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Abstract—Realistic geographic routing algorithms need to
ensure quality of services in wireless sensor network (WSN)
applications whilst being resilient to the inherent localization
errors of positioning algorithms. A number of solutions robust
against location errors have been proposed in the literature and
their design focuses either on a high throughput [1], [2] or on a
balanced energy consumption [3], [4]. Ideally both aspects need
to be addressed by the same algorithm, but in most cases the
proposed routing techniques compromise between the two. The
present work aims to minimize such a tradeoff and to facilitate
a higher packet delivery ratio (PDR) than similar geographic
routing techniques, while still being energy efficient. This is
achieved through a novel proposal entitled energy conditioned
mean square error algorithm (ECMSE) which, similarly to the
forwarding method in [5], makes use of statistical assumptions
of Gaussianly distributed location error and Ricianly distributed
distances between sensor nodes. In addition it makes use of
an energy efficient feature proposed by [3], which includes
information about the energy cost of the forwarding decision. By
using a location-error-resilient & distance-based power metric,
the ECMSE provides an improved performance in realistic
simulations in comparison with other error-coping algorithms.

Index Terms—geographic routing algorithm, energy efficiency,
resilience to location errors, wireless sensor networks

I. INTRODUCTION

Wireless sensor network (WSN) technology is indisputably

of interest to all branches of the industry, in the military,

industrial, home automation and health fields [6], [7], [8],

[9]. WSNs are now being used in applications of various

scale which require sensing and monitoring equipment [10],

[11]. They consist in spatially distributed autonomous sensor-

equipped devices (referred to as sensor nodes), which collab-

orate to communicate sensed data from the physical environ-

ment [6]. Aside from sensing network events, many wireless

sensor nodes are capable of locating themselves as well as

other nodes. Local positioning systems are a preferred alter-

native to the expensive, power-consuming global positioning

system (GPS) devices [12], but although more cost-effective,

the local positioning process is inherently erroneous and can

affect network communication severely [13], [14].

The quality of service (QoS) requirements in WSNs are well

known to be more stringent from those of ad-hoc networks.

WSN dedicated forwarding algorithms need to ensure efficient

data communication between hundreds of randomly deployed

sensor devices with limited power supply and imperfect posi-

tioning information. Geographic routing has often been seen as

a promising forwarding technique which can optimally address

key WSN problems [7], [8], [9]. Although the advantages

of this type of routing are many (it is a stateless, localized

method, suitable for large scale networks), position-based

routing needs to consider realistic assumptions and it thus

needs to cope with the erroneous location information at sensor

level [1], [4], [14], [15], [16], while minimizing the energy

expenses of the devices as well [4], [16].

Routing strategies proposed in the literature use different

design approaches, either optimizing the throughput [1], [2] or

the energy consumption [3], [4]. For this, they employ various

metrics based on distance and power costs. [5] analyzes

geographic routing algorithms resilient to location errors by

comparing their basic forwarding methods on similar grounds.

The compared techniques in [5] are designed to use either the

Rician expectation, the Rician variance or the mean square

error (MSE). The proposed algorithm in [5], the conditioned

mean square error ratio (CMSER) algorithm uses a distance-

based metric. It was therefore necessary for the other algo-

rithms considered in [5], meaning for the least expected dis-

tance algorithm (LED) [4] and for the most expected progress

(MEP) [2], to undergo modifications and to use distance-based

metrics as well. However, the LED protocol, as proposed in

[4], was originally designed on a hybrid metric encompassing

power costs as well. The routing performance of LED is

improved through the selection of the forwarding sensor node

most proximal to an energy-optimal forwarding position. The

calculation of such a position was first proposed in [3] and

its purpose was that of making the routing process more

energy efficient, rather than increasing the packet delivery ratio

(PDR). The work herewith considers a similar energy-optimal

forwarding choice in the case of the error-robust CMSER

algorithm and proposes the energy conditioned mean square

error algorithm (ECMSE) as an alternative with increased

performance in comparison with CMSER or LED.

The main contributions of this paper are listed as follows:

- Investigations are made considering realistic network

aspects: a random node deployment, the existence of location

errors of a different magnitude for each sensor node, the

existence of multiple sensed events (and therefore of more

traffic sources) and the use of the automatic repeat request

(ARQ) mechanism, which is sometimes avoided in studies for

simplification purposes.

