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Abstract

Introduction: Dynamic image acquisition protocols are increasingly used in emission tomography for drug 

development and clinical research. As such, there is a need for computational phantoms to accurately describe

both the spatial and temporal distribution of radiotracers, also accounting for periodic and non-periodic 

physiological processes occurring during data acquisition. 

Methods: A new 5D anthropomorphic digital phantom was developed based on a generic simulation platform, for 

accurate parametric imaging simulation studies in emission tomography. The phantom is based on high spatial and 

temporal information derived from real 4D MR data and a detailed multi-compartmental pharmacokinetic 

modelling simulator. 

Results: The proposed phantom is comprised of 3 spatial and 2 temporal dimensions, including periodic 

physiological processes due to respiratory motion and non-periodic functional processes due to tracer kinetics.

Example applications are shown in parametric [18F]FDG and [15O]H2O PET imaging, successfully generating 

realistic macro- and micro-parametric maps.

Conclusions: The envisaged applications of this digital phantom include the development and evaluation of 

motion correction and 4D image reconstruction algorithms in PET and SPECT, development of protocols and 

methods for tracer and drug development as well as new pharmacokinetic parameter estimation algorithms,

amongst others. Although the simulation platform is primarily developed for generating dynamic phantoms for

emission tomography studies, it can easily be extended to accommodate dynamic MR and CT imaging simulation 

protocols.

Key words: Parametric imaging, pharmacokinetics, tomography, respiratory motion, phantom, PET, SPECT, MR
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I. INTRODUCTION

he continuous development of anthropomorphic and small animal computational phantoms during the last 

few decades has led to their ever increasing use in clinical and preclinical research [1]. The improved level of

their realism and flexibility compared to physical phantoms has led to their widespread use and adoption in 

emission tomography. The ability to perform simulation studies using these computational phantoms allows a 

number of methods and techniques used in the field of medical imaging and more specifically emission 

tomography to be developed, evaluated and validated under controlled and known conditions. 

   Three-dimensional computational phantoms fall into 3 categories based on their design principle: mathematical 

stylized phantoms, voxelized phantoms and hybrid equation-voxel phantoms. Mathematical phantoms use

mathematical equations to approximate the surface of simple and complex body structures. A number of such 

designs exist in the literature, such as the Shepp-Logan [2] and the mathematical cardiac-torso (MCAT) phantoms

[3]. Such designs are useful, but their inability to model complex structures limits their application, especially 

since there is need for more realistic simulation studies [4].

   On the other hand, voxelized phantoms are based on using segmented anatomical information from high 

resolution tomographic data (CT or MRI). A number of voxelized phantoms exist, covering anatomical variants 

(etc...age, sex, body weight and height) [5-9]. Their main advantage is the level of realism compared to stylized 

approaches; however, fail to provide the level of flexibility offered by mathematical phantoms. 

   The need to combine the detailed anatomical information provided by voxelized phantoms with the flexibility 

offered by the mathematical phantoms, has led to the development of hybrid phantoms [10]. These models enable 

the combination of flexibility and realism within a single anatomical phantom representation. The most popular is 

the non-uniform rational B-splines (NURBS)-based cardiac-torso (NCAT) phantom [11, 12].

  All these three-dimensional (3-D) computational phantoms offer a relatively simple and practical simulation 

platform, but fail to take into account time-dependent physiological processes occurring during the course of the 

imaging process. Consequently, this has led to the development of four-dimensional (4D) phantoms incorporating 

time-dependent processes, such as cardiac and respiratory motion. The NCAT phantom and the latest generation 

in this family of phantoms, the extended cardiac-torso phantom (XCAT) [13], were generated from multi-detector 

respiratory-gated CT data, to model cardiac and respiratory motion. Similarly, dynamic MRI has also been used to 

derive the motion information, which is then used in a four-dimensional (4-D) simulation framework [14, 15].

T
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   Although such 4-D phantoms combine accurate anatomical information with models of temporally periodic 

physiological processes, they do not take into account the variable and temporally non-periodic functional 

processes occurring during the course of the study, constraining the level of realism and thus their potential 

application in dynamic studies. However, the need for more accurate quantification both in clinical research and 

drug development has lead to the increasing use of dynamic imaging protocols [16]. Moreover, pharmacokinetic 

analysis of the time course of the activity distribution enables more targeted physiological parameters, such as 

blood flow, metabolism and receptor occupancy, to be derived. In many studies, such parameters are more 

informative compared to standardized uptake value (SUV) index, which remains the most widely adopted metric

in static whole-body PET imaging [17]. Consequently, the development of realistic digital phantoms for multi-

compartmental tracer kinetic studies in dynamic PET and SPECT, is of interest. Although a number of studies in 

the field of image reconstruction and kinetic modelling have used in-house developed parametric phantoms, they

often feature roughly approximated anatomical structures with simple geometrical shapes, while lacking the 

anatomical and physiological variability caused by temporally periodic phenomena such as respiratory motion

[18-22]. Recently a variant of the XCAT phantom was developed, named the perfusion cardiac-torso phantom 

(PCAT), but its scope was limited to dynamic perfusion studies in cardiac imaging [23].

