sensor networks. In Proceedings of IEEE Inter-

national Symposium on Information Processing in Sensor Networks

(IPSN), Nashville, Tennessee, April 2006; 301–308.
[29] Jingxian Wu, N.B. Mehta, Zhang Jin, "Flexible lognormal sum ap-

proximation method," Global Telecommunications Conference, 2005.

GLOBECOM ’05. IEEE , vol.6, no., pp.3413-3417, 2-2 Dec. 2005.
[30] L. Fenton, "The Sum of Log-Normal Probability Distributions in Scatter

Transmission Systems," IRE Transactions onCommunications Systems,

vol.8, no.1, pp.57-67, March 1960.


	I Introduction
	II System Model
	III Linear model
	III-1 LLS-ref
	III-2 LLS-avg
	III-3 LLS-comb


	IV Weighted least squares algorithm
	V Optimal reference anchor node selection
	VI Performance bound
	VII Simulation results
	VIII Conclusions
	References

