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Abstract

This survey paper aims at summarizing the state of the art of computational semantic methods
in speech recognition and understanding research. A taxonomy classifying the approaches
adopted in the literature is divided into six main categories: semantic networks, semantic
grammars, caseframes, statistical, unification-based and neural networks. For each approach,
an overview of the variety of uses and relative strengths and weaknesses is given.

1 Introduction

In the literature, many methods and techniques have been devised to provide semantic con-
straints for speech recognition. A thorough classification is rather difficult since most systems
were
developed and tuned under different task domains and vocabularies. We tried to survey the
entries found in the literature in order to come up to a convergence for a useful classification.
The different approaches are classified in six main categories: semantic network approaches,
case-frame approaches, unification-based approaches, statistical-modelled approaches and
connectionist approaches. Unfortunately due to space limitations, only a summary of each
approach and a brief assessment of its advantages and disadvantages can be given. For a more
thorough and extended survey and a more complete set of references, the reader is advised to
look at Demetriou and Atwell (1994).

2 Semantic network approaches.

The most common axes for structuring knowledge in semantic networks as pointed out by
Sagerer and Kummert (1988) are:

� classification: a real world object is associated with its generic type so that a concept can be
distinguished from its instances (i.e 'instance-of' relation).
� aggregation: concepts or instances are related to other concepts or instances respectively of
which they may be parts (i.e. 'part' relation).
� generalization: a concept is related to more generic ones (i.e. 'isa' relation). In this way, a
hierarchy between concepts in the network is defined.

The main advantage of using semantic networks is that restrictions are facilitated in the
semantic hierarchy so that generality in role fillers can be acquired by inheritance. They also
allow for the specification and checks of relations between concepts and their instances in a
sentence (nominal, adjectival, attribute-value, etc.). For speech recognition, semantic networks
have been used for the construction of sentence hypotheses guided by concept relation
judgements of content words (Sagerer and Kummert 1988), to propose additional words that
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might have occured in the original utterance but be missing due to poor match quality (Nash-
Webber 1975a) or the reduction of syntactically well-formed but semantically inadmissable
structures (Niedermair et al 1990).

For speech understanding, the semantic network of a recognized sentence can be linked with a
preconstructed network for the input story (as in Shigenaga et al 1986) or for anaphora
resolution by attaching semantic categories to semantically empty pronouns (Niedermair et al
1990). Semantic networks have also been used in Brietzmann and Ehrlich (1986) for the
EVAR system (to represent a tree-structured inheritance between semantic features), and
Hataoka et al (1990) (where 'concept' networks are proposed to represent the meanings of
single words as well as three kinds of relational links - 'isa', generic and instance relations).

The main argument against the use of semantic networks is the inability to introduce world
knowledge for more general applications and large vocabularies. Expanding the network to
new tasks, search space increases drammatically due to the large numbers of concepts and
relations affecting the overall system's efficiency. Even if hardware computer power increases
to cope with heavy processing, the knowledge capture problem remains: how to create a
general purpose, wide-coverage network1.

3 Semantic grammar variants

Semantic grammars use semantic conditions closely integrated with the syntactic rules of the
grammar. To construct semantic rules, syntactic entities are split into meaningful categories in
the task domain. For example in (Hayes-Roth 1980), the non-terminal $AUTHOR can
represent a main category so that a rule like

 'If $AUTHORS=word(1),..., word(n) then form a set of sequence of requested authors
including each word as an instance of $AUTHOR'

searches a small subset of its syntactic category instead of the whole class. These grammars are
usually represented as transition networks (for example augmented transition networks as in
Wolf and Woods 1980 or finite state networks as in Pieraccini and Lee 1991) where the
transitions between states in the language environment are between conceptual categories
rather than words. The rules can be used for semantic acceptability tests (by associating
meaning components directly with the syntactic units) as well as for predicting adjacent
constituents and confirming compatible hypotheses by postdiction2, before, during or after
syntactic processing.

Semantic grammars are seen as providing stronger constraints than pure syntactic grammars.
They had been popular among the systems developed in the 70s during the first ARPA SUR
project like the Hearsay II, HWIM, and Harpy systems (for an overview see Klatt 1977).
Nevertheless, later work (Mergel or Paeseler 1987, Hauptmann et al 1988 among others)
recognized their practical efficiencies for certain task domains. The main strength of semantic

                    
    1Demetriou and Atwell (1994a) (this Proceedings) propose to build a general-purpose network from a lexical
database (LDOCE).