   In this work, using high resolution anatomical and temporal information from real MR data, we develop a five-

dimensional (5-D) computational anthropomorphic phantom, incorporating temporal gating from respiratory 

induced body motion and compartmental modelling tracer kinetic capabilities for parametric imaging simulation 

studies in dynamic emission tomography. This new voxelized phantom, allows respiratory gated and non-gated 

datasets to be simulated along with any tracer-specific compartmental model representing the temporal 

distribution of the activity concentration during dynamic imaging protocols in PET and SPECT. Rather than being 

region and application specific, kinetic parameters are freely assigned in the entire field-of-view (FOV), 

generating voxel-wise parametric maps based on the tracer of interest. 

II. METHODS

This Section describes the generic methodology used by the simulation platform for generating 5D parametric 

imaging simulation phantoms using MR information for discerning anatomy and motion along with a kinetic 

modelling simulator and a virtual tomograph.
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THE KCL-HUG SERIES 5-D PHANTOM

1. 3D Anatomical Phantom

Anatomical information are obtained from a high resolution 3D MRI scan and different organ structures are

segmented in order to generate the anatomical regions comprising the phantom, as described in Tsoumpas et al. 

[24] and Buerger et al. [25]. Segmentation of the major structures is performed using a semi-automatic algorithm 

with local thresholding [25]. This allows fast generation of 3D anatomical phantoms, facilitating personalized 

patient-specific anatomical phantom designs, derived from a real MR scan. Apart from template organ structures

segmented from the MRI data, tumors of varying characteristics (e.g size and tracer uptake) can be manually 

inserted in different phantom regions. However, since these tumors represent additional patient-specific structural 

variants, they can easily be manipulated. Other anatomical variants can also be included depending on the required 

anatomy and simulation conditions. Tumours or other anatomical variants can be manually delineated/drawn on 

the 3D anatomical phantom and the tumor ROI mask can be saved and given a separate value, different to the 

region it is embedded within. The complete anatomical phantom is a superposition of separate regions segmented 

from the MRI data. 

2. 4D Dynamic Phantom For 1-Tissue and 2-Tissue Models

To describe the temporal distribution of a given tracer and simulate time-activity curves (TACs), custom-made 

software capable of providing multi-compartmental modelling for 1-tissue and 2-tissue models, was developed. 

Given an input function, a temporal sampling protocol and known tracer-specific pharmacokinetic parameters 

(constant rates) controlling the bi-direction flux of the tracer between the blood and tissue compartments (for each 

organ structure in the anatomical phantom), TACs are generated. Typical input functions derived from arterial 

sampling can be used, along with user defined ones, based on a parameterized model. For the sampling protocol,

any number of frames and frame durations can be accommodated within the typical scan times used for dynamic 

studies in emission tomography. A blood volume component can also be included to generate the simulated TACs,

since typically both tissue and blood components are sampled at the voxel level in clinical acquisitions. The same 

principles apply for the different kinetic parameters used, with separate constant rates for the different organs and 

values obtained from the literature, if a generic activity distribution is to be realized. Alternatively, if a dynamic 

emission scan is available from a patient, personalized patient-specific pharmacokinetic parameters can be used

based on mean organ parameters. Although individual micro-parameters are the endpoint parameters of interest, in 
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Fig. 1. Schematic diagram of a single-tissue and a two-tissue kinetic model showing the different compartments as well as the 

constant rate controlling the rate of change in activity concentration for each compartment.

some applications certain macro-parameters, such as the volume of distribution (VT) and the tracer's net uptake 

rate into the irreversibly bound compartment (Ki) are often more relevant and provide a more complete picture of 

the underlying patho-physiology. These macro-parameters are combinations of micro-parameters and can easily 

be adjusted to reflect specific conditions. Generic schematic diagrams for a single-tissue and a two-tissue 

compartment model, used to generate the dynamic phantom image sequence, are shown in Fig. 1. The time-

dependent activity concentration in the tissue CT, can be described as a convolution of the impulse response

function (IRF), which is the response of the system to a delta-function, with the time-dependent activity 

concentration in the plasma Cp. For the single-tissue model, the time-course of the activity distribution can be 

described as:

p

t
V

K

1p

tk

1P21T CeKCeKC)t,k,K(IRFC T

1

2 ̊?̊?̊?
Õ
Ö
ÔÄ

Å
Ã//                                  (1)

where K1 is the plasma to tissue rate constant (ml/s/ml). K1 can be further parameterized, based on the Renkin-

Crone model, as a product of blood flow (perfusion) and extraction fraction as

* +
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Ä
Å
Ã /??

/
11

                                                                              (2)

where PS is the permeability surface area product, E is the extraction fraction and F is the blood flow [26, 27]. For 

tracers with high permeability surface area product, extraction is close to unity and is independent of flow and 

therefore K1 provides a measure of blood flow [28]. The platform is highly flexible, enabling to define the plasma-

to-tissue influx rate by adjusting the permeability surface product and subsequently the extraction fraction, based 
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Fig. 2. Schematic diagram of a single-tissue model at 2 different target regions. As the injected bolus passes through the blood 

stream it becomes dispersed while its arrival time is shifted. 

on the selected tracer. Alternatively, one can directly assign a fixed value for K1. Similarly, k2 can be given 

directly or as a ratio of the influx rate (K1) and volume of distribution (VT).

