This is a repository copy of Terahertz-frequency quantum cascade lasers with >1-Watt output power.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/82335/

Version: Accepted Version

Conference or Workshop Item:

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Terahertz frequency quantum cascade lasers with >1 Watt output power


School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK

eljz@leeds.ac.uk

1. Introduction

High power terahertz (THz) frequency quantum cascade lasers (QCLs) have a broad range of potential applications, including spectroscopy, imaging and remote sensing [1-2]. We demonstrate THz QCLs with >1 W peak output power from a single facet at 10 K using broad area laser ridges [3]. The active region is based on a GaAs–AlGaAs bound-to-continuum quantum cascade structure incorporating a single-quantum-well phonon extraction/injection stage, similar to that reported in Ref. 4. The whole QCL structure was grown by solid-source molecular beam epitaxy on a semi-insulating GaAs substrate.

2. Results

Figures 1(a) and (b) show the performance of a high power THz QCL, operating at 3.4 THz. The device emits 1.01 W peak output power at 10 K when driven at a 2% duty cycle (2 μs pulses, at a repetition rate of 10kHz). The QCL operated up to a maximum temperature of 120 K.

![L–I–V curves and spectra](image)

Fig. 1 (a) L–I–V curves, and (b) spectra, obtained with a 2% pulse duty cycle, of a high power THz QCL with a bound-to-continuum THz QCL active region incorporating a single-quantum-well phonon extraction/injection stage.

We acknowledge support from EPSRC (UK), the European Research Council grants ‘NOTES’ and ‘TOSCA’, the Royal Society and Wolfson Foundation.

Reference