    2prediction after the event
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grammars lies in their ability to balance the satisfiability and diagnosticity3 of grammatical
constraints in order to optimize the computational cost for the particular task. For example
(Hayes-Roth 1980), the testing of the category hypotheses $ARTICLE instead of $NOUN is
far more diagnostic but not at the same degree computationally expensive. For other
approaches in the same spectrum in the literature, the reader can refer to Klovstad and
Levinson and Shipley (1980) and Matsunaga et al (1990).

Apart from the inherent difficulties in hand-coding and expanding the grammar for a new
application, another limitation of a semantic grammar is the inability to express linguistic
generalisations. By this is meant the fact that a syntactic category has to be repeated for every
semantic class. This results in the enlargement of syntax and also causes usability problems
since it leaves users feeling uncertain about the real linguistic coverage of the system
(Thurmair 1988).

4 Caseframe approaches

Semantic constraints expressed in the form of caseframes (Fillmore 1968) have been adopted
by a significant number of systems in the literature. The central idea is that of a head concept
(generally the main verb or predicate of VP or the head noun of NP) modified by a set of cases
(noun or adverbial phrases in VP or modifiers in NP) that play some related role and may in
turn correspond to other caseframes. From the recognition point of view, frame-based
approaches have been used for the production of sentence hypotheses from a word lattice and
the choice of the most likely one (as in Brietzmann and Ehrlich 1986, Poesio and Rullent 1987,
Bigorgne et al 1988, Fissore et al 1988, Young et al 1988), for filling gaps of missing words
(Hayes et al 1986), for correcting errors in the recognized message (Young 1991) as well as
for making word predictions during recognition (Niedermair 1986). Systems that used this
technique to verify hypotheses proposed by N-best interfaces also exist (Norton et al 1991,
Seneff et al 1991).

For understanding, this approach has been used at a post-recognition stage to disambiguate the
recognized utterance and find its meaning representation in order to respond in a dialogue
process (Luzzatti 1987, Jackson et al 1991, Rudnicky et al 1991, Ward 1991).

Caseframes are popular because they can combine acoustic reliability with semantic relevance.
Unlike network-based techniques, parsing is able to start its interpretation from the most
significant parts of the utterance and to extend these islands to the less reliable segments. This
is very important for processing both well-formed and ill-formed input. Nevertheless, the
recognition method may vary and be adapted to the particular use. This is because caseframes
encode semantic information at a more abstract level than ATNs and constraints can be applied
in multiple ways (Hayes et al 1986). Another advantage is that once an acceptable caseframe
combination is derived, the semantic representation of the utterance is directly derivable.

For dialogue and back-end operations, interesting attempts are presented by Young et al (1988)
for the VODIS II (Voice Operated Database Inquiry Systems) system (frames contain nested
ranked alternatives of the input speech and knowledge of the task domain i.e. requests through
telephone and are used to select a suitable response) and Seneff et al (1991) (where TINA's
                    
    3Satisfiability is described as a measure of the expected frequency for a test to yield positive results.
Diagnosticity, on the other hand, measures the amount of information a constraint adduces (Hayes-Roth 1980).
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outputs are transformed into frame representations and integrated with available frames from
the history for text and SQL generation).

The main shortcomings of caseframes for speech can be summarized as follows:

� Caseframes rely heavily on finding head words (usually verbs, nouns or adjectives) which
are easily distinguishable among others by having a high acoustic score. While for longer
words this may be possible, for shorter ones may not (for example, 'rent', 'hat', 'gap', etc.). In
addition, there is no efficient method of exploiting word scores in a way that can help the
analysis during parsing. This strategy is therefore dependent on the accuracy of the recognizer
in assigning the best scores to islands that correspond to frame headers.

� Keeping syntax separate from semantics is not always feasible. This is basically for effi-
ciency reasons since caseframes cause serious computational and memory problems for even
simple task domains. This contributes to the loss of syntactic power once the syntax is
embedded in the code, and it is difficult maintain each knowledge type separately.

� From the linguistic viewpoint, caseframes have limitations in expressing relations other than
'verb' plus 'sentence function' or 'noun' plus 'attribute' (Niedermair et al 1990). Thus, they are
adequate only when they are implicitly present in the speaker's mind (for example, when
spacial-temporal relationships are well defined - Luzzatti 1987). It is therefore difficult to
apply them to general information dialogue systems. Communication processes built on these
are at present possible for well-defined (usually small vocabulary) defined tasks.