For the two-tissue model, the time-course of the activity distribution can be described as:

* + * + * +] _ P
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Simple or complex models can be realized in different organs, including dual input function models simulating 

both arterial and venous blood supply in certain organs such as the liver [29]. Furthermore, the differential 

temporal distribution of the activity concentration in the blood as it circulates through the blood vessels, can be 

taken into account, with differential delay and dispersion in the input function in adjacent regions (Fig. 2) [30]:
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* + * + * +
dt
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FvF /
-/?                                                                (6)

Given an input function Cp(t), a delay (〉v) and a dispersion coefficient (k) one can estimate Cp'(t). The tracer's 

radioactive decay can also be taken into account and incorporated into the operational equations as a global 

parameter.

   TACs are assigned at the voxel level, generating time series of voxelized phantoms (4D phantom) with a 

temporal sampling dictated by the dynamic acquisition protocol selected during the TAC generation. Although

only the case for single- and two-tissue models is presented in this work, the simulation platform allows any 

kinetic model variant to be accommodated with an increasing degree of complexity and is therefore applicable for 

simulating kinetics for any tracer and protocol.

3. 5D Phantom Using MR-Derived Motion Fields

So far the 4D phantom corresponds to a single reference position without including any information regarding 

respiratory motion. To simulate different types of realistic motion during a dynamic scan, the fast analytic 

simulation toolkit (FAST) is used [15]. A dynamic 4D MRI scan, providing uniform temporal sampling over

consecutive respiratory cycles during the dynamic scan, is used to generate the motion fields. This is achieved 

using the amplitude signal from a virtual navigator and selecting a number of dynamic images from different 

phases of the respiratory cycle as the respiratory gates. A reference gate is then selected with the remaining gates 

being registered to the reference gate, in order to generate the motion fields. These MR-generated motion fields 

are subsequently used to warp the dynamic phantom emission data and generate a number of respiratory gates for 

each time frame in the dynamic image sequence. Using this methodology, deep and shallow breathing can be 

simulated along with other non-periodic types of motion. If anatomical variants, such as tumors, are utilized in the 

phantom, motion is simulated similar to the rest of the regions. Therefore, the tumor's shape (along with the other 

regions) is deformed based on the motion fields, and as such, the deformation depends on where the tumor is 

located.

4. 5D Projection Data

The simulated gated dynamic emission and attenuation data can then be used in conjunction with any medical 

imaging simulation package which models the physics, image acquisition and detector properties of medical 
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imaging systems. Data can be forward projected to generate projection datasets for investigation of numerous 

methods and techniques for motion correction, image reconstruction, and kinetic parameter estimation.

III. APPLICATION IN METABOLIC AND BLOOD FLOW PET PARAMETRIC IMAGING

In order to evaluate the phantom design and demonstrate the potential application of this simulation platform in 

drug, clinical, algorithmic and methodology development, different clinical protocols were realized. Two dynamic

PET protocols corresponding to a metabolic imaging study with [18F]FDG and a perfusion study with [15O]H2O 

were simulated and reconstructed. Subsequently and following image reconstruction, full kinetic analysis was 

performed on the dynamic datasets and parametric maps of micro- and macro-parameters were generated.

1. 3D Anatomical Phantom

To generate the anatomical phantom, high resolution anatomical information (2×2×2 mm3), covering the thoracic 

and upper abdominal area have been obtained from a healthy volunteer using MRI data [25]. As cortical bone is 

not normally visible using common MR sequences, an ultra-short echo-time (UTE) 3D MRI sequence was 

acquired (TR 6.5ms, flip angle 10o) obtaining one image during the free induction decay (TE1=0.14ms) and one 

during the first echo time (TE2=4.6ms). Data were respiratory corrected to the end-exhale position. From the

difference image between the 2 UTE images, a number of regions of interest were segmented (soft tissue, cortical 

bones, liver and lungs) and used to construct the anatomical phantom. The myocardium, heart ventricles and large 

vessels were also segmented using a different ECG triggered balanced B-TFE MRI scan during free breathing

(TR/TE 4.7 ms/2.36 ms, TFE factor 26, Þkr"cping"qh";2o) [15, 31]. The scan was subsequently respiratory gated

again to the end-exhale position using a virtual navigator. Based on these 2 MRI scans, the different segmented 

regions were combined to generate the anatomical phantom. Nine tumors of varying size were also embedded in 

the lung (3), liver (3) and dome of the diaphragm (3). The tumors were drawn on the phantom and the tumor 

masks were inserted as separate regions. The anatomical phantom was then sub-sampled to a volumetric 

resolution of 2×2×2mm3 in order to represent typical voxel resolution encountered in PET imaging, with an image 

volume of 336×336×81 voxels. Based on the segmented organs that were used to generate the anatomical 

phantom, an attenuation map was also generated using a 4-region classification of the phantom.(air: 0 cm-1, lung: 

0.03 cm-1, soft tissue: 0.099 cm-1, and bone: 0.15 cm-1).
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2. 4D Dynamic Phantom For [
15

O]H2O and [
18

F]FDG Models

Two dynamic PET protocols were simulated, corresponding to typical [15O]H2O and [18F]FDG scanning sessions

and representing a single-tissue and a two-tissue model. For the [15O]H2O protocol, TACs were generated using a

single-tissue 3 parameter model, including a blood volume component (K1, k2, bv). A 360 seconds total scan 

duration was selected binned into 28 non-uniformly sampled time frames [14×5 s, 5×10 s, 3×20 s, 6×30 s],

representing a typical [15O]H2O protocol [32]:

pp

tk

1pP21T bvCCeKbvCC)t,k,K(IRFC 2 -̊?-̊? /                               (7)