- A novel geographic routing algorithm is proposed,

ECMSE, which increases packet throughput in large scale

networks, minimizes the total energy consumption and copes

with location errors.



- The analytical and simulation based comparison of LED

and CMSER, two of the most recent location error-coping

geographic routing solutions in the literature, with the new

algorithm ECMSE, reveals the differences between the tech-

niques for specific scenarios.

The manuscript is structured as follows. Section 2 presents

related work on geographic routing robust against location

errors, algorithms which are relevant for a better understanding

of the current forwarding proposal. Section 3 introduces the

assumed mathematical location error model. Section 4 explains

the novel routing algorithm, ECMSE, and section 5 evaluates

its behavior in a comparative manner in multiple scenarios

mainly categorized as belonging to two different cases, with

and without the use of a reception acknowledgment. Section

6 presents the conclusions.

II. RELATED WORK

Position-based algorithms face numerous design challenges

which are sometimes neglected in novel protocol propositions.

Geographic routing solutions require mathematical model-

ing based on as many real-life challenges as possible [17],

[18]; they need to rely on simple procedures which require

little memory and few processing capabilities, need to be

throughput-efficient, energy-optimal and have to consider re-

alistic communication problems caused by noisy transmission

environments and inaccurate location knowledge. Naturally,

researchers have focused only on some of these aspects at

times, neglecting others or making simplifying assumptions

which enable mathematical theorisation.

Initial geographic routing studies avoid the inaccurate lo-

calization issue and mainly focus on methods of forwarding

which would improve the packet delivery or the power con-

sumption. As an example of basic, distance-based geographic

routing technique, with no error-coping capabilities, the most

forward within range (MFR) [19] selects from the available

forwarding candidates of a given sensor node based on its

transmission range R and then forwards the data based on

the distance between the neighbors and the destination D.

The choice will be to send the information to the neighbor

with the largest distance dij , assumed accurately known,

because this decision would ensure the shortest routing path.

Considering for simplification the assumption of the unit disk

model and the fixed transmission range, this would be the most

energy efficient choice. However, in reality, the coordinates

of the sensor nodes are not known with accuracy, nor is

the transmission range model similar to a perfect disk. The

performance of the MFR in a real-life application will not

be the same as theoretically evaluated. Another example of a

geographic routing technique, this time considering a power-

aware metric and adjustable transmission range, is presented

in [3]. The power aware algorithm however does not include

inaccurate localization. In [1] more progress is made and

it is pointed out that when a fixed transmission radius is

used, a distance-based choice can be influenced by inaccurate

localization and the selected furthest sensor node may also

be the one nearest to the edge of R. As all decisions are

made using estimated distances, the error magnitude can lead

to faulty routing decisions, transmission failure and consequent

power wastage.

To avoid the energy losses incurred by data forwarding

under erroneous positioning circumstances, the forwarding

process can make use of a statistical error characteristic

associated with the measured location of each sensor node [1],

[2], [4], [5]. Algorithms such as LED [4] and the CMSER [5]

improve their routing decisions by using the mean and error

variance of the sensor devices; this statistical information,

together with their coordinates, is communicated to them

by the anchor nodes (devices with increased capabilities of

sensing and processing which also perform localization)[12].

The additional data requires extra device memory, but aids in

coping with location errors. With both algorithms, because the

accurate locations are unknown and the actual distances are

not available, the calculations are made using the estimated

coordinates and distances instead. In both cases, the selected

sensor node aims to offer a balance between the shortest

distance to D and the smallest error characteristic.

III. ERROR MODEL

Early geographic routing studies assumed a simplistic ran-

dom uniform error model [20], [16]. The assumption of a

normally distributed location error was later considered more

realistic and was employed in [1], [2], [4], [5], [15]. Also,

the novel proposed algorithms in these references were aimed

at efficiently coping with the Gaussian location errors. In

the current work, location errors are considered independent

normal random variables (RVs) and it is assumed that the error

variance of each sensor node is different, but equal on the x
and y axes. Consequently, the accurate distance dij between

two devices i and j is:

dij =

√

(xi − xj)
2
+ (yi − yj)

2
. (1)

The estimated distance d̂ij is a normal RV with non-zero

mean (see Eq. 2)

d̂ij =

√

(x̂i − x̂j)
2
+ (ŷi − ŷj)