5 Statistical approaches

Statistical language modelling has long been advocated by researchers at IBM (Baker 1975,
Jelinek 1990) and elsewhere (Atwell 1983). The general idea is to assign a probability to any
word string appearing in the lattice. The recognized sentence is the one that maximizes this
probability. Probabilistic semantic constraints are expressed in terms of bigram or trigram4

representations of lexical or semantic classes of words rather than individual words (as in the
pure statistical approach). If U=u1, u2,...,um corresponds to the 'observed' utterance, W=w1,
w2,...,wl corresponds to words and for every wi there is an associated semantic tag si, then the
meaning can be represented as S= s1, s2,...,sl. The system tries to maximize the conidtional
probability P(W,S³A) given the acoustic 'observation' A and the maximum aposteriori
criterion. The probabilities for these sequences are obtained via training in text corpora.
Generally, if the equivalence class of the past string is Sn, the probability of a word w will be
estimated by the relative frequency f(w³Sn) in a corpus.

In the literature, most systems have applied this strategy for the disambiguation of recognition
lattices (Stern et al 1987, Fissore et al 1989,  Paeseler and Ney 1989 and others). Others used it
for the correction of recognition errors and the filling of missing words (Ward et al 1988),
segmentation of sentences into phrases with semantic relations (Pieraccini and Levin 1992)
and reordering sentences hypotheses in N-best lists (Kubala et al 1991).

The main advantages for using statistical-based speech recognition methods are the simplicity
                    
    4That is, the probability of the next word been uttered depends on the previous word or the two previous
words respectively.
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and effectiveness for real-time tasks. Other pros are the reliability in ordering multiple
sentence hypotheses and the automatic training of parameters from text, thus avoiding the
trouble of writing complex grammar rules. The reason for building a language model around
semantic classes is that it requires less memory, storage and computational time than simple N-
word models.

Rose and Evett (1992), Rose (1993) provide semantic support for a large vocabulary
handwriting system based on word similarities from MRDs and text corpora. Their system
operates upon well-formed syntactic alternatives. For text recognition, constraints or
preferences as expressed by word overlap between sense definitions in MRDs (the Collins
English Dictionary and The Oxford Advanced Learner's Dictionary) are used within a
fixed-size window in order to determine semantically related content words in the candidate
phrase and produce a score according to that overlap. Accordingly, word collocations (which
indicate the co-occurence of words into meaningful fragments)  as found in the LOB corpus
are explored in a similar manner. That is, to discriminate  between alternative sequences of
candidate words, the program compares the collocational information for each candidate and
those around it.

Statistical N-gram language models for speech present clear limitations in expressing semantic
constraints since only local context is taken into account (it is difficult to use a large N due to
computational reasons). This may result in ungrammatical sentences and unexpected answers
especially when there are missing words in the lattice and no appropriate action has been
taken. Training sets are, in most cases, found to be small and inadequate to provide statistic
coverage for large vocabularies. Training also has the problem that statistical modelling may
depend on the domain of the text corpus and applying a model to a new domain requires new
training corpora for this domain. Furthermore, as far as semantic restrictions are concerned, it
is not always straightforward to specify the optimal number of semantic classes in which
words should be grouped for the particular task. Words can be better distinguished if grouped
in more classes. However, this is computational expensive (it needs bigger corpora for tagging
and training) and not appropriate with noisy input and missing segments (where more general,
looser constraints should be used). With fewer classes, the grammar is more robust (a fairly
small corpus can provide enough statistical information), but also less accurate. Although there
are several tagged corpora to train syntax (tagged LOB corpus, Brown corpus, etc.), there are
no available large-scale semantically-tagged corpora to act as training data5.

6 Unification-based approaches

In unification grammar formalisms (Shieber 1986) linguistic knowledge is structured with
featural constraints at the levels of morphology, syntax and semantics that all occur in the same
expression. In such grammars, rules are made up of category elements that are not atomic
symbols, but complex structures consisting of a category label and attribute specifications that
are assigned values of a more general category type. For example (from Chow and Roukos
1989), the rule

(S:mood) Ä> (NP: person: number)
     (VP: person: number: mood)

                    
    5But see also Jost and Atwell (1993), Wilson and Rayson (1993) for research on semantic tagging of
corpora.