For the [18F]FDG protocol, TACs were generated using a two-tissue 4 parameter model assuming irreversible 

kinetics during the course of the scan (k4=0) and including also a blood volume component (K1, k2, k3 and bv). A

3300 seconds total scan duration was chosen binned into 29 non-uniformly sampled time frames [9×10 s, 3×30 s, 

4×60 s, 4×120 s, 8×300 s] [33]:

* +

* +
* +* +

pp

tkk
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3tkk

1pP321T bvCCe1
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k
eKbvCC)t,k,k,K(IRFC 3232 -̊ÕÕ

Ö

Ô
ÄÄ
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Ã
/

-
-?-̊? -/-/     (8)

In both imaging protocols, a single input function model was used, representing delivery through arterial blood,

while no differential delay and dispersion were used in simulating the kinetics for the different regions, with a 

common reference delivery time between them. Furthermore, kinetic parameters derived from the literature, 

summarized in Tables I and II, were used to generate the dynamic data. For the [15O]H2O study, a measured input 

function was used while for the [18F]FDG data a population based input function was used.



Page 11 of 31

A
cc

ep
te

d 
M

an
us

cr
ip

t

11

TABLE I. Simulated kinetic parameters for the single-tissue model.

.

K1

ml/s/ml

k2 

ml/s/ml

Bv    

ml/ml

VT

ml/ml

Lungs 0.0008 0.0014 0.06 0.6 

Bone 0.0018 0.0027 0.00 0.69 

Soft tissue 0.0005 0.0042 0.00 0.12 

Ventricles 0.0000 0.0000 1.00 0.00 

Myocardium 0.0167 0.0183 0.15 0.91 

Tumors 0.0098 0.0161 0.08 0.61 

Liver 0.0117 0.0119 0.05 0.98 

TABLE II. Simulated kinetic parameters for the two-tissue model.

K1

ml/s/ml

k2 

ml/s/ml

k3 

ml/s/ml

Bv    

ml/ml

Ki

ml/s/ml

Lungs 0.0007 0.0048 0.0006 0.1510 0.0001

Bone 0.0027 0.0033 0.0010 0.0000 0.0006

Soft tissue 0.0008 0.0054 0.0014 0.0190 0.0002

Ventricles 0.0000 0.0000 0.0000 1.0000 0.0000

Myocardium 0.0033 0.0170 0.0025 0.5450 0.0004

Tumors 0.0031 0.0073 0.0056 0.0800 0.0014

Liver 0.0209 0.0222 0.0000 0.1650 0.0000

3. Respiratory  Data

4D MR data were also acquired from the same healthy volunteer, providing a uniform temporal sampling of a few 

complete respiratory cycles (~25 seconds dynamic acquisition with 0.7 seconds temporal sampling - 35 dynamic 

image volumes) as described by Buerger et al [25]. An amplitude signal from a virtual navigator on the diaphragm 

dome was then generated and 8 dynamic images were chosen to sample a full respiratory cycle. Subsequently, 

each gated image, corresponding to a different phase in the respiratory cycle, was registered to the reference gate 

(i.e. end-exhale position) to estimate the corresponding motion fields, using a local affine registration algorithm

[34]. Using the MRI-derived motion fields, the dynamic emission phantom images were warped into 8 different 

phases over the respiratory cycle, representing a shallow breathing pattern. Therefore, 8 gated 3-D images were 

generated for each time frame in the dynamic 4D phantom (3 spatial dimensions {336 × 336 × 81} × 28/29 time 

frames × 8 respiratory gates). Attenuation data were treated similarly, generating 8 gated attenuation maps for 

each phase in the respiratory cycle, but using the same gated maps for all the time frames since no motion between 

the kinetic modelling time frames was taken into account in this study (3 spatial dimensions {336 × 336 × 81} × 8

respiratory gates).
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Fig. 3. Transverse (a), coronal (b) and sagittal (c) images of the simulated attenuation map corresponding to a single gate.

4. 5D Projection Data

To generate the forward projected data, an in-house simulator was used. The dynamic emission images for each 

respiratory gate and time frame along with the respiratory gated attenuation images, were forward projected into a 

virtual scanner using Siddon's line of response driven algorithm, along with the geometry configuration of the 

Biograph 6 Barrel HiRez PET/CT scanner (Siemens Molecular Imaging Inc.TN, USA) [35]. Both the noiseless

emission as well as attenuation projection data were histogrammed into a 336 × 336 × 313 3-D sinogram (336 ×

336 × 313 × 28/29 time frames × 8 respiratory gates for the emission data and 336 × 336 × 313 × 8 respiratory 

gates for the attenuation data). Subsequently the emission projection data were attenuated to generate the 

attenuated emission sinogram for each respiratory gate and time frame.

5. Image Reconstruction and Kinetic Modelling

The generated projection data were reconstructed using in-house developed image reconstruction software capable 

of reconstructing data from the Biograph 6 HiRez PET/CT [36]. Data from were reconstructed using an ordinary 

Poisson ordered subsets expectation maximization algorithm (OP-OSEM) with 10 iterations (21 subsets). 