2
. (2)

The probability density function of d̂ij follows a Rice

distribution [21],

f
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ij
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where I0 is the modified Bessel function of the first kind

and order zero and σij is the scale parameter of the Rician

distribution:

σij =
√

σ2
i + σ2

j (4)

The mean (expectation) of the estimated distance d̂ij is

E
(

d̂ij

)

= σij

√

π

2
L 1

2

(

−
d2ij
2σ2

ij

)

, (5)



where L 1

2
(x) denotes the Laguerre polynomial. The variance

of the estimated distance d̂ij is

V ar
(

d̂ij

)

= 2σ2
ij + d2ij −

(

πσ2
ij

2

)

L2
1

2

(

−
d2ij
2σ2

ij

)

. (6)

IV. THE ECMSE ALGORITHM

While LED forwards to the sensor node with the smallest

expectation and uses Eq. 5, CMSER makes use of the mean

square error (MSE) value associated with each neighbor device

and computes a ratio (MSER) associated with each forwarding

candidate:

MSERij =
E
(

d̂ij − dij

)

2

d̂ij
. (7)

The CMSER routing selection is then refined by considering

that the squared difference between R and the estimated

distance to the neighbor should be greater than the variance

of the erroneous distance:
(

R− d̂ij

)2

> V ar
(

d̂ij

)

. (8)

The scope of LED is however different from that of

CMSER. It aims to preserve the power saving features of

geographic forwarding, while still coping with location errors.

It is stated in [4] that whichever approach the position-based

routing may have, either to optimize the energy spent per hop

or for the overall chosen path, the energy-optimal forwarding

position is the same. LED determines this theoretical optimum

and subsequently chooses as the next hop the neighbor whose

estimated position is closest to it. The algorithm strategically

incorporates location error into the forwarding objective func-

tion. It is assumed that the estimated coordinates of each

sensor node are affected by a Gaussian error of a given

variance. As a consequence the erroneous distances between

sensor nodes are random variables characterized by the Rice

distribution. LED calculates the expectation of the considered

distances and chooses the sensor node with the minimum

expectation.

A general energy model per bit is presented in [22] and

assumes that the total energy consumed per bit at the physical

layer of a sensor device is the sum of the energy dissipated

for the transmission (etx) and for the reception (erx) of

that bit, et = etx + erx. The energy consumption of the

transmission process consists of the energy spent on the radio

electronics and that spent on the amplification of the signal.

Therefore et = etx−elec + etx−amp + erx−elec. A simplifying

assumption is that the energy spent to operate the radio

electronics is equal for both the transmission and the reception,

etx−elec = erx−elec = eelec, so et = etx−amp + 2eelec. The

energy spent on the amplification can be further expressed as

etx−amp = βdα, where α is the path loss index and β is

a constant [Joule/bit/mα]. Thus, the total energy consumed

per bit can be written as:

et = βdα + c, (9)

where c = 2 ∗ eelec. The expression changes for free space

or multipath, but for simplicity free space is the only case

considered here. The distance between the sensor node i and

the theoretical energy optimal position M is calculated as in

[3] or [4]:

diM = α

√

c

(β(1− 21−α))
. (10)

The energy-optimal position M is located on the line con-

necting the currently transmitting sensor node i and the

destination D. Using this information, the slope m of the

line can be calculated with (yi − yD) = m(xi − xD). Its

value is the same for all the points on the line, including

for M , so the coordinates xM and yM are found using the

following system of two equations: the point-slope formula for

(yi − yM ) = m(xi − xM ) and the equation of the Euclidean

distance diM =
√

(xi − xM )2 + (yi − yM )2 , where diM
value is obtained with Eq. 10 and m, xi, yi are known.

Depending on where M is found in reference to the sensor

node i (on its left or right side): xM = xi ±
diM√

1+m2
and

yM = yi ±
mdiM√

1+m2
.

With the known coordinates of M , LED can calculate the

mean (expectation) of the measured distance d̂jM between M
and the neighbors j of sensor node i using Eq. 5 and selects

the option closest to M . The forwarding is made based on the

objective function of LED, which minimizes the expectation:

Fj = argmin
(

E
(

d̂jM

))

. (11)

In [5], to be able to compare the routing performance from a

similar point of view, instead of using the LED algorithm for

comparison, a basic form of it was employed. It forwarded

based on the maximum E
(

d̂ij

)

used to determine the Fj

closest to D, instead of E
(

d̂jM

)

used by LED to determine

the Fj closest to an energy-optimal forwarding position M .