5



enforces agreement between the NP and VP phrases in the values of  ': person' and ': number'
features ('person' can be first, second or third, and number can be singular or plural). It also
requires that S and VP have the same mood. Unification refers to the operation used for
building and combining feature structures. In unification based parsing, the interpretations of
constraints (in a conjuctive or disjunctive logical connection) are used for variable matching
and substitution in order to satisfy agreement that yields a sentential feature structure.
The contribution of semantics is by the semantic role constraints. The parsing process
integrates syntactic unification with semantic restriction checks and unification of feature
structure succeeds when meeting these restrictions.

Arguments for using unification-based parsing include its declarativeness and better
integration of richer linguistic information (syntactic and semantic) to eliminate sentence
hypotheses. It also offers global structure synthesis capabilities and flexibility in handling
several kinds of argument variations for which other approaches are costly. For example, the
processing of 'fly from Denver to Boston' and 'fly to Boston from Denver' is better handled by
unification-based algorithms than caseframes for which multiple frames are needed. Moreover,
they can be designed to handle complex logical constraints involving conjunction, disjunction,
implication and negation.

Parsing recognition lattices using a unification grammar has been practised by a number of
references in the literature (Tomabechi and Tomita 1988, Chow and Roukos 1989, Bobrow et
al 1991, Chien et al 1991, Andry et al 1992). Unification based-algorithms have also been used
by Kasper and Hovy (1990) (they combine unification based parsing with classification-based
knowledge representation) and Moore and Dowding (1991) (who divide the categories in the
unification grammar into context-dependent and context-independent ones in order to deal
with gaps in the utterance).

Despite its increasing popularity in computational linguistics, unification-based processing is a
matter of controversial discussion. For speech, its main disadvantages are the complexity in
designing and maintaining the grammar and its poor computational efficiency. Complexity in
the exact specification of features affects the expansion of the grammar into larger domains.
Thus, unification algorithms work fairly well for small grammars but are unsatisfactory for
larger grammars. For large-scale implementations the designer should find the optimum level
of analysis into feature structures and balance them against computational efficiency. Inherent
deficiencies of unification-based parsing may  affect time performances (see Kasper and Hovy
1990 and Ingria 1990 for discussions). These are associated with making new copies of feature
structures in order to guarantee correct unification whenever a description of a sentence is to
be built. Since there is no way for a unification to use the results of prior unifications (because
the results of computations are not saved), sub-expression computations have to be repeated
very often. Furthermore, unification is unable to determine whether any dependencies between
structures occur without unifying them. This results in compatibility checks between structures
that have no features in common.

7 Connectionist approaches

Artificial neural network modelling is seen as having a great potential in speech recognition
(Lippmann 1989), since it exhibits properties like parallelism in processing and learning
capability that resemble human-like characteristics. In neural networks, processing elements or
nodes are connected by links with variable weights. Connection weights between nodes are
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adapted from training data and are continuously modified during use. Initially the system
knows nothing about the associations between the words and their syntax and semantics. After
a pattern and a true label for that pattern are input to the system, the classifier produces an
error signal which indicates the distortion measure between the input and the true pattern. This
error plus the true label are fed back to modify the system's internal parameters. By this way
the system learns by receiving feedback as a response to its action. As words are fed to the
network, activation patterns across the feature units which represent the syntactic and semantic
properties of the words are produced. The output is typically the distributed representation of
the sentence's composition of syntactic and semantic features.

The way semantics is utilized is the mapping from words to their semantic information. This
mapping is reflected in the connections between words units and feature units. These construc-
tions are governed by a semantic error signal to control the feedback learning process.

Neural nets have been used both for language acquisition modelling for speech understanding
in dialogue tasks (Gorin et al 1990, 1991, Wang and Waibel 1991) and for connectionist
parsing to confirm or verify sentence hypotheses (Jain and Waibel 1990). Apart from the
intrinsic parallelism capability, connectionism offers several advantages over more
conventional approaches. It can combine symbolic and non-symbolic information effectively
and can generalize from examples. This is more attractive than constructing complex formal
grammars for spoken language domains. Moreover, neural networks, by acquiring the parsing
behaviour by themselves during training, tend to be more tolerant to noisy speech input and
more efficient in processing loose structures.