Following image reconstruction, full compartmental analysis of the dynamic datasets was performed to derive 

parametric maps of micro- and macro-parameters of interests. For both clinical datasets, kinetic modelling

equations similar to those used to generate the data, were used to model the time-course of the activity 

distribution. The models were linearized using the generalized linear least square (GLLS) method [37, 38], and 

model parameters were fitted to the measured data by minimizing a non-negative weighted least square objective 

function (NNWLS). For the [15O]H2O dataset, the GLLS was used with 2 internal iterations while parameter 

initialization was based on the linear least square algorithm (LLS) [37]. For the [18F]FDG dataset, 4 internal GLLS

(a) (b) (c)
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Fig. 4. Simulated TACs representing (a) [15O]H2O and (b) [18F]FDG kinetics, used for the different regions in the 3D anatomical 

phantom. Input functions with differential delay and dispersion in different organs can be used while organ TACs having a dual 

input function delivery can also be simulated. The simulated [15O]H2O TACs from (a) are shown in (c) using a dual input model 
in the liver, while 3 input functions from a [15O]H2O scan with different delay and dispersion are shown in (d).

iterations were used, while initialization was based on uniform parameters. For the [15O]H2O data, parametric 

images of perfusion (K1), clearance rate (k2), fractional blood volume (bv) and volume of distribution (VT), were 

derived. Similar for the [18F]FDG data, parametric images of K1, k2, k3, bv and net uptake rate Ki. were generated.

IV. RESULTS

Six regions were segmented from the 3D MRI scans: soft tissue, liver, heart ventricles, lungs, rib cage and spine 

and myocardium. Representative slices through the simulated attenuation map of the combined anthropomorphic 

phantom are shown in Fig. 3. Using the kinetic parameters from Tables I and II and the kinetic modelling

operational equations, TACs for each organ region were generated and plotted in Fig.4. In Fig. 4(a), the generated 

TACs from the [15O]H2O study are shown for all 6 regions as well as the embedded tumors. Regions with high K1 
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(a) (b)

(i)

(ii)

(iii)

(iv)

(c) (d)

Fig. 5. Transverse (a), coronal (b), sagittal (c) and 3D rendered (d) simulated images of the [15O]H2O phantom at 2 different time 

points during the simulated dynamic [15O]H2O image sequence corresponding to an early time frame (i-ii) (t = t0 +20 s) and a 

late time frame (iii-iv) (t = t0 +360 s) where t0 is the reference start time. Images are shown for a single respiratory gate (i, iii) 
and for all gates superimposed (ii, iv).

(a) (b)

(i)

(ii)

(iii)

(iv)

(c) (d)

Fig. 6. Transverse (a), coronal (b), sagittal (c) and 3D rendered (d) simulated images of the [18F]FDG phantom at 2 different 

time points during the simulated dynamic [18F]FDG image sequence corresponding to an early time frame (i-ii) (t = t0 +40 s) and 
a late time frame (iii-iv) (t = t0 +3400 s) where t0 is the reference start time. Images are shown for a single respiratory gate (i, iii) 

and for all gates superimposed (ii, iv).
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such as the myocardium and the tumors exhibit a high upslope, with the washout of the tracer governed by k2.

Similarly, Fig. 4(c) shows the same TACs but using a dual input function model in the liver while in the rest of the 

regions, a single arterial input function model is used, similar to the one used in Fig.4(a). The dual input model in 

the liver, represents tracer delivery from both the hepatic artery and portal vein. In order to simulate the portal 

vein, the gastrointestinal compartment can be used, representing a region outside the simulated patient’s FOV, 

which is a single compartment model between the arterial blood and the gut compartment. Although a delay in the 

delivery of each input can also be accommodated, no delay between the arterial and portal input functions was 

assumed. The TAC in the heart ventricles which represents the activity concentration in the arterial blood, was 

simulated using a blood volume component equal to unity as can be seen from Table 1, with no contribution from 

the tissue component. Hence, the TAC is equal to the input function. To simulate the more realistic case of 

differential tracer delivery time in different regions, including differential dispersion of the input function, the 

generated TACs in each region can take these effects into account. Three input functions are shown in Fig. 4d 

with 8 second delay between them and different dispersion coefficients. By changing the delay, the input function 

is shifted with respect to the reference global zero time point in the simulated protocol. Simulated TACs for the 

[18F]FDG dataset are shown in Fig. 4b, again for the same regions. Looking at the tumor TAC, the trapping of the 

tracer is evident due to the irreversible kinetics attributed to a high simulated k3 parameter and a k4 = 0 which is a 

valid assumption for the duration of a typical [18F]FDG scan. Similar to the [15O]H2O dataset shown in Fig. 4a, the 

activity concentration in the ventricles is representative of the input function. The simulated TACs shown in Figs. 

4a and 4b were used to generate the dynamic phantoms for the [15O]H2O and [18F]FDG studies.