The basic forwarding method of LED relays similarly to MFR,

considering the notion of maximum advance to D, and its

objective function is:

Fj = argmax
(

E
(

d̂ij

))

. (12)

The novel solution proposed here is the energy conditioned

mean square error algorithm (ECMSE). It adopts the theoret-

ical energy optimal point M , as used in [4]. Because its aim

is to select the neighbor j with the smallest error, instead of

using the MSER in Eq. 7, the algorithm minimizes just the

MSE in Eq. 13,

MSEij = E
(

d̂ij
2
)

− 2dijE
(

d̂ij

)

+ d2ij , (13)

where E
(

d̂ij
2
)

is calculated as in [5] to be:

E
(

d̂ij
2
)

= 2σ2
i +2σ2

j + x2
i + x2

j + y2i + y2j − 2xixj − 2yiyj .

(14)

It then makes its choice considering the option closest to M ,

so minimizing the distance between j and M . The objective

function of ECMSE will therefore be:

Fj = argmin
(

MSEij ∗ d̂jM

)

. (15)



ECMSE also makes use of the condition in Eq. 8, just like

CMSER. The ECMSE algorithm can be formalized as follows

in Alg. 1.

Algorithm 1 ECMSE

ECMSE (S, D)

i := S
do

if D is a neighbor of i
then send packet to D;

else

calculate optimal position M ;

for j := 1 to J (J is the number of neighbors of i)
calculate MSEij and d̂jM ;

if (j minimizes MSEij ∗ d̂jM ) and

(j ensures
(

R− d̂ij

)2

> V ar
(

d̂ij

)

)

then send packet to j;

j := i;
end

until j = D;

V. SIMULATION AND RESULTS

As CMSER has already been proven to be robust against

location errors and to have a better throughput than that

of the modified version of LED [5], the performance of

ECMSE is the one which remains to be studied. Hence, the

original LED, CMSER and ECMSE are first compared based

on the throughput. Then, the energy consumption is studied,

considering the realistic case in which the routing benefits

from transmission acknowledgment. The energy spent in the

routing process is influenced by the number of successful

transmissions and by the efforts of resending the data to

achieve this. Both aspects are analyzed for networks which

are dense enough to ensure the highest PDR possible (always

of almost 100%).

The sensor devices are erroneously localized with σ2
i ,

σ2
j∈ [0, σ2

max]. The MATLAB simulation parameters are listed

in Table I. Sensor nodes are randomly distributed and several

scenarios are studied, as described in Table II, where SE
random sensing events take place. Performance is studied for

different network densities (the number of nodes N is varied),

for different values of the maximum standard deviation of

errors (σmax) or different R. A fixed transmission power is

used and the probability of correctly receiving any packet

within R is considered 1, and 0 outside R. Each scenario con-

sists of a sensor node distribution with accurate coordinates,

where packet forwarding is made with MFR (MFR-NoError).

During the same simulation, a number of η distributions with

inaccurate locations (η being the number of trials/iterations)

takes place, where the errors have been modeled as in section

3. The packet forwarding is made by the MFR-WithError,

LED, CMSER and ECMSE. The figures are obtained through

averaging over η.

While the first three scenarios listed in Table II do not

consider the use of any reception acknowledgment (ACK)

and are marked in the table with N (No), in the fourth and

Table I
SIMULATION PARAMETERS

Simulator parameters (unit) Symbol Value

Transmission power (W ) Pt 1.778

Distance of reference (m) d0 1

Path loss exponent α 3

Packet size (bits) psize 1024

Data rate (Kbits/s) dr 250

Number of packets/source pkts 1

Energy spent on the radio electronics (nJ/bit) eelec 50

Energy spent on transmission(J/bit) etx 2.5e-07

Energy spent for reception (J/bit) erx 1.5e-0.7

Constant (pJ/bit/m2) β 100

Network side length (m) l 50

fifth ones the performance of the algorithms is analyzed for a

’best effort’ type of packet forwarding and are marked with Y

(Yes). The use of the ACK messages sent by receiving sensor

nodes increases the overhead of the network and influences the

energy consumption mainly through the number of necessary

retransmissions. Each forwarding sensor node tries to transmit

to each of its detected neighbors, until either the packet is

received or all forwarding options are exhausted. Routing with

reception confirmation does not imply a guaranteed delivery

of the sent data packets; it is only a way of improving the

reception chances and finding the path to D when one exists.