The objection against the use of neural networks for speech recognition, is the need for
training procedures. Till now, connectionist approaches have been tested on small constrained
tasks. Extending them for larger domains results in many thousands of nodes and millions of
connections making the networks impractical to train both in terms of computability6 and
learnability. Futhermore, standard evaluation measures on the accuracy of learnt information
(like coverage and perplexity) cannot be used to assess the generalization capabilities. Many of
the drawbacks in of statistical approaches also apply on neural net approaches. There are no
large domain independent training sets, i.e. semantically tagged corpora; and if there were, the
computation problem would get even worse. Atwell (1993) compares a Markov n-gram parser
trained on the LOB corpus and an analogous back propagation neural parser; he shows that the
connectionist approach is much slower and/or less accurate.

8 Conclusion

We have seen the main approaches of applying semantic constraints for spech recognition. To
conclude, consider the argument that there is no adequate theory for semantic constraints for
speech recognition. Current trends in speech processing move to continuous recognition, large
vocabularies and speaker independence. Yet, no system at present has demonstrated large
vocabulary continuous speech to text transcription. As vocabularies increase, the confusability
and ambiguity between words also increase and there is a clear need for efficient use of all
kinds of available knowledge to control search of the resulting huge spaces. Semantics'
contribution could improve the performance of such systems considerably. Each of the
                    
    6Although weights can be automatically trained the number of units and connections have to be
predetermined by experiments.
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approaches presented above has its own advantages and disadvantages, but nearly all are
developed for small vocabularies (up to 1000 words) and specific task domains.

To deal with large vocabulary recognition three problems should be considered:

(i)  How to acquire semantic knowledge

Obviously, hand-coding solutions developed for small vocabularies and exploited in the form
of semantic grammars, unification-based grammars, case-frames or semantic nets are not
viable for vocabularies of 10-20000 words or more. Similarly, extracting statistical semantic
measures from text corpora (when this is possible) has proved to have coverage problems. In
best cases the training vocabulary cannot exceed 5-7000 words and taking into account that
such a size represents approximately 95% of the actual vocabulary used in a real situation, then
we assume 5% error rate for acoustic word recognition. But, from the point of view of
semantics and speech understanding, the problem gets bigger. The 'missing' words will
probably be content words (and most probably 'rare' words used for giving emphasis, strange
jargon words, technical words, etc.) so that the lack of their 'strong' semantic content will cause
inconsistencies in the semantic language model. For practical reasons, a connectionist
approach is not efficient for large vocabulary semantic language acquisition either, due to
computational inefficiencies in training a neural net for large vocabularies.

(ii) How to specify, represent and express the semantic constraints.

A task domain may be characterized by a variety of different types of semantic relationships.
In general, these specify the requirements for membership in conceptual categories and for
participation in meaningful domain relationships (Hayes-Roth 1980). Most systems to date
have developed their semantic modules for specific task domains; for example, by assuming
that a semantic grammar could adequately represent semantic constraints between lexical items
of a command control language (i.e. 'Open spreadsheet, expand it to fill the screen').
Obviously, designing such a grammar must take into account the close, tight relationships for
the particular task between 'open, 'spreadsheet',  etc., to reduce the number of possible
alternatives and constrain search. The question is, could the same grammar be used in another
application in which conceptual relationships of words can be of different nature, possibly not
realized within the syntactic classes of the words, as for example in machine dictation (in
which the list of candidates following 'open' would probably be longer, specifying more
abstract and general constraints)? Is such an approach adequate for spontaneous speech
applications possibly full of ungrammaticalities?

(iii) How to express computationally the semantic constraints

The main requirement, as far as recognition is concerned, is real time processing of speech
input. There is no way at present to make efficient use of semantic constraints  for top-down
control of search. Presumably the high number of possible candidates at each point of the
utterance rules out the possibility of making predictions and proposing hypotheses to control
search in large vocabulary recognition. Simply relying on bottom-up recognition and applying
semantic restrictions to verify acoustic hypotheses may not prove optimally efficient. The
extension of semantic constraints beyond sentence boundaries and the use of discourse
information may sometimes be necessary. In addition, no system to date simulates human
integrative behaviour of semantics to assist recognition. Human recognition is assumed to be
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highly distributed in nature. A technique that could constrain acoustic hypotheses in real time,
by using semantic information as early as possible, would be the ultimate solution for optimal
efficiency.
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