  Representative emission data from the simulated dynamic and respiratory gated [15O]H2O and [18F]FDG 

phantoms are shown in Figs. 5 and 6, respectively. Fig. 5 shows typical slices and volume rendered images from 

early and late time frames into the dynamic [15O]H2O dataset. The images are shown for a single respiratory gated 

phase (one of the 8 gated images), which corresponds to the reference gate (end-exhale position). In the early 

frame, activity is high in the heart ventricles and aorta, representing the input function as seen in Fig. 4, with the 

tissue response governed by the influx rate constant. Conversely, in the late frame, activity is representative of the 

tracer's washout. As the temporal frames are shown from a single gate position, they correspond effectively to 

motionless data and hence without any blurring in the voxelized dynamic data. The same time frames are shown 

in Fig. 5 (ii) and (iv) but with all 8 respiratory gated images superimposed, creating a blurred representation of the 

simulated activity distribution. Although 8 gates were simulated in this study, different gates can be included or 
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(a) (b)

(i)

(ii)

(iii)

(iv)

(c) (d)

Fig. 7. Transverse (a), coronal (b), sagittal (c) and 3D rendered (d) reconstructed [15O]H2O (i-ii) and [18F]FDG (iii-iv) emission 

images at 2 different time points corresponding to an early time frame (i, iii) and a late time frame (ii,iv) where t0 is the reference 
start time. Images are shown for a single respiratory gate corresponding to motionless data.

excluded to accommodate simulation of different breathing patterns. Using all 8 gates, increased motion is 

simulated in the superior-inferior direction since the bulk of the motion occurs in this direction. During end-

inspiration the lungs covered 359802 mm3 while during end expiration a ~23% difference in volume was observed 

with the lungs covering 283954 mm3. Similarly in Fig. 6, an early and late [18F]FDG time frame is shown for a 

single gate and for all gates superimposed. As seen from the coronal images (Fig. 6b), the irreversible trapping of 

the tracer in the tumors is evident with increased activity concentration in the late frame signifying increased 

uptake rate. Motionless projection data from the reference gate were reconstructed as described in the methods 

Section. Reconstructed images from both the dynamic [15O]H2O (i-ii) and [18F]FDG (iii-iv) studies are displayed 

in Fig. 7. The images representing again an early and a late time frame correspond to those from the motionless 

dynamic phantoms shown in Figs. 5 and 6. The reconstructed images are qualitatively identical to the simulated 

ones, demonstrating the capabilities of this parametric phantom in algorithmic development for image

reconstruction applications. However, in parametric imaging studies, the endpoint parameters are the micro- or 

macro-parameter maps, rather than images of activity concentration. As such and following image reconstruction, 

full kinetic analysis was performed on the dynamic datasets for both studies.
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Fig. 8. Parametric images of K1, k2, bv and VT (a) simulated and (b) estimated (using GLLS) following 3D reconstruction of the 

simulated single gate dynamic [15O]H2O phantom dataset. Rendered images of the estimated maps are also shown in (c).

Fig. 9. Parametric images of K1, k2, k3, bv and Ki, (a) simulated and (b) estimated (using GLLS), following 3D reconstruction 

of the simulated single gate dynamic [18F]FDG phantom dataset. Rendered images of the estimated maps are also shown in (c).

Fig. 8 shows the simulated parametric images of influx rate (K1), efflux rate (k2), blood volume (bv) and volume of 

distribution (VT) as well as the estimated parametric maps following post-reconstruction kinetic analysis of the 

dynamic [15O]H2O dataset. 3D rendered images of the estimated parametric maps are also shown. Similarly, Fig. 9

displays the simulated K1, k2, k3, bv and Ki parametric images and the estimated transverse and 3D rendered 

parametric maps following post-reconstruction kinetic analysis of the dynamic [18F]FDG dataset. As can be seen 

in both studies, there is a good differentiation between the tissue and the blood components. The estimated 

(a)

(b)

(c)

K1 (ml/sec/ml) k2 (ml/sec/ml) k3 (ml/sec/ml) bv (ml/ml) Ki (ml/sec/ml)

(a)

(b)

(c)

K1 (ml/sec/ml) k2 (ml/sec/ml) bv (ml/ml) VT(ml/ml)
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(a)                                                                                         (b)

Fig. 10 Profiles through (a) the volume of distribution (VT) and (b) net uptake rate (Ki) parametric images, obtained from the 

dynamic [15O]H2O and [18F]FDG datasets respectively. Profiles are shown for the simulated and the estimated parameters 
following post-reconstruction kinetic analysis.

parametric maps appear broadly similar to the simulated ones while both micro- and macro-parameter maps can 

be estimated with the proposed simulation platform. Again since projections from a single gate were used, the 

estimated parametric maps are representative of motionless data. Consequently, any visible blurring in the 

estimated parametric maps is attributed to the lack of convergence during image reconstruction. A more 

quantitative comparison can be seen in Fig.10 where profiles through the VT and Ki parametric images from the 

[15O]H2O and [18F]FDG dataset are plotted. Reconstructed VT values vary between 0 and 1 ml/ml depending on 

the region while Ki, representing the net uptake rate, vary between 0 and 0.00133 ml/s/ml with the maximum net 

uptake seen in the tumors. 