Hence, when the networks have a good node density, the PDR

is always above 98% for all algorithms. For sparse networks,

the PDR changes depending on sensor node topology and

magnitude of the location errors.

The simulations using a realistic acknowledgment assump-

tion have the purpose of facilitating the energy consumption

analysis of the algorithms by maintaining the same PDR for

all algorithms. The differences in the design of the algorithms

results in a different number of hops for the received packets,

of retransmissions at each sensor node and consequently in

different levels of energy losses and network lifetime for each.

The total energy consumed in a network (Etotal) represents the

sum of the energy spent on all packet transmissions (including

the re-transmissions when no ACK is received) and of the

energy spent receiving. The total number of transmissions

is TrNo and the energy spent on receiving is calculated

based on the average number of hops in the path of each

received packet, HopNo. Thus Etotal = Etrans + Ercv ,

where Etrans = TrNo ∗ etx ∗ pkts ∗ SE ∗ psize and Ercv =
HopNo ∗ erx ∗ pkts ∗ SE ∗ psize. For simplicity, the results

obtained for scenarios 4 and 5 and presented in parallel - all

their parameters are the same, except for the total number of

transmitted data packets in the network.

Table II
SIMULATION SCENARIOS

Scenario N R(m) σmax(m) (%
of R)

η SE ACK

1 50-400 40 8 (20%) 100 10 N

2 200 10 1-25 (10-50%) 100 10 N

3 200 5-25 1 (20-4%) 100 10 N

4 100-500 10 1.5 (15%) 1000 1 Y

5 100-500 10 1.5 (15%) 300 50 Y



Under all the scenarios, the PDR of the ECMSE algorithm

is higher than that of CMSER or LED. In Fig. 1 the number

of sensors is increased gradually from 50 to 400 devices. As

expected LED has a better performance than CMSER, but its

PDR is not as good as that of ECMSE, which uses the same

distance-energy metric as LED. Because of the speed of the

simulation, only 10 sensing events were chosen to take place

in these networks, generating 10 traffic connections. If more

were used, the PDR values would also be influenced.
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Figure 1. Routing performance for scenario 1, with ECMSE

For Scenario 2, when increasing the location error, the PDR

decreases considerably for all algorithms, as in Fig. 2. CMSER

and ECMSE have a similar behavior, with a difference in PDR

which shows the superiority of ECMSE. When σ is below

30% of R, the PDR is above 60% for CMSER and above

70% for ECMSE. So, if a tolerable amount of location error

is associated with the case when σ is up to 10% of R, then

ECMSE is the most indicated choice for routing because it

provides a PDR of 85%. Due to the reduced R in Scenario 2,

LED maintains the PDR values under 60% and is constantly

lower in delivery in comparison to CMSER and ECMSE.
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Figure 2. Routing performance for scenario 2, with ECMSE

However, Fig. 3 which considers an increase in R, while

keeping the location error constant, reveals the change in

behavior for the LED algorithm. While LED performs worse

than CMSER for R ≤ 10, its PDR is similar to ECMSE for

larger values, reaching 90% values for R ≥ 15. Nevertheless,

ECMSE is preferred to LED because it performs better for

small values of R making it more energy efficient.
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Figure 3. Routing performance for scenario 3, with ECMSE

The following results are obtained for the networks where

the routing benefits from packet acknowledgment. For the

two scenarios in Fig. 4 and Fig. 5, the hop count values are

mainly influenced by the number and position of the sources

in the network. In scenario 4 the one source sending packets

has its erroneous location varied for each iteration, but the

distance between it and D does not change considerably,

being limited by the error variance. For scenario 5, the 50

different sources affect the number of hops of the received

packets severely because the sending sensor nodes are located

at different distances from D. An average hop count will vary

on the average distance between them and D, which does not

coincide with the one in scenario 4.