V. DISCUSSION

   A 5D anthropomorphic computational phantom for parametric imaging studies in dynamic emission tomography

based on a generic simulation platform is described. The new platform comprises of a patient specific MR-

segmented anatomical representation, including user-defined patient specific anatomical variants, coupled with a 

detailed kinetic modelling simulator, capable of generating realistic dynamic imaging protocols based on any

given tracer specific model. The phantom is envisaged to become available for academic research applications in 

imaging physics, providing a library of anatomical phantoms coupled with the pharmacokinetic simulator and 

representative motion fields. Supplementary models, in addition to those demonstrated in this study could be 

incorporated along with additional functionality.
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   Compared to current computational phantoms reported in the literature, such as the NCAT and XCAT [10], the 

proposed design lacks the flexibility offered by coupling mathematical models to detailed generalized anatomical

information. However, the proposed methodology counterbalances this by benefiting from a fast simulation 

environment, with semi-automatic segmentation techniques, making it possible to simulate personalized dynamic 

protocols [39]. Having the MR data available, construction of the anatomical phantom, kinetic modelling 

simulation, motion field estimation and application, and forward projection to generate the raw emission and 

attenuation data should take between 20 and 25  hours [15]. However the majotiy of this time is taken by the 

forward projection step and depends on the imaging system, the number of respiratory gates and the kinetic 

modelling framing being simulated. With the recent advent of hybrid PET-MR systems, MR information is readily 

available for each patient, omitting the need for additional scanning sessions [40]. Furthermore, MR offers a 

competitive advantage compared to CT-derived anatomical phantoms since it results in no radiation dose to the 

subject. However, if other patient-specific anatomical information is available from different modalities, this can 

easily be incorporated to picture a more detailed anatomical representation. However, in this case, the additional 

structural information would need to be registered to the MR space prior to being segmented and incorporated in 

the phantom. If MR information is not available and the anatomical information derived exclusively from a 

different modality (such as CT), then there is no need for additional registration as the structural information is

derived solely from a single modality. While patient-specific models can be realized, in cases where only a generic 

anatomical representation is needed, template anatomical information can be drawn from an anatomical library 

based on databases of healthy males and females.

 Apart from a more personalized anatomical design, the dynamic phantom in reference paves the way for

generic realistic parametric imaging simulation studies not previously available with application-specific

platforms such as PCAT [23]. For algorithmic development, kinetic parameters for all organ structures can be 

drawn from existing literature; however, again if a more personalized simulation is needed, following kinetic 

analysis of an existing dynamic study, patient-specific kinetic parameters can be used in conjunction with the 

tracer-specific model and a patient or population based input function.

One of the drawbacks of voxelized phantoms, previously seen as a disadvantage compared to mathematical 

and hybrid phantoms is their inability to describe periodical motion induced variations [10]. However, this 

drawback was overcame by exploiting the possibility to transform the dynamic PET data with MR-derived motion 

fields and to generate a number of PET gates, simulating realistic respiratory motion within each time frame in the 

dynamic imaging protocol. One of the benefits of such an approach, amongst others, is the ability to provide a 
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platform to investigate and develop a number of kinetic modelling related methods and techniques in the presence 

of motion.

Although the current phantom significantly enhances the simulation capabilities in the field of parametric 

imaging in emission tomography, further improvements can be accommodated. Extension of the simulated FOV 

from a single bed position to a multi-bed coverage is achievable since current PET-MR systems perform whole 

body acquisition protocols. This is of particular relevance since whole-body parametric imaging protocols have 

recently been introduced, demonstrating enhanced tumor detectability and more accurate quantification compared 

to traditional static imaging protocols relying on SUV indices [41].

Apart from improvements in the anatomy, further improvements can be realized in simulating the transit of the 

tracer through the vasculature and capillaries following tracer injection. More detailed modelling of the underlying 

physiological processes governing the tracer's delivery and uptake can further enhance the simulation capabilities

of the existing platform, especially for drug and tracer development studies. Two PET dynamic protocols were 

demonstrated in this work, representing the bulk of imaging applications in PET imaging. The platform can also 

be used in a similar way for any clinical application in SPECT imaging. Furthermore, even though the platform is 

primarily designed for parametric imaging studies in emission tomography, it can easily be extended to 

accommodate dynamic simulation studies for other modalities. Dynamic contrast enhanced MRI and CT using 

iodine-based contrast agents can take advantage of the proposed methodology to investigate different 

pharmacokinetic related methods and techniques [42]. Although kinetic modelling in these modalities is slightly 

different compared to emission tomography techniques [43], the software can easily be extended in the future to 

incorporate pharmacokinetic models tailored to DCE-MR and DCE-CT imaging protocols.

VI. CONCLUSION

   As dynamic imaging protocols are adopted more frequently for clinical research and drug development,

simulation solutions for more efficient development, evaluation and validation of novel tracers, protocols, 

methods and techniques in parametric imaging studies, are of interest. In this work, a new 5D computational 

phantom for generating realistic datasets for parametric imaging studies in emission tomography, was presented. 

The proposed phantom can be used for a number of applications both in PET and SPECT, including motion 

tracking and correction, conventional and direct image reconstruction algorithm development, dynamic imaging 

protocol design, simulations for tracer and drug development and kinetic parameter estimation algorithm 

development. As such, the phantom and software platform will be a valuable tool for the molecular imaging 
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community and is envisaged to become available for simulation studies in dynamic tomography. 
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List of Tables

TABLE I
SIMULATED KINETIC PARAMETER FOR THE SINGLE-TISSUE MODEL

K1

ml/s/ml

k2 

ml/s/ml

Bv    

ml/ml

VT

ml/ml

Lungs 0.0008 0.0014 0.06 0.6 

Bone 0.0018 0.0027 0.00 0.69 

Soft tissue 0.0005 0.0042 0.00 0.12 

Ventricles 0.0000 0.0000 1.00 0.00 

Myocardium 0.0167 0.0183 0.15 0.91 

Tumors 0.0098 0.0161 0.08 0.61 

Liver 0.0117 0.0119 0.05 0.98 

TABLE II
SIMULATED KINETIC PARAMETER FOR THE TWO-TISSUE MODEL

K1

ml/s/ml

k2 

ml/s/ml

k3

ml/s/ml

Bv

ml/ml

Ki

ml/s/ml

Lungs 0.0007 0.0048 0.0006 0.1510 0.0001

Bone 0.0027 0.0033 0.0010 0.0000 0.0006

Soft tissue 0.0008 0.0054 0.0014 0.0190 0.0002

Ventricles 0.0000 0.0000 0.0000 1.0000 0.0000

Myocardium 0.0033 0.0170 0.0025 0.5450 0.0004

Tumors 0.0031 0.0073 0.0056 0.0800 0.0014

Liver 0.0209 0.0222 0.0000 0.1650 0.0000
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List of Figures

Fig. 1. Schematic diagram of a single-tissue (top) and a two-tissue (bottom) kinetic models showing the different compartments 
as well as the constant rate controlling the rate of change in activity concentration for each compartment.

Fig. 2. Schematic diagram of a single-tissue model at 2 different target regions. As the injected bolus passes through the blood 
stream it becomes dispersed while its arrival time is shifted. The option to use different delay and dispersion parameters for each 

organ in the phantoms improves the level of realism compared to using a common delay and dispersion for the entire phantom.
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Fig. 3. Transverse (a), coronal (b) and sagittal (c) images of the simulated attenuation map corresponding to a single gate.

(a)                                                                                         (b)

                 

(c)                                                                                        (d)



Page 27 of 31

A
cc

ep
te

d 
M

an
us

cr
ip

t

27

Fig. 4. Simulated TACs representing (a) [15O]H2O and (b) [18F]FDG kinetics, used for the different regions of interest in the 3D 
anatomical phantom. Input functions with differential delay and dispersion in different organs can be used while organ TACs 

having a dual input function delivery can also be simulated. The simulated [15O]H2O TACs from (a) are shown in (c) using a 

dual input model in the liver, while 3 input functions from a [15O]H2O scan with different delay and dispersion are shown in (d).

(a) (b)

(i)

(ii)

(iii)

(iv)

(c) (d)

Fig. 5. Transverse (a), coronal (b), sagittal (c) and 3D rendered (d) simulated images of the [15O]H2O phantom at 2 different time 
points during the simulated dynamic [15O]H2O image sequence corresponding to an early time frame (i-ii) (t = t0 +20 s) and a 

late time frame (iii-iv) (t = t0 +360 s) where t0 is the reference start time. Images are shown for a single respiratory gate 

corresponding to motionless data (i, iii) and for all gates superimposed and corresponding to motion affected data (ii, iv).
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(a) (b)

(i)

(ii)

(iii)

(iv)

(c) (d)

Fig. 6. Transverse (a), coronal (b), sagittal (c) and 3D rendered (d) simulated images of the [18F]FDG phantom at 2 different 
time points during the simulated dynamic [18F]FDG image sequence corresponding to an early time frame (i-ii) (t = t0 +40 s) and 

a late time frame (iii-iv) (t = t0 +3400 s) where t0 is the reference start time. Images are shown for a single respiratory gate 

corresponding to motionless data (i, iii) and for all gates superimposed and corresponding to motion affected data (ii, iv).

Fig. 7. Representative sinograms after forward projecting the dynamic 5D phantom. Projection data are shown at a late time 

frame from a single gate, simulating a motion free dataset (a) and from an average sinogram after combining all gates, 
simulating a motion affected dataset (b).
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Fig. 8. Transverse (a), coronal (b), sagittal (c) and 3D rendered (d) reconstructed [15O]H2O (i-ii) and [18F]FDG (iii-iv) emission 
images at 2 different time points corresponding to an early time frame (i, iii) and a late time frame (ii,iv) where t0 is the reference 

start time. Images are shown for a single respiratory gate corresponding to motionless data.

Fig. 9. Parametric images of K1, k2, bv and VT (a) simulated and (b) estimated (using GLLS) following 3D reconstruction of the 

simulated single gate dynamic [15O]H2O phantom dataset. Rendered images of the estimated maps are also shown in (c).
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Fig. 10. Parametric images of K1, k2, k3, bv and Ki, (a) simulated and (b) estimated (using GLLS), following 3D reconstruction 

of the simulated single gate dynamic [18F]FDG phantom dataset. Rendered images of the estimated maps are also shown in (c).

Fig. 11 Profiles through (a) the volume of distribution (VT) and (b) net uptake rate (Ki) parametric images, obtained from the 
dynamic [15O]H2O and [18F]FDG datasets respectively. Profiles are shown for the simulated and the estimated parameters 

following post-reconstruction kinetic analysis.

Highlights
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- Dynamic image acquisition protocols are increasingly used in emission tomography 

-  Need for computational phantoms to describe both the spatial and temporal distribution of radiotracers.

- A 5D anthropomorphic phantom was developed, for parametric imaging simulations in emission tomography. 

- The phantom is based on real 4D MR data and a detailed multi-compartmental pharmacokinetic modelling

simulator. 

- Example applications are shown in parametric [18F]FDG and [15O]H2O PET imaging.