For scenario 4, the average number of hops for the received

packets in the network does not vary much from one algorithm

to the next (being on average 2 or 3 hops). Also, as expected,

LED provides shorter paths than CMSER and ECMSE, but

this does not mean it is more energy efficient (as can be seen

in Fig. 10 and Fig. 11). Naturally, the hop count decreases with

the increase in sensor node density which contributes to the

increase of the forwarding options, but none of the networks

chooses a shorter path than the network with no location error.

Between CMSER and ECMSE, the improved version of the

algorithm provides visibly shorter routes.

For scenario 5, the figure reflects that ECMSE provides

routing paths similar to the network with no location error,

improving for the denser networks with more than 300 devices.

LED however chooses even shorter paths to guarantee the

same PDR. Although this can be seen as an advantage, the

trade-off is a higher number of retransmissions which consume

energy and whose numbers rise for denser networks. An

overall analysis indicates that LED is also more suitable for

sparser networks.

The more ineffective the calculations of the routing algo-

rithm are (of what the next forwarding sensor node should be),

the more transmissions will be necessary. It is thus estimated

that when devices are located accurately, there will be no

need for retransmissions and, when in error, MFR and LED
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Figure 4. Average number of hops per received packet for scenario 4
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Figure 5. Average number of hops per received packet for scenario 5

will make use of more retransmissions than CMSER and

ECMSE. This expectation is confirmed in Fig. 6 and Fig. 7.

The number of total transmissions depends on the number of

retransmissions and on the number of hops of the received

packets. Because the routing paths of the received packets

for the CMSER algorithm are longer than any other, but its

number of retransmissions are fewer than that of MFR or LED,

the total number of transmissions situate it above LED and

under MFR, as it can be seen in Fig. 8 and Fig. 9.

The energy costs are presented in Fig. 10 and Fig. 11. Sim-

ulations show that ECMSE is energy efficient, while providing

the same PDR as the rest of the algorithms. For Scenario 4,

ECMSE is the most energy efficient being surpassed only

by the network in which sensor nodes benefit from exact

location knowledge. In this case, LED is the second most

energy efficient algorithm, followed by CMSER whose longer

routing paths cause more energy consumption. CMSER is

slightly more wasteful due to error-aware decisions based

only on a distance metric, without consideration for energy-

optimal forwarding choices. For all the algorithms, the energy

expenditure is reduced by increasing the network density. For

Scenario 5, ECMSE, LED and the network with no location

error have a similar energy consumption level, with a slight

decrease for ECMSE when increasing the number of sensing

devices in the network.
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Figure 6. Total number of retransmissions for scenario 4
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Figure 7. Total number of retransmissions for scenario 5

VI. CONCLUSIONS

All the simulated scenarios prove that ECMSE is an im-

proved algorithm in terms of both PDR and overall energy

consumption. The performance of ECMSE is conditioned by

sensor network density, making it ideal for large scale scenar-

ios. Under the same location error and energy constraints as

other algorithms, ECMSE is an optimal routing candidate for
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Figure 8. Total number of transmissions for scenario 4



100 150 200 250 300 350 400 450 500
250

300

350

400

450

500

550

600

650

Number of nodes

T
ot

al
 n

um
be

r 
of

 tr
an

sm
is

si
on

s

 

 

MFR−NoError
MFR−WithError
CMSER
LED
ECMSE

Figure 9. Total number of transmissions for scenario 5
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Figure 10. Total energy consumption for scenario 4

WSN applications in need of efficient, location error-coping

geographic routing. It is a robust solution when sensor devices

use low transmission power and has been proven energy

efficient because of the number of required retransmissions for

a best-effort routing scenario with reception acknowledgment.

Even with slightly longer paths than LED, it performs better

in terms of throughput (as seen when no ACK is used) and

energy savings alike.

Although geographic routing solutions resilient to location
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Figure 11. Total energy consumption for scenario 5

errors have been provided herewith, the current algorithms

are not fully developed to the degree that a protocol or

standard would be. Furthermore, the approaches of CMSER

and ECMSE are based on the simplifying assumption that the

location errors of each node are the same for the x and y
coordinates. This facilitates the statistical supposition that the

distances between sensing devices are Ricianly distributed.

Because the initial assumption is clearly not always true, it

is believed to contribute to a less-realistic routing behavior.

The impact of this theoretical presumption on the proposed

algorithms should be explored in future work.
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